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Advanced MRI for carotid plaque imaging
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Abstract Atherosclerosis is the ubiquitous underling

pathological process that manifests in heart attack and

stroke, cumulating in the death of one in three North

American adults. High-resolution magnetic resonance

imaging (MRI) is able to delineate atherosclerotic plaque

components and total plaque burden within the carotid

arteries. Using dedicated hardware, high resolution images

can be obtained. Combining pre- and post-contrast T1, T2,

proton-density, and magnetization-prepared rapid acquisi-

tion gradient echo weighted fat-saturation imaging, plaque

components can be defined. Post-processing software

allows for semi- and fully automated quantitative analysis.

Imaging correlation with surgical specimens suggests that

this technique accurately differentiates plaque features.

Total plaque burden and specific plaque components such

as a thin fibrous cap, large fatty or necrotic core and

intraplaque hemorrhage are accepted markers of neurois-

chemic events. Given the systemic nature of atherosclero-

sis, emerging science suggests that the presence of carotid

plaque is also an indicator of coronary artery plaque bur-

den, although the preliminary data primarily involves

patients with stable coronary disease. While the availability

and cost-effectiveness of MRI will ultimately be important

determinants of whether carotid MRI is adopted clinically

in cardiovascular risk assessment, the high accuracy and

reliability of this technique suggests that it has potential as

an imaging biomarker of future risk.

Keywords Atherosclerosis � Imaging � Carotid � MRI �
Cardiovascular risk

Introduction

Cardiovascular disease claims the lives of at least one in

three North American adults, with atherosclerosis as the

leading cause of cardiovascular related-mortality and

morbidity [1]. While traditional cardiovascular risk factors

obtained from the patient’s history, physical exam and

biochemical markers may be used to predict coronary heart

disease [2], composite scoring systems calibrated for car-

diac disease, such as the Framingham risk score model, do

not adequately predict incident stroke [3]. These traditional

scores can also underestimate the risk of cardiovascular

disease in women [4] and socioeconomically deprived

individuals [5]. These risk models do not adequately

account for all of the inherited, anatomical and environ-

mental variables contributing to cardiovascular events [6].

Direct atherosclerotic imaging can provide insight into the

total plaque burden, composition and stability. Carotid

MRI has proven to be a useful adjunct in reclassifying

patients at risk [7].

The carotid bifurcation is a region of unique vulnera-

bility. The branching point is the focus of elevated shear-

stress. This elevated tension occurs at the junction between

the internal carotid artery, supplying the low-pressure

cerebral circulation, and the external carotid branch, pro-

viding blood to the high resistance facial muscles [8]. This
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vulnerable region is well suited for imaging evaluation and

provides an ideal surrogate for other vascular beds. Superfi-

cially located, the carotid arteries are easily palpated, allowing

for the precise positioning of surface coils. Compared to the

coronary vasculature, the carotid arteries are large and rela-

tively immobile, reducing motion artifact. Thus, since the

carotid arteries are susceptible to early atherosclerotic dam-

age, superficially situated and essentially stationary, these

vessels are optimally suited for imaging study.

Comparison to other techniques

Carotid MRI has many advantages over other imaging

techniques. While ultrasound is a widely available method

that is commonly used for screening, its spatial, temporal

and contrast resolution is limited, reducing its accuracy for

evaluating carotid stenosis [9] and plaque components [10]

relative to MRI. Computed tomography (CT) has high

spatial resolution but involves ionizing radiation and the

imaging of heavily calcified lesions can overestimate the

burden of disease [11]. Positron emission tomography

(PET) is valuable for the characterization of plaque

inflammation but is unable to accurately depict other pla-

que features [12, 13]. Thus of all of the commonly utilized

noninvasive clinical imaging modalities, MRI is the most

accurate and versatile.

MR hardware

Optimal vascular imaging requires high-field magnetic

resonance systems which may be coupled with dedicated

surface coils. Several studies comparing T1-, T2-, and

proton density-weighted black-blood techniques at 1.5- and

3-T have observed significant improvements in the signal-

to-noise (SNR) and contrast-to-noise ratios and the overall

image quality using the higher field strength system [14–

16]. Further improvements to image quality can be

achieved through the use of dedicated surface coils by

boosting the SNR and minimizing the propagation of flow

artifacts [17, 18].

As illustrated in Figs. 1 and 2, surface coils require careful

positioning. Figure 1 depicts the coils positioned over a

water phantom and demonstrates a sharp drop in signal with

depth. The position of the bifurcation can vary significantly

with neck motion. As illustrated in Fig. 2, flexion can

superimpose the jaw bone and submandibular soft tissues

over the carotid bifurcation, thus increasing the depth of the

carotid bulb and reducing the efficacy of the surface coils.

Therefore, image quality is dependent on both hardware and

technical expertise in the use of this equipment.

Plaque characterization

First described by Glagov et al. [19], the morphological

changes of atherogenesis begin with an outward expansion

the vessel. Demonstrated initial on pathological specimens

and later with MRI [20], the artery undergoes compen-

satory dilation with eccentric remodeling before further

plaque deposition causes luminal encroachment.

Identifying plaque components, including the presence

or absence of a lipid core, fibrous cap, fibrous tissue

components and calcification can be achieved by varying

the image acquisition parameters (see Fig. 3). Flow-sup-

pressed T1-weighted studies before and after contrast, T2

and proton-density weighted imaging are routinely used in

carotid assessment [21–23]. T1-weighted, fat and flow

suppressed sequences are best to evaluate intra-plaque

hemorrhage, exploiting methemoglobin induced T1-short-

ening (Fig. 4) [24–26]. More recent publications suggest

that the acquisition of various contrast weighting can be

minimized to pre- and post-contrast T1-weighted, fat and

flow suppressed and time-of-flight imaging, eliminating the

time necessary for the proton-density and T2-weighted

imaging acquisition, while maintaining the ability to

quantify plaque morphology and identify the most clini-

cally relevant composition features including the presence

of the lipid-rich necrotic core and a thin fibrous cap [27,

28]. Table 1 provides an overview of the typical patterns of

imaging signal intensity associated with the various com-

ponents of atherosclerotic plaque [21, 22, 29]. The

parameters described in Table 1 been studied extensively

and correlated with histopathology [29–32].

Depending upon the imaging parameters, cardiac-gating

may no longer be necessary. In the past, single-slice cardiac-

triggered black-blood acquisitions have been obtained, effec-

tively suppressing flow artifacts around the carotid bifurcation

[33], however, these gated techniques prolong the total

examination time, potentially incurring greater study costs and

compromising patient comfort. More recently, inflow and

outflow saturation techniques have been incorporated into

black-blood techniques, allowing non-gated sequences to be

acquired without impairing image quality [34].

Contrast agents can enhance the characterization of the

arterial lumen and carotid wall. Contrast-enhanced MR

angiography improves the accuracy of high grade stenosis

evaluation over 3D time-of-flight angiography [35].

Delayed enhancement imaging improves the visualization

of plaque components, and enhancing regions strongly

correlate with regions of neovascularity and inflammation

on histology. Inflammation is depicted even better by

ultrasmall superparamagnetic iron oxide (USPIO) particles.

This material is phagocytized by macrophages and its

subsequent accumulation within inflammatory cells can be
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detected as signal drop-out on T2-weighted sequences [36].

These particles are used to distinguish inflammatory com-

ponents of symptomatic and asymptomatic plaque [37].

Another important aspect of carotid vessel characteri-

zation is the detection of intraluminal thrombus. Plaque

rupture exposes the circulating blood to thrombogenic

material, subsequently resulting in thrombus formation that

may occlude the artery or embolize distally. In the setting

of acute stroke, susceptibility-weighted imaging has been

used to demonstrate intra-arterial thrombus [38], demon-

strating improved sensitivity for the detection of intralu-

minal disease compared to time-of-flight angiography [39]

and contrast-enhanced imaging [40].

Flow measurements

The inspection of pathology specimens has demonstrated

that atherosclerotic plaque predominately develops adja-

cent to the bends and major branches within any particular

arterial network [41]. These findings suggest that a dis-

ruption of geometry alters flow dynamics and contributes

to the induction of atherosclerotic plaque [42]. MRI allows

for the comprehensive characterization of carotid bulb

geometry, including luminal diameter, wall thickness and

volume and vascular tortuosity. The bifurcation geometry

independently predicts wall thickening [43]. Within the

carotid bifurcation, the admixture of low-pressure internal-

Fig. 1 Dedicated surface coils

provide improved signal-to-

noise ratio for superficial

structures (a). When these coils

are applied to a cylindrical

water phantom, measuring 6 cm

in diameter, the drop-off in

signal intensity on the T1-

weighted images provides a

visual demonstration of the

penetration depth of the coil (b)

Fig. 2 Patient positioning can

significantly alter the depth of

the carotid arteries relative to

overlying muscle, grandular

tissue and skin as demonstrated

by these time-of-flight images

obtained during the same

imaging session with the

patient’s neck flexed (a), in
neutral position (b) and
extended (c)

Fig. 3 MRI allows depiction of several atherosclerotic components

including lipid core (asterisk). Signal hypointensity (asterisk) indi-

cates the lipid core of an eccentric atherosclerotic plaque with luminal

preservation on fat-saturation T1-weighted imaging pre- (a), and post-
contrast (b). Multi-contrast images usually also include T2 fat

saturation (c), time-of-flight (d), and MPRAGE (e)
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and high pressure external-carotid circulation creates a

region of non-laminar flow and elevated shear-stress,

assumed to potentiate atherogenesis. Wall shear-stress has

been estimated through the combination of MRI phase

contrast imaging and computational fluid dynamic tech-

niques that incorporate information regarding vessel

geometry and measurements of flow [44].

MRI can be further used to assess complex flow pat-

terns. Early phantom and patient studies [45] have

demonstrated the efficacy of differing sequences in

depicting flow under various conditions. Steady-state free

precession imaging is a balanced technique that optimally

depicts the lumen under no-flow and slow flow conditions.

Time-of-flight imaging produces good opacity provided

there is moderate blood velocity and not excessive intra-

voxel dephasing from fast or in-plane flow. As described in

the section above, black-blood fast- or turbo-spin echo

techniques best eliminate artifact with inflow and outflow

suppression techniques and perform well with higher flow

velocities.

Post-processing

Quantitative information can be abstracted from imaging

data through vessel wall segmentation. Performing this task

manually is labor-intensive and subject to inter- and intra-

observer variability. Post-processing software allows for

semi- and fully automated multi-planar assessment of

plaques for both qualitative and quantitative analysis.

Various methods have been tried including image defor-

mation [46], region growing algorithms [47] and model-

based segmentation [48], to name a few. These computer-

aided techniques are used to assess different measures of

carotid morphology including the lumen area, total vessel

area (sometimes called the outer wall area), wall area and

mean wall thickness (Fig. 5). These methods help ensure

that the inter-scan reproducibility of both vessel morphol-

ogy and tissue composition measurements, such as the

volume of lipid-rich necrotic core and calcification, is high,

and the intraclass correlation for these techniques is large,

with coefficients ranging from 0.87 to 0.99 [49]. Thus

Fig. 4 Coronal T1-weighted IR 3D FFE image depicting a hyperin-

tensity in the left carotid artery indicating intraplaque hemorrhage.

Hyperintense signal in the carotid wall [150 % of the adjacent

sternocleidomastoid muscle on this sequence accurately and reliably

depicts intraplaque hemorrhage

Table 1 Contrast of MRI plaque components

T1 pre T1 post T2 PD TOF

Lipid core Iso/high Low Low Low

Fibrous cap Iso Iso Mixed Mixed Low

Fibrous tissue Iso/high v. high Iso/high Iso/high Low

Hemorrhage v. high Variable Variable Variable

Calcification Low Low Low Low Low

Imaging-histopathological correlation of atherosclerotic plaque has

demonstrated patterns of fat-saturated T1 pre- and post-contrast, T2

and proton-density and time-of-flight (TOF) signal intensity that

differentiates lipid core, fibrous cap and tissue components, hemor-

rhage and calcification [21, 22, 29]

Iso isointense to skeletal muscle, v. very

Fig. 5 A T1-weighted contrast-enhanced fat saturation image

through the common carotid depicts the vessel morphology including

the lumen area (dot-dash line), total vessel area (dashed line) and

mean wall thickness (a value obtained by averaging a number of

cords, represented by the solid lines). The wall area is calculated by

subtracting the lumen area from the total vessel area. The lipid-rich

necrotic core component is also outlined (dotted line)
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facilitated by computation support, MRI provides a reliable

tool for longitudinal carotid assessment [50].

Clinical outcomes

The presence of these complex plaque components corre-

lates with traditional cardiovascular risk factors [51–53].

For instance, Wasserman et al. [54], demonstrated that in

asymptomatic individuals with thickened carotid walls, the

presence of lipid core by MRI is associated with total

plasma cholesterol. Features such as a thin fibrous cap,

large fatty or necrotic core and intraplaque hemorrhage are

associated with plaque instability [55]. Intraplaque hem-

orrhage is a feature of complicated late-staged atheroscle-

rotic plaque (see Fig. 4), thought to be the result of leaky

neo-capillaries [56] and associated with sustained acceler-

ation of plaque progression [57]. Complex morphology,

including plaque ulceration [58], and these unstable plaque

components, predict a higher likelihood of plaque rupture,

resulting in thromboembolism that culminates in stroke

[59–66].

As a surrogate marker of disease within other vascular

beds, carotid atherosclerosis has been shown to predict the

presence of coronary artery disease and its manifestations

such as angina, myocardial infarct, resuscitated cardiac

arrest and coronary atherosclerosis related death [7, 67].

Future applications

As discussed, there is ample evidence of the prognostic

value of MRI in the prediction of future stroke and pre-

liminary data regarding the value of this imaging technique

in the prediction of coronary events. Further research is

still needed to determine if measured changes in plaque

volume and imaging characteristics connote a similar

reduction in future cerebrovascular, and possibly even

cardiovascular, risk. Despite the robust performance of

carotid MRI as a prognostic marker, its potential for

widespread clinical adaption will likely be heavily influ-

enced by its availability and cost-effectiveness.

Conclusion

The carotid artery is a high-yield target for cardiovascular

risk. The technical advantages provided by carotid MRI

allows for the characterization of unstable plaque compo-

nents. Not only does MRI imaging of carotid atheroscle-

rosis predict stroke, but atherosclerosis in the carotid

arteries is also indicative of cardiac outcomes, providing a

mechanisms with which to more thoroughly screen patient

groups. Non-invasive imaging techniques for vascular

assessment have the potential to provide biomarkers for use

in future research studies.
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