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Bulky conjugated molecules with high stability are the prerequisite for the overall
improvement of performance in wide-bandgap semiconductors. Herein, a chiral
difluorenol, 2,2′-(9,9′-spirobi[fluorene]-2,2′-diyl)bis(9-(4-(octyloxy)phenyl)-9H-fluoren-9-
ol) (DOHSBF), is set as a desirable model to reveal the stereoisomeric effects of wide-
bandgap molecules toward controlling photophysical behavior and improving thermal and
optical stability. Three diastereomers are obtained and elucidated by NMR spectra.
Interestingly, the effect of modifying the stereo-centers is not observed on optical
properties in solutions, pristine films, or post-treated film states. All three
diastereomers as well as the mixture exhibit excellent spectral stability without
undesirable green emission. Therefore, this stereoisomer-independent blue-emitting
difluorenol will be a promising candidate for next-generation wide-bandgap
semiconductors that would have extensive application in organic photonics.
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INTRODUCTION

Organic wide-bandgap blue-emitting semiconductors have attracted more attentions in industrial
and fundamental research in information display and solid lighting (Friend et al., 1999; Xie et al.,
2012). However, there is one key tough obstacle needed to be overcome before achieving comparable
performance with the inorganic counterparts and that is stability (Honmou et al., 2014; Heeger, 2010;
Spano and Silva, 2014). The poor color purity and low spectral stability are usually derived from
aggregation-induced excimer emission (Farinola and Ragni, 2011; Knaapila and Monkman, 2013),
ketone formation (Bliznyuk et al., 1999; Sims et al., 2004), distorted conformation, or entanglement
chains (Liu et al., 2016). In addition to device performance, improving the stability of blue
luminescent molecules has been a long-standing challenge for plastic electronics. Molecular
bulks are favorable for the thermal and morphological stability in organic wide-bandgap
semiconductors with potential applications in both information and energy electronics. Bulky
groups are the sp3 carbon-containing groups which possess the steric hindrance effect, and
functionalized bulky groups were introduced into optoelectronic materials which acted as the
suppression of intermolecular force, resulting in the morphological stability (Li et al., 2018; Li et al.,
2016; Yu et al., 2019). Therefore, designing bulky conjugated molecules is the prime requirement for
light-emitting applications. In the past, the spirobifluorene structure was introduced as the bulk unit
to effectively enhance structural rigidity, provide better photothermal stability, and avoid
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fluorescence quenching (Nakagawa et al., 2012; Li et al., 2016).
Fluorene-based derivatives were positioned as an important class
of blue-emitting semiconductors for their pure blue emission,
high photoluminescence quantum efficiency (PLQE), and easy
modification (Xie et al., 2012; Yu et al., 2019; Zhu et al., 2019). As
a functional position of fluorene units, the chiral sp3 carbon at the
ninth position of the fluorene monomer is an active site for
preparing variable stereoisomers and tuning the optoelectronic
structure (Karimov and Hartwig, 2018; Pitre et al., 2019).
Previously, we demonstrated a supramolecular chiral
oligofluorenol, 2,2′-(spiro[fluorene-9,9′-xanthene]-2,7-diyl)
bis(9-(4-(octyloxy)phenyl)-9H-fluoren-9-ol) (2O8-DPFOH-
SFX), to investigate the stereoisomerism–property relationship
of conjugated aromatic molecules and explore optoelectronic
properties (Yuan et al., 2018; Yu et al., 2019). Therefore,
precisely controlling the stereochemistry of organic molecules
is an important and effective approach for achieving unique
photophysical properties.

As chiral structures play a crucial role in sustaining lives,
asymmetric synthesis of chiral structures has attracted
considerable attention from organic synthetic chemists in
many research groups. Early studies mainly focused on central
chirality (central atoms with different substituents). Different
from molecules with central chirality (point chirality), axial
chirality resulting from the steric hindrance of the rotation of
the bonds (Nguyen, 2018), has attracted tremendous attention
and intensive efforts. The history of the axial chiral structure
could date back to 1920s, when scientists discovered special
isomerism of the biphenyl structure (Christie and Kenner,
1922). By 1969, Prelog et al. prepared the first enantiomeric
pure spirobifluorene and inspired plenty of scientists to
investigate chiral axial compounds, which become a shaft in
the research of chiral spiro compounds (Haas and Prelog,
1969). To date, axial chiral molecules not only have been
widely used in organic reactions, such as kinetic resolution,
asymmetric catalysis, cyclamation/addition, direct
aromatization, and chiral recognition, but also exhibit
promising application in optoelectronic fields like molecular
electronic devices, semiconductors, light-emitting devices, and
solar cells (Han et al., 2017; Mishra et al., 2017; Wang and Tan,
2018; Liu Z. S. et al., 2020). Inspired by the supramolecular steric
hindrance (SSH) effect (Li et al., 2018), herein, we try to propose a
novel strategy based on the molecular integration of steric bulk
groups and axial chiral synthons into one functional molecule.
We present difluorenol (DOHSBF), which consist of an axial
chiral spirobifluorene and two chiral sp3 carbon atoms bearing a
phenyl ring and a hydroxyl moiety. Unexpectedly, DOHSBF
shows three different stereoisomers, which display
stereoisomer-independent stable blue emission.

RESULT AND DISCUSSION

Material Synthesis and Characterization
The DOHSBF unit (without alkyl chains) consists of two tertiary
alcohols and one spirobifluorene, which form the composition of
C79H72O4. Theoretically, DOHSBF has six stable stereoisomers

due to the three chiral sp3 carbon atoms and the orientation of
benzene rings in the molecule, which are DOHSBF1 (aRSS, C2

symmetry), DOHSBF2 (aSSS, C2 symmetry), DOHSBF3 (aRRS,
Asymmetry), DOHSBF4 (aSRS, Asymmetry), DOHSBF5 (aRRR,
C2 symmetry), and DOHSBF6 (aSRR, C2 symmetry) (Figure 1A
and Supplementary Figure S1), making it an excellent candidate
to investigate the stereoisomeric effect of the fluorenol system.
These six isomers can be distinguished by different chirality of
spirobifluorene and the orientation of benzenes. They can be
divided into two pairs of racemes and two mesomers. Among
these six stable stereoisomers obtained from the structural
optimization via quantum calculation, DOHSBF1, DOHSBF2,
DOHSBF5, and DOHSBF6 seem to show centrosymmetric
backbones (C2 symmetry), which is beneficial to define the
actual structures among the isomers. In addition, the
optimization results of DOHSBF (Figure 1B) show that the
energies of DOHSBF1 (aRSS) and DOHSBF6 (aSRR) structures
are the lowest among the six diastereomers. Taking the energy of
the aRSS structure (0 kcal/moL) as a reference, the energy of the
other four diastereomers is 0.40 kcal/moL (DOHSBF2, aSSS),
0.48 kcal/moL (DOHSBF3, aRRS), 0.44 kcal/moL (DOHSBF4,
aSRS), and 0.48 kcal/moL (DOHSBF5, aRRR).

Three pairs of DOHSBF diastereoisomers were synthesized via
the Suzuki–Miyaura coupling reaction from 2,2′-spirobifluorene
(with mixed aS- and aR-axis-chirality) and can be isolated via
thin-layer chromatography (Figure 2A). The isomeric features are
examined through matrix-assisted laser desorption/ionization time
of flight mass spectroscopy (MALDI-ToF-MS). In Figure 2B and
Supplementary Figure S2, themixedDOHSBF samples only exhibit
the molecular weight of 1,084.68m/z, which is almost identical to
isomers 1, 2, and 3 with the molecular weight of 1,084.68, 1,084.55,
and 1,084.78, respectively. These results are consistent with the mass
simulation of the molecular formula C79H72O4 (1,084.56).
Furthermore, these isomers properties are reconfirmed by the
same number of hydrogen atoms at the aromatic groups,
according to the 1H NMR spectra (Figure 2C and
Supplementary Figures S3–6) that exhibits the approximately
equivalent integration at 7.95–7.85 ppm (4H, assigning to the S4
and the S5-position at SBF moiety), 7.70–7.55 ppm (6H),
7.50–7.20 ppm (16H), 7.15–7.05 ppm (2H, at the S2-position),
7.05–6.95 ppm (2H, at the S8-position), and 6.85–6.70 ppm (at
the a-site on fluorenol and the S1-position on the SBF group).
Even so, there are some subtle differences in chemical shift of
hydrogen signals, probably derived from the integrated tactic
effects of SBF-based axis chirality (Hamada et al., 2020) and
asymmetric fluorenol chirality (Yuan et al., 2018; Yu et al., 2019;
Wei et al., 2019). At 7.00 ppm, isomers 1 and 3 possess the singlet
peak of S8 at 6.98 and 6.96 ppm, respectively, while isomer 2 exhibits
the splitting multiple S8 peaks in this region. The splitting signals are
also observed in 3.95–3.80 ppm (assigning to alkoxyl chains pendant
on fluorenol groups) and 7.15–7.05 ppm for isomer 2, which
suggests that the asymmetric backbones is consistent with the
meso-DOHSBF type (DOHSBF3 and DOHSBF4, in Figure 1A).
The symmetric structures without splitting in isomer 1 are assigned
to rac-DOHSBF types, as is agreement with the simulated C2-
symmetric results (Figure 1B). These results are consistent with
SFX-based difluorenol building blocks where themeso-configuration
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exhibits the asymmetrically splitting feature on proton resonance
(Yuan et al., 2018; Yu et al., 2019). Meanwhile, it is suggested that
SBF-based axis chirality does not additionally break the symmetry of
steric structures, as is in agreement with the tactic effects of other
axis-chiral groups such as chiral binol-phosphate esters (Xiang et al.,
2020) and 9,9′-spirobifluoren-derivates (Haas and Prelog, 1969).

Thermal and Electrochemical Properties
As depicted in Figure 3A and Supplementary Figure S7, all three
stereoisomers show good solubility in organic solvents, such as
dichloromethane, tetrahydrofuran, chloroform, and ethyl acetate,
and exhibit a deep blue color. But the solubility of DOHSBF-1 is
better than DOHSBF-2 in dichloromethane, and then DOHSBF-3.
The X-ray powder diffraction (XRD) patterns in Supplementary
Figure S8 show no apparent diffraction peaks, indicating that when
pure, all the isomers formed amorphous films. The thermal stability

is confirmed using the thermogravimetry analysis (TGA) and
differential scanning calorimetry (DSC) measurements.
Decomposition temperatures (5% weight loss, termed Td)
recorded in order are mixture (315°C) > isomer-3 (278°C) >
isomer-1 (276°C) > isomer-2 (261°C) (Figure 3B and
Supplementary Figure S9). These high Td values suggested good
thermal stability of DOHSBF for its application in optoelectronic
devices, and the mixture of difluorenol possesses the enhanced
stability during the evaporation process. The DSC curves indicate
that three pure difluorenol derivatives show no glass phase transition
and melting point by heating to 178°C, but the mixture presents an
inconspicuous glassy transition temperatures (Tg) at 114°C
(Supplementary Figure S10). The cyclic voltammetry (CV)
measurement was carried out to investigate the electrochemical
oxidation and reduction behaviors of DOHSBF and estimated the
corresponding HOMO and LUMO energy levels. The CV curves of

FIGURE 1 | (A) Theoretical configurations of DOHSBF. (B) Energy calculation comparison of possible theoretical stereoisomers of DOHSBF (alkyl chains are
omitted) by Gaussian 09 at the B3LYP/6-31G(d) level.
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DOHSBF with different forms are showed in Figure 3C, with the
electrochemical properties of DOHSBF listed in Supplementary
Table S1. The oxidation onset potential is recorded at 1.49, 1.54, 1.50,
and 1.48 V for DOHSBF-mix, DOHSBF-1, DOHSBF-1, and
DOHSBF-3 vs. Ag/Ag+, respectively. As a result, according to the
empirical formula EHOMO � −(Eox−EFc)−4.8 eV, the corresponding
highest occupiedmolecular orbital (HOMO) energy levels of the four
compoundswere−6.26,−6.31,−6.27, and−6.25 eV, respectively, and
the lowest unoccupied molecular orbital (LUMO) energy levels were
measured to be −2.75, −2.70, −2.63, and −2.67 eV, respectively. As
a result, the electrochemical band gaps were calculated to be
3.51, 3.61, 3.64, 3.58 eV, respectively. The energy levels
revealed that configuration diversity induced by the chiral
structure in fluorenol-based materials in the solution state
seems to show slight effects on the electronic structure. The
electrochemical results demonstrated that all the DOHSBF
molecules show a wide-bandgap characteristic.

Photophysical Properties of DOHSBF in
Various States
The absorption and emission spectra of DOHSBF in solutions,
pristine films, and post-treated film states were investigated to
further disclose the diastereomeric effects on optical properties
(Figure 4; Table 1). Dilute solutions of tetrahydrofuran at a
concentration of 10−5 mg/ml were used to investigate the
photophysical properties of the four different chiral forms. As
depicted in Figure 4, all the isomers show similar maximum
absorption peaks at 333 nm in the solution state and 338 nm in
the film state due to similar conjugated backbone structures. As
depicted in Figure 4A, the PL spectrum of DOHSBF-mix in
diluted solution was composed of three well-resolved emission
peaks at around 371, 390, and 410 nm, attributable to the 0–0,
0–1, and 0–2 vibrational transitions of single molecule,
respectively, having similar solution spectra in the other three
isomers. The emission profiles of DOHSBF in spin-coated

FIGURE 2 | (A) TLC plate images of the DOHSBF reaction mixture under the 254 nm lamp (left) and the 365 nm lamp (right) (the mobile phase is PE: DCM (1:3) and
the TLC plate has been placed into jar twice). (B) MALDI-ToF-MS spectra of DOHSBF. (C) 1H NMR of DBrSBF, fluorenol, and DOHSBF in the aromatic region.
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pristine films are shown in Figure 4B. Similarly, the emission
spectra of them in the film state present three emission bands at
about 423, 443, and 471 nm, and the corresponding 0–1
transition in the film are bathochromic to 443 nm, compared
to the solution states. In addition, thermal annealing at high
temperature in air was further conducted to study the spectral
stability for the isomer films. It can be seen from the Figure 4C
and the Supplementary Figure S11 that there is almost no
change in the UV-vis spectra of DOHSBF films after
annealing in air for 10 min. With regard to fluorescence
emission spectra, there is no difference after annealing,
illustrating that the DOHSBF has relatively good thermal
stability. Compared to the conventional thermal stability, the
oxidation stability of luminescent films has been rarely addressed

in the last several decades, which is the most important factor
determining practical optoelectronic application in the future.
Herein, we make a further research study on the influence of
chiral forms by photooxidation of pristine spin-coated films.
Experimental procedure for photooxidation measurement
involves exposing the pristine films under an ultraviolet lamp
(365 nm) irradiation for 30 min. As presented in Figure 4D, no
obvious change of absorption and emission behaviors was found
in all four samples, and the green emission band with the Igreen/
Iblue ratio (the ratio of emission intensities at 550 and 443 nm) is
very low, indicating its excellent deep blue emission spectral
stability without undesirable green emission. Unlike previously
reported difluorenol molecule, 9,9′-diphenyl-9H,9′H-[2,2′-
bifluorene]-9,9′-diol (DPFOH), it was observed that all PL

FIGURE 4 | Optical properties of DOHSBF in various states. UV-vis absorption and photoluminescence (PL) spectra of DOHSBF (A) dilute solutions, (B) spin-
coated pristine films, (C) annealed films at 220°C for 10 min, and (D) photooxidation films, respectively.

FIGURE 3 | (A) The solubility of DOHSBF in dichloromethane. (B) TGA curves and (C) cyclic voltammogram of DOHSBF.
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spectra of the isomers, either the solutions or the films, changed
conspicuously with the appearance of an additional shoulder of
green-band emission under thermal annealing and UV
irradiation oxidation (Liu Y. et al., 2020). Compared to
DOHSBF, another difluorenol bulky molecule with the similar
structure, 2O8-DPFOH-SFX, its raceme andmesomer display the
distinct conformations and optoelectronic properties in their
condensed states. The annealed meso-2O8-DPFOH-SFX film
has a stronger green emission band at 510 nm with an Igreen/
Iblue ratio of 0.5, but no obvious change in the green band was
observed for the annealed rac-2O8-DPFOH-SFX film (Igreen/Iblue
� 0.143), indicating stereoisomerism sensitive PL property (Yu
et al., 2019). In this regard, only the DOHSBF molecules, either
isomers or the mixture, show stereoisomer-insensitive deep blue
emission with enhanced stability. Therefore, in spite of the diverse
diastereomers, a similar conjugated backbone plays a more key
role in dominating optical properties in accordance with the
identical absorption and emission spectra of stereoisomers in
solution and film states.

For profound understanding of the photophysical properties,
then wemeasured the photoluminescence quantum yield (PLQY)
of solutions, pristine films, and annealed films using an
integrating sphere. The PLQY values of DOHSBF dilute
solutions are relatively high (all four are about 80%) owing to
the single-molecular excitonic behavior. Accordingly, the
fluorescence PLQY of DOHSBF-mix pristine and annealed
films were measured to be Φf � 13 and 18%, respectively,
much lower than that of the solution state, owing to the
aggregation-caused quenching (ACQ). The PLQYs of pure
stereoisomeric analogues were also measured, with Φf of 12
and 14% for isomer-1 pristine and the annealed film, 13 and
16% for isomer-2 pristine and the annealed film, 14 and 20% for
isomer-3 pristine and the annealed film, respectively. Compared
to the initial films, the annealed one shows higher Φf values,

which may be attributed to molecular geometry optimization and
ordering under thermal activation, and thus preventing
intermolecular exciton coupling and excimer emission.
Accordingly, the annealing enhanced fluorescence quantum
yield also contributes to stable fluorescence emission.

CONCLUSION

In summary, we demonstrated the stereoisomeric effects of
DOHSBF on the photophysical behavior. Impressively, the
stereoisomeric effect on optical properties in solutions, spin-
coated films, and post-treated film states is negligible. As
compared to the difluorenols reported in previous literature,
we found that DOHSBF in each form exhibit excellent blue
spectral stability without undesirable green emission. Spatial
isomerism in organic molecule of stereoisomers can not only
precisely uncover the structure–function relationship but also
play a key role in opening up new design strategies for organic
functional materials.
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