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FIN‑PRINT a fully‑automated 
multi‑stage deep‑learning‑based 
framework for the individual 
recognition of killer whales
Christian Bergler1*, Alexander Gebhard1, Jared R. Towers2,3, Leonid Butyrev1, 
Gary J. Sutton2,3, Tasli J. H. Shaw2,3, Andreas Maier1 & Elmar Nöth1

Biometric identification techniques such as photo‑identification require an array of unique natural 
markings to identify individuals. From 1975 to present, Bigg’s killer whales have been photo‑identified 
along the west coast of North America, resulting in one of the largest and longest‑running cetacean 
photo‑identification datasets. However, data maintenance and analysis are extremely time and 
resource consuming. This study transfers the procedure of killer whale image identification into 
a fully automated, multi‑stage, deep learning framework, entitled FIN‑PRINT. It is composed of 
multiple sequentially ordered sub‑components. FIN‑PRINT is trained and evaluated on a dataset 
collected over an 8‑year period (2011–2018) in the coastal waters off western North America, including 
121,000 human‑annotated identification images of Bigg’s killer whales. At first, object detection is 
performed to identify unique killer whale markings, resulting in 94.4% recall, 94.1% precision, and 
93.4% mean‑average‑precision (mAP). Second, all previously identified natural killer whale markings 
are extracted. The third step introduces a data enhancement mechanism by filtering between valid 
and invalid markings from previous processing levels, achieving 92.8% recall, 97.5%, precision, and 
95.2% accuracy. The fourth and final step involves multi‑class individual recognition. When evaluated 
on the network test set, it achieved an accuracy of 92.5% with 97.2% top‑3 unweighted accuracy 
(TUA) for the 100 most commonly photo‑identified killer whales. Additionally, the method achieved 
an accuracy of 84.5% and a TUA of 92.9% when applied to the entire 2018 image collection of the 100 
most common killer whales. The source code of FIN‑PRINT can be adapted to other species and will be 
publicly available.

Biometric recognition typically relies on the visual differentiation of unique features on specific body parts of 
individuals. The best-known examples to distinguish identities of humans include analysis of individual finger-
print designs, retina features, and the composition of facial  components1,2. Individual recognition is also impor-
tant in the field of wildlife biology, where images of specific body features are systematically used to differentiate 
between individuals of the same species. For example, repeated photo-identification of pigment patterns and 
appendage shape on individuals of various species of  invertebrate3,  aquatic4 and terrestrial  mammals5,6,  birds7, 
 fish8,9,  reptiles10,11, and  amphibians12,13 can be used to gain insights into the abundance, range, behaviour, ecol-
ogy, and health of their populations.

The first systematic efforts to photo-identify free-ranging cetaceans began in the early  1970s4 and included 
studies on the population abundance of killer whales off the west coast of  Canada14. It was found that individuals 
of this species could be recognized by the unique shapes of their dorsal fins as well as the shapes and pigment 
patterns on their saddle patches that were visible when the whales came to the surface. Thus, a combination 
of both attributes (dorsal fin and saddle patch) provides a distinct identification  criterion15. Over time, several 
sympatric but genetically and behaviourally distinct populations of killer whales were discovered in the eastern 
North Pacific using photo-identification16. The “west coast transient” population of Bigg’s killer whales is cur-
rently among the largest and most commonly photo-identified killer whale populations in this region. Individuals 
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have been systematically, but opportunistically photo-identified, from either or both, the left and right side, each 
year from 1975 to present resulting in one of the largest and longest-running cetacean photo-identification data 
archives in  existence15.

The management and analysis of these photo-identification data currently require manual efforts which 
include labeling and sorting images, applying identification metadata to each  photo17, entering resulting informa-
tion into databases, and the periodic publication of reference  material15. These tasks are typically best performed 
only by those who are intimately familiar with the unique physical features and social patterns of individuals 
in this population, as well as how they are likely to change over time. However, this requires an exceptional 
level of speciality and amount of time that may be expedited by taking advantage of developing technologies. 
Computers have assisted efforts to discern identities of individual cetaceans in identification images since the 
 1980s18,19 and over the following decades have been used increasingly to help manage  workflow20 and automate 
image analysis  processes21–24.

Most recently, machine (deep) learning algorithms have been setting new standards for image processing/
analysis across various research areas and fields of  application25–33, due to increasing memory space and perfor-
mance of central processing units (CPU) and graphics processing units (GPU)34–37. Among many other image 
processing problems handled by deep learning, deep neural networks have recently also been applied to the detec-
tion and classification of individual animals of several species including amur tigers (Panthera tigris altaica)38–41, 
elephants (Proboscidea)42, right whales (Eubalaena)43,44, humpback whales (Megaptera novaeangliae)45–47, brown 
bears (Ursus arctos)48, giraffes (Giraffa camelopardalis)49, pigs (Sus scrofa domesticus)50, manta rays (Mobula 
birostris)51, common dolphins (Delphinus delphis)52, chimpanzees (Pan troglodytes verus)53, red pandas (Ailurus 
fulgens)54, giant pandas (Ailuropoda melanoleuca)55, birds (e.g. sociable weaver (Philetairus socius), great tit 
(Parus major), zebra finch (Taeniopygia guttata))56, gorillas (Gorilla)57, primates (e.g. rhesus macaque (Macaca 
mulatta))58, cattle (Bos taurus)59, kiangs (Equus kiang)60, zebras (Equus quagga) and nyalas (Tragelaphus angasii)61, 
hawksbills (Eretmochelys imbricata)62, blue whales (Balaenoptera musculus)63, and common bottlenose dolphins 
(Tursiops truncatus)64. Besides deep learning-based detection and identification studies on single animal species, 
recent research also addresses cross-species  recognition65–70.

Despite some promising studies in the field of machine (deep) learning, it is difficult to transfer and apply 
existing approaches to model an end-to-end killer whale individual recognition pipeline, consisting of detec-
tion, extraction, enhancement, and classification (see Fig. 1). Several studies perform animal identification 
across different  species65–70, rather than recognition of individuals belonging to the same species. Others 
address only parts of an individual identification pipeline, such as only  detection60 or  classification59,68,69. Some 
approaches present a combination of modern deep learning techniques together with traditional machine learn-
ing  algorithms39,42,48–51,57,69. FIN-PRINT provides a modular, transferable, and state-of-the-art identification 
pipeline for killer whales, exclusively applying well-established deep learning concepts, to facilitate robust and 
task-specific feature learning at each stage. In comparison to traditional machine learning methods, all features 
were learned and derived in a data-driven fashion. Consequently, it was not necessary to perform any feature 
selection based on heuristic and/or analytical approaches. FIN-PRINT was trained and evaluated on a large, vari-
able and complex dataset of approximately 121,000 human-annotated Bigg’s killer whale identification images. In 
order to robustly handle the diversity in this dataset, FIN-PRINT integrates an automated, deep learning-based 
quality inspection, acting as a validation mechanism prior to the final classification. This guarantees that both 
the original image and the results obtained from upstream steps (e.g. detection), meet the standards for robust 
individual classification. A number of studies performed Deep Metric Learning along with the triplet  loss71–73, 
modifications of it, and/or combinations with other loss  functions38,40,45,46,49,51,52,64. However, specification of 
appropriate hard and semi-hard  triplets73 is extremely challenging, since: (1) killer whale individuals have been 
recorded from both body sides, resulting in different animal orientations besides potential deviating natural 
 markings45, (2) natural identifiers change over time (growth, acquisition of scars, etc.), (3) deviating saddle 
patch visibility, often obscured to some extent by water and/or other animals, as well as (4) variation of chal-
lenging image conditions (e.g. weather, exposure, etc.). Due to the mentioned difficulties, next to sufficiently 
large individual-specific data volumes, traditional supervised multi-class classification was applied to build an 
initial pilot system.

The FIN-PRINT pipeline (see Fig. 1) consists of (1) FIN-DETECT, a  YOLOv374–77 -based object detection 
network for recognizing killer whale dorsal fins and associated saddle patches in images with 1 to N individuals, 
(2) FIN-EXTRACT, an automatic extraction procedure cropping and equally resizing all detected dorsal fin/sad-
dle patch markings within an image, (3) VVI-DETECT, a  ResNet3478-based convolutional neural network (CNN) 

Figure 1.  FIN-PRINT workflow including: (1) dorsal fin/saddle patch detection, (2) extraction of the detected 
killer whale markings, (3) valid versus invalid dorsal fin/saddle patch binary classification, and (4) multi-class 
killer whale individual identification.
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performing data enhancement by classifying between previously detected/extracted valid versus invalid (VVI) 
killer whale identification sub-images (e.g. bad weather conditions, blurred, missing saddle patch, difficult angle, 
detection errors, etc.), and (4) FIN-IDENTIFY, a  ResNet3478-based CNN for multi-class killer whale individual 
classification modeling the 100 most commonly photo-identified killer whales. To the best of the authors’ knowl-
edge, this is the first study transferring the analysis of killer whale image  identification15 into a fully automated, 
multi-stage, sequentially ordered, deep-learning-based framework, in order to machine-identify individuals.

Materials and methods
Bigg’s killer whale photo‑identification dataset. The dataset of this study includes photos of Bigg’s 
killer whale individuals accumulated over a period of 8 years (2011–2018), from the coastal waters of south-
eastern Alaska down to central  California15. None of these animals were directly approached explicitly for this 
study. All photo-identification data was collected under federally authorized research licenses or from beyond 
mandated minimum viewing distances.

Supplementary Figure S1 visualizes a series of example images of this dataset. Each image contains one or 
more individuals. In addition to the identification name of the individual(s), further metadata such as photog-
rapher, GPS-coordinates, date, and time are provided. Every identification label is an alphanumeric sequence 
based on the animals’ ecotype (T—Transient), order of original documentation (e.g. T109), and order of birth 
(e.g. T109A2—the second offspring of the first offspring of T109)15.

A parsing procedure was designed to verify, analyze, and prepare the image data, guaranteeing adequate 
preparation for subsequent machine (deep) learning methods. Results of the entire data parsing procedure 
are presented in Fig. 2 and Supplementary Table S1. Figure 2 visualizes the number of identified individuals, 
together with the total amount of occurrences in descending order, considering (1) all images, and (2) only 
photos including a single label. General statistics with respect to the entire dataset are reported in the caption of 
Fig. 2. Supplementary Table S1 illustrates the 10 most commonly occurring individuals across all 8 years of data, 
considering all images including single and multiple labels, compared to photos only containing a single label.

Figure 2.  Bigg’s killer whale image long-tailed data distribution (2011–2018), summing up a total of 121,095 
identification images, with 86,789 containing single labels, as well as 34,306 photos including multiple labels, 
resulting in 367 identified individuals (average number of images per individual ≈456, standard deviation ≈
442). The two colored graphs visualize the number of identification images per whale in descending order 
w.r.t. all images, including single and multiple labels (purple curve) and those only containing a single label 
(green curve). Furthermore, an exemplary data point is visualized for both curves, presenting the number of 
identification images in relation to a selected number of whales, here for the top-100, clearly describing the 
exponential decline. Moreover, the number of animals at which the total amount of identification images is < 10 
were marked for both curves. In total, 367 individuals were encountered across 2011–2018. Among them, 128 
and 125 were found at least once in each year when considering all images and only those with single labels, 
respectively.
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The dataset exhibits a substantial class imbalance, as evidenced by the exponential decline in frequencies per 
killer whale individual (see Fig. 2). Especially for real-world datasets, such unbalanced data partitioning is a 
common and well-known phenomenon, also referred to as long-tailed data  distribution79. Such long-tailed data 
distributions are divided into two  sections79: (1) the Head region—representing the most commonly identified 
killer whale individuals, and (2) the Long-Tail region—visualizing a significantly larger number of killer whale 
individuals, however, with considerably less occurrences. For the purpose of this pilot study, the top-100 most 
commonly occurring killer whale individuals were selected for supervised classification and as boundary between 
the head and long-tail area (see Fig. 2). The defined boundary of the top-100 killer whales (head region) repre-
sents approximately 1/4 (100 out of 367) of the individuals, however, covering about 2/3 (55,305 out of 86,789) 
of the entire dataset of single-labeled images.

However, the number of usable and correctly labeled images which can actually be utilized for machine learn-
ing must be adjusted downward due to several circumstances. Figure 3a–i visualizes multiple examples of situa-
tions where images contain valid labels. However, the relevant biometric features are very difficult to recognize 
or not visible at all. These images cannot be labeled without contextual knowledge, for example by observing 
previous and/or subsequent images and/or knowing additional information about family-related structures. 
Therefore, such photos cannot be used for classification of individuals and have to be filtered out out in advance.

Another scenario that impacts the final number of usable identification images is visualized in Fig. 3j. While 
conducting photo-identification in the field, several images are sometimes taken in very short intervals (< 1 s). 
However, this procedure leads to several very similar images. To avoid biasing the actual multi-class identifica-
tion performance by including such images in validation and testing, only the first image of a photo series was 
machine-selected if the images were taken within a time interval δ ≤ 5 s , including the same date and photog-
rapher. Considering the photo series visualized in Fig. 3j, only the first image was utilized as a potential sample 
for network validation or testing. The training material for individual classification was unaffected by this time 
interval rule, since augmentation procedures change the images during training anyway.

Killer whale dorsal fin/saddle patch detection (FIN‑DETECT). Object detection. In order to extract 
the regions of interest—killer whale dorsal fin(s) and saddle patch(es)—from the images, an automated and 
robust object detection has to be conducted. Object detection includes classification and localization of the cor-
responding object within the respective  image36. In this context, circumscribing rectangles, so-called bounding 
boxes, are utilized and drawn around the objects to be recognized. Between a ground truth bounding box and 
the predicted bounding box, a quality metric named Intersection over Union (IoU) ( = Area of Overlap

Area of Union  ) is often used 
as a quality  criterion80.

Two additional evaluation attributes are of essential importance  too36: (1) objectness score—describes the 
probability that an object is present inside a given bounding box, and (2) class confidences—characterize the 
probability distribution over all distinct object classes. All objects which have to be localized inside an image can 
strongly vary not only in type and shape, but also in size. Hence, object detection algorithms usually predict a 
variety of potential bounding boxes. As a result, individual objects may be detected several times by circumscrib-
ing bounding boxes, locating at slightly different  positions36. To counteract this phenomenon, non-maximum 
suppression 36 (NMS) is executed to keep only the best fitting one. Since object detection requires both, correct 
classification and localization, the metrics per class are determined as  follows81:

(1) true positive (TP): the target object is within the predicted bounding box area, the bounding box objectness 
score is larger than a chosen threshold, the object classification and assignment are correct, and IoU between 
bounding box prediction versus ground truth is higher than a given threshold and all other IoUs of potential 
overlaying boxes (in case of overlaying boxes, only the box indicating the highest IoU is considered as TP, 
whereas all remaining boxes are false positives), (2) false positive (FP): the bounding box objectness score is 
larger than a chosen threshold, but either the target object is not within the predicted circumscribing rectangle, 

Figure 3.  Examples of image content which either lead to completely unusable/invalid data samples, or which 
make a robust and correct detection/classification much more difficult.
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the classification hypothesis is wrong, and/or IoU is smaller compared to any other possible overlaying bound-
ing boxes, (3) false negative (FN): the target object is in the image, but no predicted bounding box hypothesis 
detected the corresponding object properly, (4) true negatives (TN): object detection ignores TNs, since there 
are evidently an infinite number of empty boxes with an objectness score that is smaller than a chosen thresh-
old. Based on these traditional binary classification scores, target metrics such as precision, recall, F1-score, 
average precision (AP), and mean average precision (mAP) can be  calculated36. The average precision describes 
the area-under-the-curve (AUC) of a precision/recall graph, transformed into a monotonically decreasing curve 
beforehand, calculated on the basis of different IoU  thresholds36. The AP is calculated for each class, while the 
mAP refers to the average of all class-related AP  scores36. Consequently, AP and mAP are identical unless the 
number of classes is greater than  one36.

Detection data. The dataset which was utilized for training and evaluation of FIN-DETECT was generated via a 
two-step semi-automatic procedure. In a first step, 2,286 images, originating from various months in 2015, were 
manually annotated with bounding boxes resulting in the Human-Annotated Detection Dataset (HADD)—see 
Table 1. For this purpose, every dorsal fin and associated saddle patch, visible in each image, were individually 
circumscribed with a rectangle. FIN-DETECT was trained on HADD using the data distribution reported in 
Table 1.

The resulting and preliminary version of FIN-DETECT was utilized to automatically apply bounding boxes 
to randomly chosen unseen images from 2011, 2015, and 2018 in order to enlarge the HADD with machine-
identified samples. These samples were not manually verified, but images with no bounding boxes, as well as 
those with more bounding boxes than labels, were discarded. After applying these rules, a joint dataset, named 
the Extended-Annotated Detection Dataset (EADD), was created, consisting of the HADD and all valid machine-
identified data samples. The resulting EADD (see Table 1) was utilized to retrain FIN-DETECT, which was 
ultimately applied to all future killer whale detections.

Network architecture, data preprocessing, training, and evaluation. FIN-DETECT, visualized in Supplemen-
tary Fig. S2, is based on an extended version of the original  YOLOv376,77-based object detection architecture. 
 YOLOv374–76 (You Only Look Once) is a real-time, single-stage, multi-scale, and fully-convolutional object detec-
tion algorithm, which was first introduced as YOLOv1 by Redmon et al.74 and continuous improvements have 
led to the most recent version known as  YOLOv582. At the development of FIN-PRINT, YOLOv3 was the most 
recent version. FIN-DETECT (see Supplementary Fig. S2) essentially consists of two major network  parts74–76,83: 
(1) feature extraction network, usually referred to as feature extractor and/or backbone network, learning com-
pressed representations (feature maps) of a given input image, representing the foundation for subsequent 
detection, and (2) feature pyramid network, also named head-subnet and/or detector, responsible for detecting 
objects at three different scales. FIN-DETECT receives as network input a preprocessed, re-scaled, and square 
416 × 416 px RGB-image (zero-padding in case of a none-square original image), resulting in an input shape 
of 3 × 416 × 416 . The network detects objects utilizing a 13 × 13, 26 × 26, and 52 × 52 grid to recognize large, 
medium, and small  patterns76,83 (see Supplementary Fig. S2). FIN-DETECT predicts per cell a 1 × 21 detection 
vector, which contains b = 3 different bounding boxes and c = 2 classes (dorsal fin/saddle patch vs. no dorsal 
fin/saddle patch), combined with four 0/1-normalized bounding box coordinates (x, y, w, h) and one object-
ness score per box, resulting in b ∗ (5 + c) = 21 elements per cell. Consequently, the scale-dependent detection 
outputs of FIN-DETECT comprised a final output shape of 13 × 13 × 21 , 26 × 26,× 21 , and 52 × 52,× 21 
(see Supplementary Fig. S2). More detailed information about YOLO in general, YOLOv3, and/or other YOLO 
versions can be found  here74–76,82,84,85.

The backbone network (Darknet-5376) of FIN-DETECT was initialized with pre-trained weights on 
 ImageNet86. A detailed overview about all other network hyperparameters is given in Supplementary Table S2. 
Moreover, FIN-DETECT implements the following  YOLOv376 detection parameters: objectness score thresh-
old of 0.5 (training, validation) and 0.8 (testing), IoU threshold of 0.5, and NMS threshold equals to 0.5. FIN-
DETECT reports precision, recall, F1-Score, and mean average precision as evaluation metrics. Based on a given 
input image, FIN-DETECT returns a text file containing 0/1-normalized bounding box information (x, y, w, h) 
of every detection hypothesis.

Table 1.  Human-Annotated Detection Dataset (HADD), including human-labeled dorsal fin/saddle-patch 
bounding boxes, as well as Extended-Annotated Detection Dataset (EADD) containing human- and machine-
labeled dorsal fin/saddle-patch bounding boxes. a HADD Human-Annotated Detection Dataset. b EADD 
Extended-Annotated Detection Dataset.

Dataset

Split

Training Validation Test

Samples Samples Samples

Photos % Photos % Photos %

HADDa 2286 1686 73.8 300 13.1 300 13.1

EADDb 7511 5257 70.0 1127 15.0 1127 15.0
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Killer whale dorsal fin/saddle patch extraction (FIN‑EXTRACT). FIN-EXTRACT facilitates auto-
matic extraction and subsequent rescaling of previously detected and marked image sub-regions using the 
bounding box information derived by FIN-DETECT. For each identified bounding box, a square 512 × 512 px 
RGB-sub-image was cropped from the original photo. In a first step, the 0/1-normalized bounding box informa-
tion (x, y, w, h) was multiplied by the original image shape to obtain the correct coordinates within the original 
image. In case a bounding box was not square, the larger of the two dimensions was utilized to reshape the 
original detection rectangle. Furthermore, it was verified whether a bounding box extended beyond the edge 
of an image and moved accordingly if necessary. In case the original image was smaller than 512 × 512 px, it 
was interpolated and resized respectively. Otherwise, a sub-image, based on the original bounding box size, was 
cropped and if applicable compressed and resized to 512 × 512 px. Depending on the resized bounding box, 
this may result in a bit more background content. However, any kind of zero-padding is avoided for subsequent 
individual classification. In addition, the image quality of the final extracted sub-image(s) depends on the origi-
nal image resolution, along with the distance of the individual(s) within the captured photos.

Valid versus invalid (VVI) dorsal fin/saddle patch detection (VVI‑DETECT). VVI detection. Con-
sidering potential detection errors (e.g. tail and/or pectoral fins, triangular formed head of the animal, etc.), be-
sides all the different challenging situations visualized in Fig. 3a–i, additional data enhancement is indispensable 
(see also examples in Supplementary Fig. S3). All these scenarios either result in completely unusable/invalid 
(e.g. missing dorsal fin, no saddle patch, bad angle, distance, detection errors), or insufficient quality images (e.g. 
poor weather conditions, bad exposure, blurred image). Without sufficient domain knowledge and additional 
meta-information (e.g. images shortly taken before, other animals in the image, family-related structures, etc.), 
all the aforementioned situations lead to invalid identification images which are not able to be classified correctly 
by human or machine. Detected/extracted RGB-sub-images containing a single dorsal fin and saddle patch are 
considered as valid identification images. To filter the majority of such invalid samples originating from previous 
processing levels, a binary classification network was designed to distinguish between two classes—Valid Versus 
Invalid (VVI)—killer whale identification images prior to final multi-class individual recognition. Supplemen-
tary Fig. S3 visualizes some of the challenging pre-detected/-extracted sub-images, belonging to the invalid class.

Detection data. In order to train VVI-DETECT, a two-class dataset, named Valid/Invalid Killer Whale Identifi-
cation Dataset 2011–2017 (VIKWID11-17), was utilized. Table 2 describes VIKWID11-17 in combination with 
the respective data distribution. VIKWID11-17 is a manually labeled data archive based on randomly chosen, 
previously detected (FIN-DETECT), and extracted (FIN-EXTRACT) sub-images from 2011 to 2017. In addition 
to multiple valid pre-detected/-extracted identification images of different individuals, the dataset also includes 
examples of invalid sub-images covering the scenarios illustrated in Fig. 3a–i. Furthermore, the invalid class was 
extended by examples of images with potential detection errors (noise), such as water, boats, coastline, houses 
and/or other landscape backgrounds, to also filter such cases in advance. During data selection an interval of 5 s 
was applied to the validation and test set (see Fig. 3j) in order to not distort classification accuracy in any way.

Network architecture, data preprocessing, training, and evaluation. VVI-DETECT, visualized in Supplementary 
Fig. S3, is a  ResNet3478-based convolutional neural network (CNN), designed for binary classification between 
valid versus invalid (VVI) identification images. Residual  networks78 (ResNets) consist of a sequence of residual 
layers, which are built up from building blocks including concatenations of weight (e.g. convolutional/fully-
connected), normalization (e.g. batch-norm87), and activation layers (e.g.  ReLU88), together with residual-/skip-
connections78. These connections allow the network to optimize a residual mapping F(x) = H(x) − x with 
respect to a given input x, rather than directly learning an underlying mapping H(x)78. This type of learning, 
called residual learning, opens up the possibility to train deeper  models78. The use of different building block 
types, together with the number of blocks, results in various ResNet architectures, like ResNet18, ResNet34, 
ResNet50, ResNet101, and  ResNet15278. For more detailed information about the concept of residual learning/
networks, see He et al.78. Compared to the original ResNet34 architecture, the size of the initial 7 × 7 convolu-
tion kernel was changed to 9 × 9 , in order to cover larger receptive fields at the initial stage. As network input, 
VVI-DETECT receives data of previously detected (FIN-DETECT) and extracted/reshaped (FIN-EXTRACT) 
3 × 512 × 512-large RGB-pictures for both classes. The network output is a 1 × 2 probability vector, contain-
ing class-wise model prediction probabilities (see Supplementary Fig. S3). Based on preliminary investigations, 
 ResNet3478 proved to be the most efficient version for this entire study in terms of performance and computa-

Table 2.  Valid/Invalid Killer Whale Identification Dataset 2011–2017 (VIKWID11-17), a human-annotated 
dataset consisting of valid and invalid identification images (dorsal fin + saddle-patch), utilized to train, 
validate, and test VVI-DETECT, after applying the interval rule of 5 s with respect to the validation and test 
set. a VIKWID11-17 Valid/Invalid Killer Whale Identification Dataset 2011–2017.

Dataset

Split

Training Validation Test

Samples Samples Samples

Valid Invalid
∑

% Valid Invalid
∑

% Valid Invalid
∑

%

VIKWID11-17a 1590 700 509 1209 76.0 126 89 215 13.5 83 83 166 10.5
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tion efficiency compared to other ResNet architectures. VVI-DETECT integrates an augmentation procedure 
consisting of eight different functions: (1) addition of random Gaussian noise to the image, (2) image rotation at 
maximum angle of ± 25 degree, (3) blurring the image by applying a gaussian blur, (4) mirroring the picture with 
respect to the y-axis, (5) edge enhancement within the image, (6) sharpening the input picture, (7) brighten/
darken of the image, and (8) random color change by swapping the RGB channels. Out of this function pool, 
number, type, and arrangement of augmentation operations were randomly determined for each image within 
the training phase (no augmentation during validation and testing). The random number of augmentations per 
image was within an interval of [1 : amax] with amax ∈ [1 : 8 ] being constant across the entire training. In this 
study the maximum augmentation number per image was set to amax = 5 . VVI-DETECT reports accuracy, pre-
cision, recall, F1-Score, and false-positive-rate. A detailed description of all relevant network hyperparameters is 
illustrated in Supplementary Table S2.

Individual killer whale classification network (FIN‑IDENTIFY). Individual killer whale classifica-
tion. Robust multi-class killer whale individual classification requires representative and high-quality animal-
specific image data in sufficient quantity. However, significant variations can be observed in the total number 
of animal-specific images (see Fig. 2). In addition, multiple and essential data constraints have been introduced 
which strongly affect the actual amount of usable identification images per individual, such as (1) only single-
labeled images together with exactly one predicted bounding box hypothesis, (2) data enhancement by pre-
filtering invalid identification images to avoid situations visualized in Fig. 3a–i, and (3) time interval rule of 5 s 
during network validation and testing to counteract the effect of classifying very similar photos, visualized in 
Fig. 3j. Moreover, all photos from 2018 were completely ignored for additional network evaluation purposes. Ad-
ditionally, all images including more than a single label (in total 34,306 pictures, 2011–2018, see Fig. 2) could not 
be used for training an initial multi-class identification network due to the label assignment problem. The label as-
signment problem describes the situation where an image contains multiple individuals and labels, however, it is 
unknown which label belongs to which individual. All these data restrictions and constraints led to a significant, 
qualitative improvement of the material, but also considerably reduced the amount of usable data. In summary, 
these data limitations led to a final representation of the 100 (out of 367) most commonly single-labeled Bigg’s 
individuals (see Fig. 2), present across all years (2011–2018), representing about 64% (55,305 photos) of the 
entire single annotated and original data from 2011 to 2018 (86,789 images). Based on the top-100 killer whales, 
the smallest individual-specific number of remaining data samples comprised 135 images (see Table 3), to still 
provide sufficient variation and data diversity combined with various image augmentation techniques during 
model training. Despite previous filtering by VVI-DETECT and to avoid potential errors caused by previous 
processing levels, the proposed invalid class was also included at this stage resulting in a final 101-class (100 
individuals, 1 rejection class) procedure.

Identification data. FIN-IDENTIFY was trained on two different datasets, both illustrated in Table 3. The first 
dataset, named Killer Whale Individual Dataset 2011–2017 (KWID11-17), consisted of 39,464 excerpts including 

Table 3.  Killer Whale Individual Dataset 2011–2017 (KWID11-17), including machine-annotated data of 
valid images (dorsal fin + saddle-patch) for the 100 most commonly photographed individuals satisfying the 
data constraints (one label per image + exactly one bounding box prediction), in combination with machine-
annotated invalid data utilizing VVI-DETECT after applying the interval rule of 5 s. Killer Whale Individual 
Dataset Extended 2011–2017 (KWIDE11-17) extends the KWID11-17 data archive with images of the 100 
most common individuals represented in images containing more than one label and classified via the first 
version of FIN-IDENTIFY, trained on KWID11-17. Notice that the distribution of the invalid photos differs 
slightly between KWID11-17 and KWIDE11-17 due to the different data splits and subsequent effect of the 5 s 
interval rule. Furthermore, additional statistics regarding the number of identification images (100 classes) are 
reported for both datasets. a KWID11-17 Killer Whale Individual Dataset 2011–2017—Statistics on the number 
of identification images (100 most common classes): mean = 364.57, stdv = 162.91, min = 135 (T073B), 
max = 916 (T019B) training stats (only valid images): mean = 272.38, stdv = 125.79, min = 107 (T073B), 
max = 695 (T019B) validation stats (only valid images): mean = 49.40, stdv = 20.81, min = 16 (T073B), 
max = 120 (T019B) testing stats (only valid images): mean = 42.79, stdv = 18.60, min = 8 (T121A), max = 101 
(T019B). b KWIDE11-17 Killer Whale Individual Dataset Extended 2011–2017—Statistics on the number 
of identification images (100 most common classes): mean = 627.40, stdv = 245.06, min = 172 (T073B), 
max = 1442 (T019B) training stats (only valid images): mean = 482.00, stdv = 192.32, min = 139 (T073B), 
max = 1122 (T019B) validation stats (only valid images): mean = 77.29, stdv = 28.74, min = 17 (T073B), 
max = 174 (T019B) testing stats (only valid images): mean = 68.11, stdv = 26.98, min = 10 (T121A), max = 146 
(T019B).

Dataset

Split

Training Validation Test

Samples Samples Samples

Valid Invalid
∑

% Valid Invalid
∑

% Valid Invalid
∑

%

KWID11-17a 39,464 27,238 2227 29,465 74.7 4940 395 5,335 13.5 4279 385 4664 11.8

KWIDE11-17b 65,713 48,200 2226 50,426 76.7 7729 392 8121 12.4 6811 355 7166 10.9
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only a single label, distributed across 101 classes, and recorded between 2011 and 2017 (see Table 3). All excerpts 
were machine-annotated, applying FIN-DETECT, FIN-EXTRACT, and VVI-DETECT in a sequential order, 
following the previously mentioned data constraints and restrictions. VVI-DETECT considered an image to be 
invalid if the network confidence was p invalid > 0.85. The VIKWID11-17 dataset (see Table 2), on which VVI-
DETECT was trained on, is completely independent from the entire data listed in Table 3. KWID11-17 consists 
of 36,457 images being assigned to the valid class, whereas 3007 photos were added to the invalid class, repre-
senting a small portion of the overall amount of detected invalid images across 2011 to 2017 in order to not bias 
class distributions. Table 3 presents the final data distribution of KWID11-17 as well as dataset-specific statistics.

To add additional data and simultaneously counteract the label assignment problem, the first version of FIN-
IDENTIFY, trained on KWID11-17, was applied to all images from 2011 until 2017, including those with multiple 
labels and either one or more of the trained 100 individuals. FIN-IDENTIFY classified all potential detected 
(FIN-DETECT) and extracted (FIN-EXTRACT) labels for each image containing more than one animal. If the 
best classification hypothesis (class with the highest probability) per sub-image matches one of the original labels 
applied to that image, it was considered as correctly classified and added to the respective class. The resulting 
extended dataset, entitled Killer Whale Individual Dataset Extended 2011–2017 (KWIDE11-17), together with 
the corresponding data distribution, was utilized to train an updated and more robust version of FIN-IDENTIY 
(see Table 3). KWIDE11-17 consists of KWID11-17, extended by the additional machine-identified multi-label 
material, leading to a total number of 65,713 excerpts, distributed across 101 classes. The total number of valid 
identification images is 62,740, whereas the invalid class comprises 2,973 images. KWID11-17 and KWIDE11-
17 use the same portion of machine-annotated invalid data excerpts, however, the overall number of samples 
slightly differs (KWID11-17—3007 versus KWIDE11-17—2973) due to a different split, in combination with 
the applied interval rule of 5 s during validation and testing.

Network architecture, data preprocessing, training, and evaluation. FIN-IDENTIFY, visualized in Supplemen-
tary Fig. S4, is a  ResNet3478-based convolutional neural network (CNN), created for multi-class individual clas-
sification. The network architecture is identical to VVI-DETECT (see Supplementary Fig. S3) except for the 
final 101-class output layer ( 1 × 101 probability vector). FIN-IDENTIFY was trained on the 3 × 512 × 512 
sub-images, generated by FIN-EXTRACT and if necessary filtered by VVI-DETECT (see Fig. 1 and Supplemen-
tary Fig. S4). Besides the same network architecture, identical interval rule conditions (5 s) were applied dur-
ing training. Data augmentation and preprocessing was also identical to VVI-DETECT and all other required 
network hyperparameters are listed in Supplementary Table S2. Next to the overall accuracy, FIN-IDENTIFY 
reports a top-3 weighted (TWA) and unweighted accuracy (TUA). TWA describes whether the target class prob-
ability is within the top-3 and if so, a rank-dependent weight is assigned ( ω1 = 1 , ω2 = 0.5 , and ω3 = 0.25 ). 
TUA illustrates, if the target individual is within the top-3, it is counted as correct, independent of the respective 
rank. For both metrics, either the sum of all weighted, or correct predictions is divided by the total number of 
classifications.

Experiments
The following major experiments were conducted: (1) training/evaluating FIN-DETECT on the dataset listed in 
Table 1 (HADD, EADD), to derive a robust dorsal fin/saddle patch detection network, (2) training/evaluating 
VVI-DETECT on the data (VIKWID11-17) presented in Table 2, (3) training/evaluating FIN-IDENTIFY with 
respect to the datasets (KWID11-17, KWIDE11-17) reported in Table 3, and (4) applying the entire FIN-PRINT 
pipeline (see Fig. 1), while utilizing the best previously trained networks, to all original, unseen, and single-
labeled images from 2018, containing individuals which are modeled and represented within the 100 classes of 
FIN-IDENTIFY (see Supplementary Table S1).

Results
FIN‑DETECT and FIN‑EXTRACT . Table 4 reports validation and test results (recall, precision, F1-score, 
mAP) of FIN-DETECT evaluated on both detection datasets—HADD and EADD (see Table 1). Despite the 
fact that both data archives are not directly comparable, because of different data volumes and distributions, the 
automated and machine-driven data enlargement shows significant improvements with respect to the validation 
and test metrics. The version of FIN-DETECT trained on the EADD data material was utilized within all subse-

Table 4.  Detection results while training two versions of FIN-DETECT with respect to HADD and EADD. 
a HADD Human-Annotated Detection Dataset. b EADD Extended-Annotated Detection Dataset. c mAP mean 
Average Precision.

Metric

Dataset

HADDa EADDb

Validation [%] Test [%] Validation [%] Test [%]

Recall 95.0 89.0 95.1 94.4

Precision 80.0 85.0 94.2 94.1

F1-Score 86.9 87.0 94.7 94.2

mAPc 92.0 82.0 94.2 93.4
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quent machine detection tasks. In addition to the traditional object recognition metrics listed in Table 4, various 
detection and extraction examples have been visualized in Fig. 4. All detection results, visualized in Fig. 4, were 
computed by applying FIN-DETECT, trained on the machine-extended EADD, to some random and unseen 
images from different years. Next to the detected and valid identification sub-images, represented by the red 
circumscribing bounding boxes (see Fig. 4), the associated extractions were created applying FIN-EXTRACT, 
together with the corresponding bounding box information. The image pairs, visualized in Fig. 4, consist of 
detection results and corresponding extractions. Besides valid fin/saddle patch detection results, example images 
of invalid, but correctly detected identification images, are displayed as well (see Fig. 4, last row). In all these 
cases the dorsal fin was detected correctly, however, due to lack of information and/or very challenging sce-
narios, the extracted sub-images are unusable/invalid for future individual identification (bad angle, no saddle 
patch, individuals close to each other, bad exposure, difficult background—see also Fig. 3a–i).

VVI‑DETECT. Table 5 reports validation and test results of VVI-DETECT evaluated on VIKWID11-17 (see 
Table 2). This model was utilized for all required valid versus invalid image predictions. Besides validation and 
test metrics, example images of various, correctly predicted and filtered invalid identification photos from the 
unseen 2018 dataset are visualized in Fig. 5. The sub-images, presented in Fig. 5, reflect the previously mentioned 
variety of challenging scenarios shown in Fig. 3a–i.

The photos from 2018 that are shown in Fig. 5 visualize examples of invalid identification images due to poor 
image quality (lighting, exposure, etc) or poor subject representation (bad angle, too distant, dorsal fin and sad-
dle patch not shown, etc.) (see also Fig. 3a–i). The problem regarding such detection errors is that at least one 
appendage (tail, pectoral, and/or dorsal fin) is present in most of these images (see Fig. 5, detection errors—last 
row). Furthermore, there are also cases where the shape of the recognized object is very close to the triangular 
structure of the fin (e.g. a spyhop where the killer whale lifts its head out of the water, see last row in Fig. 5). All 
these invalid data samples were successfully pre-filtered utilizing VVI-DETECT as an additional data enhance-
ment step, to avoid subsequent misclassifications during final individual recognition (see FIN-IDENTIFY).

FIN‑IDENTIFY. The last step of the entire FIN-PRINT pipeline, visualized in Fig. 1, describes final indi-
vidual multi-class identification. Due to reasons of comparison, the results for both models—the preliminary 

Figure 4.  Dorsal fin/saddle patch detection and extraction results based on randomly chosen identification 
images from various years (2011–2017), applying FIN-DETECT, trained on the machine-extended EADD data 
archive (see Table 1), and FIN-EXTRACT.

Table 5.  Detection results of VVI-DETECT to filter between valid versus invalid identification images (data 
enhancement), while training VVI-DETECT on VIKWID11-17. a VIKWID11-17 Valid/Invalid Killer Whale 
Identification Dataset 2011–2017.

Metric

Dataset

VIKWID11-17a

Validation [%] Test [%]

Recall 97.8 92.8

Precision 92.6 97.5

FPR 5.6 2.4

F1-Score 95.1 95.1

Accuracy 95.8 95.2
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version and the final FIN-IDENTIFY network—are reported. In both cases the overall 101-class accuracy, the 
top-3 weighted (TWA) and unweighted (TUA) accuracy, is presented on the validation and test set, all together 
visualized in Table 6. Both FIN-IDENTIFY models show similar validation and test metrics, which thus provide 
no evidence of overfitting. Although both datasets (KWID11-17 and KWIDE11-17) are not comparable due to 
different splits and distributions, the additional machine-annotated images of the 100 most common individuals 
result in a significant improvement in model performance, generalization, and transferability. For all pending 
unseen classification events, FIN-IDENTIFY trained/evaluated on KWIDE11-17, was applied. Moreover, such 
consistently promising multi-class classification results prove feasibility and quality of the entire FIN-PRINT 
pipeline (see Fig. 1).

FIN‑PRINT—Unseen Year 2018. To further verify performance and generalization, the entire FIN-
PRINT pipeline (see Fig. 1) was applied to unseen data from 2018. The best FIN-DETECT, VVI-DETECT, and 
FIN-IDENTIFY model was applied in a sequential order (see FIN-PRINT workflow in Fig. 1) to predict identi-
fication labels for the 100 most commonly photographed individuals, being covered by FIN-IDENTIFY. All sin-
gle-labeled images in the 2018 dataset, which include one of these 100 individuals, were automatically processed 
by FIN-PRINT (detection, extraction, filtering, and classification—see Fig. 1). A total of 5,768 single-labeled 
sub-images, each of them belonging to one of the 100 most commonly photographed animals, were detected 
and extracted applying FIN-DETECT/-EXTRACT, while considering the previous data constraint of a single 
label together with exactly one bounding box. Afterwards, VVI-DETECT was applied to pre-filter the 5,768 
identification images, which machine-identified 1057, either challenging, and/or unusable/invalid excerpts (see 
Fig. 3a–i) resulting in 4711 valid identification sub-images of the 100 most commonly photographed individuals. 

Figure 5.  Detected (FIN-DETECT) and extracted (FIN-EXTRACT) unseen identification images from 2018, 
which were successfully categorized and filtered as invalid identification images by VVI-DETECT, trained on 
VIKWID11-17, reported in Table 2.

Table 6.  Individual killer whale classification results (101-classes), while training two versions of FIN-
IDENTIFY, using the initial KWID11-17 or KWIDE11-17 datasets. a KWID11-17 Killer Whale Individual 
Dataset 2011–2017. b KWIDE11-17 Killer Whale Individual Dataset Extended 2011–2017. c TWA  Top-3 
Weighted Accuracy. d TUA  Top-3 Unweighted Accuracy.

Metric

Dataset

KWID11-17a KIWIDE11-17b

Validation [%] Test [%] Validation [%] Test [%]

Accuracy 85.8 86.7 91.1 92.5

TWA c 89.0 89.9 93.4 94.6

TUA d 93.2 94.3 96.3 97.2
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On average, each animal occurred 47.1 times, with a standard deviation of 30.2. In the 2018 dataset, T109 was the 
least photographed individual with only 2 images, whereas T100C was the most frequently photographed with 
132 identification images. Finally, FIN-IDENTIFY, trained on KWID11-17 and KWIDE11-17, was applied to 
predict the respective identification labels. Within a real-world scenario, one would not need to continue looking 
at the previously machine-filtered 1057 invalid material in case of individual classification and directly process 
the remaining 4711 valid samples. However, to demonstrate and prove the necessity of introducing a rejection 
class also at the final stage of individual classification (FIN-IDENTIFY), all 5768 unseen images were used for 
prediction. Furthermore, in practice, only the final version of FIN-IDENTIFY, trained on KWIDE11-17, would 
be applied to unseen data.

FIN-IDENTIFY, trained on KWID11-17, achieved an accuracy of 82.8%, next to a top-3 weighted and 
unweighted accuracy of 86.6%, as well as 91.7%, based on the 101-class task. Training FIN-IDENTIFY on 
KWIDE11-17, resulted in an accuracy of 84.5%, next to a top-3 weighted and unweighted accuracy of 88.1%, as 
well as 92.9%. Figure 6 visualizes correct classification examples of the extended classifier version for 9 individual 
killer whales from the unseen data from 2018.

Discussion
The current study presents a fully machine-based, multi-stage, deep-learning pipeline, named FIN-PRINT (see 
Fig. 1), with the aim to automatize and support the analysis of killer whale photo-identification data. Dorsal fin 
and saddle patch detection, the first step of FIN-PRINT, was performed via a two-stage training procedure. The 
initial version of FIN-DETECT achieved promising results (see Table 4), hence additional machine-annotated 
data was generated by applying the model to unseen data from 2011, 2015, and 2018 (see Table 1). Whereas 
validation and test results on the smaller HADD dataset slightly diverge, they both significantly and consistently 
improved while training/evaluating FIN-DETECT on the machine-extended EADD (see Table 4). However, a 
direct comparison between both models is difficult because the volume and distribution of data were different 
(see Table 1). Based on the detected bounding box coordinates, equally-sized 512 × 512 RGB-sub-images were 
extracted and if necessary interpolated or compressed (no zero-padding), using FIN-EXTRACT, the second 
step of FIN-PRINT. However, the quality of detected and extracted sub-images is not solely dependent on the 
performance of FIN-DETECT, but also on the original image content and quality (see Figs. 3 and 5 ).

Most of these images contain dorsal fins, leading to correct identifications by FIN-DETECT, however they 
are useless for downstream individual classification. Besides these cases, images of other body parts, such as 
tail flukes, pectoral flippers, or other triangular structures (e.g. head of a killer whale), often exist. Such false 
detections do have strong similarities, hence making them difficult to avoid. Consequently, it is imperative to 
conduct a data enhancement procedure to filter such invalid identification images beforehand. For this reason, 
VVI-DETECT, the third step of FIN-PRINT, was trained and evaluated on the manually labeled VIKWID11-17 
(see Table 2). Binary classification metrics of VVI-DETECT on the unseen test set (see Table 5) provide no indi-
cation of overfitting. In addition, several examples of invalid pre-detected/-extracted identification images, cor-
rectly identified by VVI-DETECT, are visualized in Fig. 5, representing all the challenging situations previously 
described in Fig. 3a–i and clearly proving the enormous importance of such a preliminary data enhancement 
procedure. The final step of FIN-PRINT—killer whale individual classification—was conducted in a two-step 
process, similar to FIN-DETECT. First, a preliminary version was trained and evaluated on KWID11-17 (see 
Table 3), showing no evidence of overfitting. The top-3 classification hypothesis (TWA/TUA) greatly improves 
the chance of observing the correct prediction, while simultaneously reducing the dimensionality of potentially 
eligible individuals by an order of magnitude (101 versus 3 classes).

Figure 6.  Examples of detected (FIN-DETECT), extracted (FIN-EXTRACT), and pre-filtered (VVI-DETECT) 
unseen and valid killer whale identification images from 2018 which were successfully classified by FIN-
IDENTIFY, trained on KWIDE11-17.
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The final version of FIN-IDENTIFY was trained and verified on KWIDE11-17, whereby the overall clas-
sification performance was significantly improved by the data expansion (86.7% versus 92.5%) and no sign of 
overfitting was observed. A 5.8% increase in accuracy results in an error reduction rate of 43.6%. Considering 
the difference of 2.9% regarding the top-3 unweighted accuracy (94.3% versus 97.2%) an error reduction rate of 
50.9% was achieved. Due to different data volumes and distributions, results of the preliminary and final model 
(see Table 6) cannot be directly compared. However, the consistent improvements on validation and test are a 
good indication for a working FIN-PRINT pipeline.

Despite all the promising dataset-specific results, an additional real-world evaluation scenario was simulated. 
Identification image data are typically labeled at the end of an annual fieldwork period. While considering such a 
procedure, the year 2018 was disregarded, to provide FIN-PRINT with new and unseen data. Due to evaluation 
purposes, the number of images in 2018 was limited to only those containing the 100 most common individu-
als. Moreover, only single-labeled identification images, together with exactly one bounding box hypothesis, 
were analyzed. Contrary to the previous changing datasets, a direct comparison of the classification models is 
now possible. Within this real-world evaluation scenario the performance of both 101-class classifiers clearly 
shows a working FIN-PRINT pipeline. Furthermore, a significant performance improvement is shown in the 
analysis of the 2018 dataset, with respect to the dataset the classifier was trained on. An accuracy difference of 
1.7% (82.8.% versus 84.5%) led to an error reduction of 9.9%, whereas a TUA difference of 1.2% (91.7% versus 
92.9%) resulted in an error reduction rate of 14.5%. Considering how fine details in the appearance of individuals 
change naturally over time, in combination with completely different environmental conditions (weather, water, 
background, and/or changing cameras), the results are very promising.

A one-to-one comparison with results from other machine-learning studies identifying individuals proved 
to be very difficult due to: (1) different species and use-cases, (2) variability in datasets (amount of data, type of 
annotations, labeling granularity, data distribution, etc.), (3) completely different or slightly deviating approaches, 
and (4) varying evaluation scales and metrics. However, to emphasize and clearly demonstrate the value of this 
work, FIN-PRINT was compared to the most recent studies and state-of-the-art concepts addressing detection 
and classification of individuals represented in image data.

Animal localization and classification (object detection) are often modeled within a single network (e.g. 
 YOLO74–77) at the same  time67. Such an approach is not recommended for the identification of individuals 
belonging to a certain species, as it can cause significant reduction in the system’s robustness. On the one hand, 
there is no possibility to filter out potential object localization errors by subsequent algorithms. On the other 
hand, the joint feature representations, learned for localization and classification, generally prove not to be ideal 
especially when distinguishing very similar objects, as is the case when recognizing individuals within a species, 
rather than cross-species recognition.

Recent studies also apply approaches such as posture  identification38,40 to incorporate additional informa-
tion. Moreover, alignment points (landmarks) are frequently  used43,45,48,54,55 to adjust, orientate, and standardize 
images regarding their final alignment to receive homogeneous data samples and consequently counteract the 
scale and rotation invariance of CNNs. In case of killer whale individual identification, such concepts are not 
relevant. Images are taken from either the left and/or right side of the animal’s body as soon as they surface to 
fully identify both, fin and saddle patch. These body features are often the only ones visible as well as the only 
ones necessary for identification (see Fig. 6). Images where the fin and saddle patch are hidden and/or not suf-
ficiently visible because of a poor angle (see Fig. 3i and examples in Fig. 5) can not be used, even after rotation, 
making an alignment procedure superfluous.

Several recent methods designed for automated image identification were evaluated on considerably smaller 
and less complex  datasets38,39,42,43,50,51,54,59,61,64,68,69, shorter time series  datasets50,59, and data collected from geo-
graphically limited  locations50,54,55,59. FIN-PRINT, however, was analyzed on a large-scale dataset (roughly 121,000 
images of 367 individuals), collected over 8 years within a huge territory. This introduced complexity to the 
dataset, which was intensified through changing killer whale markings over time.

The work of Thompson et al.64 is to some extent a similar study, which includes several sequentially-ordered 
steps to automate and expedite the individual recognition of common bottlenose dolphins (Tursiops truncatus). It 
must be considered that for common bottlenose dolphins only the fin is used as identification criterion, whereas 
killer whales also have the saddle patch. However, the system achieved a top-ranked accuracy of 88.1%, top-10 
of 93.6% and top-50% of 97.0%, evaluated on 672 images and 420 unique animals. FIN-PRINT, by comparison, 
achieved 97.2% top-3 accuracy on the unseen test data (7166 images, 100 animals), as well as 92.9% top-3 accu-
racy on the entire and unseen year 2018 (5768 images, 100 animals).

Data distribution is also very important next to the mentioned data complexity. Most of the research 
approaches did not have uniformly distributed image data for each  individual42,48,55,61, which means that some 
animals are observed significantly more often than others, leading to the aforementioned long-tailed distribu-
tion. Exactly the same long-tailed phenomenon can be observed in our case (see Fig. 2), which strongly affects 
the number of killer whales being represented within the final classification model due to a limited number 
of training samples. In order to address these problems, most studies either use traditional  classifiers42,48 (e.g. 
SVM), which do not require such large data volumes compared to deep learning methods, but usually also 
provide worse classification results, or apply Deep Metric  Learning38,40,45,46,49,51,52,61,64, especially in combination 
with the triplet  loss71–73. Considering the aforementioned difficulties regarding the initial usage of the triplet 
loss and identification of appropriate triplets, traditional supervised classification was performed as an initial 
step. However, together with FIN-IDENTIFY, it is now possible to automatically generate appropriate hard and 
semi-hard  triplets73 for 100 individuals, based on the top-N classification hypothesis. Thus, robust and efficient 
Deep Metric Learning will be possible in the future, allowing an extension to all 367 individuals, regardless of the 
number of images per killer whale, which consequently also solves the previously mentioned problem regarding 
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the long-tailed data distribution. In addition, it is not necessary to retrain the classification system in case new 
animals have to be added.

Robust representation learning is essential for final classification. Hu et al.89 introduced an impressive rep-
resentation learning approach for multi-label images applying a Graph Attention Network (RRL-GAT). Results 
on two well-known image datasets have shown significant performance improvements compared to all current 
state-of-the-art  methods89. This promising approach could benefit even further from the strong limitations of 
potential objects/labels present in killer whale identification images, which in turn could improve the focus on 
interesting image regions, all of which will be the task of future research activities.

Due to the promising accuracy, together with a high performance during inference, FIN-PRINT will be the 
key element of an interactive web-based server/client labeling system in the future, supporting biologists during 
their daily work (data maintenance and analysis). In addition, it will also be possible for anyone to access and 
upload killer whale images worldwide via a web interface. Consequently, FIN-PRINT must be able to process 
images of widely varying quality (different cameras, locations, photographers, environmental conditions, etc.) 
as accurately as possible, making a deep learning-based quality inspection (VVI-DETECT) indispensable. Thus, 
FIN-PRINT facilitates efficient and robust processing of large volumes of killer whale photo-identification data. 
The overall classification accuracy as well as efficient response time during network inference allow FIN-PRINT 
to be used in conjunction with video recordings for real-time detection and classification, as well as offline evalu-
ation of the recorded video footage.

Future work will also include artificial data enlargement to counteract the mentioned long- tailed data distri-
bution phenomenon and accompanying data sparsity for most of the individuals in the population (see Fig. 2). 
For this purpose, deep learning-based algorithms in connection with 3D-modeling approaches will be exam-
ined. Besides data augmentation techniques, additional investigations will be conducted to counteract current 
data limitations visualized in Fig. 3. In the context of this study, photos with bad weather conditions, next to 
originally blurred images (see Fig. 3g,h), and/or vague examples caused through the magnification of detected 
and extracted distant dorsal fins (see Fig. 3f), were machine-filtered via VVI-DETECT beforehand. In future 
work super-resolution techniques will be investigated to recover high-resolution images based on given low-
resolution photos to allow the use of such material. Zhu et al.90 introduced an auspicious end-to-end CNN-based 
super-resolution network, entitled Cross View Capture network (CVCnet), outperforming state-of-the-art super-
resolution methods. Furthermore, other data enhancement approaches, such as binary mask  segmentation55 and/
or contour  detection63,64 of incoming images will be also of essential interest in the near future. Finally, the use of 
contextual knowledge is also a powerful and very promising avenue for improving FIN-PRINT, since killer whales 
have very distinctive and well documented social patterns and  structures15. Such data can be used to actively 
adapt posterior probabilities, which in turn reduces the dimensionality of a potential classification hypothesis.

Data availibility
Data to replicate the analyses are available from Bay Cetology and Fisheries and Oceans Canada upon reason-
able request. Contact details can be obtained from the corresponding author. Upon acceptance, the code for 
FIN-PRINT will be made publicly available at https:// github. com/ Chris tianB ergler91, listing all single modules 
with a detailed description.
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