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Abstract: The biomedical literature is a vast and invalu-
able resource for biomedical research. Integrating knowl-
edge from the literature with biomedical data can help
biological studies and the clinical decision-making process.
Efforts have been made to gather information from the
biomedical literature and create biomedical knowledge
bases, such as KEGG and Reactome. However, manual
curation remains the primary method to retrieve accurate
biomedical entities and relationships. Manual curation
becomes increasingly challenging and costly as the volume
of biomedical publications quickly grows. Fortunately,
recent advancements in Artificial Intelligence (AI) tech-
nologies offer the potential to automate the process of
curating, updating, and integrating knowledge from the
literature. Herein, we highlight the AI capabilities to aid in
mining knowledge and building the knowledge base from
the biomedical literature.
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AI-based text mining applications

The genes, proteins and their relationships are reported in
the text of biomedical literature. AI-based text mining tools
leverage Natural Language Processing (NLP) to facilitate
entity recognition and relation extraction (Table 1, Figure 1).

Named Entity Recognition

Named Entity Recognition (NER), as a typical task of NLP,
consists of labeling and identifying names of biological
concepts, such as proteins, genes, chemical compounds,
drugs, and diseases from a biomedical literature corpus.
NER is instrumental in extracting key biological concepts
from scientific articles, helping build biological ontologies
and knowledge bases.

For example, given the sentence “Mutations in the BRCA1
are associated with an increased risk of breast and ovarian
cancer”, an NER tool can tag the word “BRCA1” as a gene, and
thewords “breast cancer” and “ovarian cancer” as diseases. A
major bottleneck of NER is that the same biomedical entity
may be mentioned using nonstandard abbreviations and
terminologies. For example, the transcription factor “C/EBP-
β” is also known as “NF-IL6”; the protein “Arnt” is sometimes
referred to as ‘HIF1-β’. Some entities also nest other entities.
For instance, the protein entity “alanine aminotransferase”
contains the chemical entity “alanine”. To address the above
challenges, biomedical entity linking, aka entity normaliza-
tion or entity grounding, may be used to map ambiguous
entities to normalized, unique identifiers from an ontology,
such as Gene Ontology.

Relation extraction

Building upon NER, Relation Extraction (RE) involves iden-
tifying relationships among the entities previously found. RE
focuses on uncovering connections, such as protein-protein
interactions, gene-disease association, genotype-phenotype
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Table : AI-based methods for biomedical literature mining.

Methodology Task Source Tool Url Reference

Text mining Named Entity
Recognition (NER)

PubTator: a web-based text mining tool for assisting
biocuration

https://www.ncbi.nlm.
nih.gov/research/
pubtator/

https://www.ncbi.nlm.
nih.gov/pubmed/


LATTE: latent type modeling for biomedical entity linking https://www.ncbi.nlm.
nih.gov/research/
pubtator/

https://ojs.aaai.org/
index.php/AAAI/
article/view/

PubmedKB: an interactive web server for exploring
biomedical entity relations in the biomedical literature

https://www.pubmedkb.
cc/

https://www.ncbi.nlm.
nih.gov/pubmed/


Relation Extraction
(RE)

BERE: a novelmachine learning framework for automated
biomedical relation extraction from large-scale literature
repositories

https://github.com/
haiya/BERE

https://www.nature.
com/articles/s-
--y/

PALMER: improving pathway annotation based on the
biomedical literature mining with a constrained latent
block model

https://dongjunchung.
github.io/palmer/

https://www.ncbi.nlm.
nih.gov/pubmed/


GAIL: an interactive webserver for inference and dynamic
visualization of gene-gene associations based on gene
ontology guided mining of biomedical literature

https://chunglab.io/GAIL/ https://www.ncbi.nlm.
nih.gov/pubmed/


Relation extraction for biological pathway construction
using nodevec

https://github.com/
eliorc/nodevec

https://www.ncbi.nlm.
nih.gov/pubmed/


miRiaD: a text mining tool for detecting associations of
microRNAs with diseases

https://www.ncbi.nlm.
nih.gov/pubmed/


Pretrained models BioBERT: a pre-trained biomedical language representa-
tion model for biomedical text mining

https://github.com/dmis-
lab/biobert-pytorch

https://www.ncbi.nlm.
nih.gov/pubmed/


PubMedBERT: domain-specific language model pretrain-
ing for biomedical natural language processing

https://microsoft.github.
io/BLURB/

https://dl.acm.org/
doi/./

SciFive: a text-to-text transformer model for biomedical
literature

https://github.com/
justinphan/SciFive

https://arxiv.org/abs/
.

BioGPT: generative pre-trained transformer for biomed-
ical text generation and mining

https://github.com/
microsoft/BioGPT

https://doi.org/.
/bib/bbac

BioReader: a text mining tool for performing classification
of biomedical literature

http://www.cbs.dtu.dk/
services/BioReader/

https://www.ncbi.nlm.
nih.gov/pubmed/


Image
understanding

Gene and relation
extraction

Pathway information extracted from  years of pathway
figures

https://pubmed.ncbi.
nlm.nih.gov/
/

Identifying genes and their interactions from pathway
Figures and text in biomedical articles.

https://ieeexplore.
ieee.org/document/


Identifying genes in published pathway Figure Images https://www.biorxiv.
org/content/./
v

Extracting molecular entities and their interactions from
pathway figures based on deep learning

https://ieeexplore.
ieee.org/document/


Figure classification A novel figure panel classification and extraction method
for document image understanding

https://pubmed.ncbi.
nlm.nih.gov/
/

Novel image features for categorizing biomedical images https://ieeexplore.
ieee.org/document/
/

Figure classification in biomedical literature to elucidate
disease mechanisms, based on pathways

https://pubmed.ncbi.
nlm.nih.gov/
/
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relations, chemical-protein interactions, and drug-drug
interactions. RE is formulated by recognizing, in a given
sentence, an entity pair and the relation type.

Representative text mining techniques

AI-based NER methods can learn the context and model
the word semantics to differentiate biologically mean-
ingful concepts from the rest of the words. For example,
PubTator [1] is designed to tag words falling into six types
of biological concepts, including genes/proteins, gene
variants, diseases, chemicals, species, and others, from the
abstract or full text of biological publications. Traditionally,
the tagged bio-entities can be mapped to their standard
forms by performing a fuzzy string match. At the same
time, recent research improves this mapping in a latent
space (embedding) built by a neural network [2]. Some
other AI-based RE techniques employ contextualized rep-
resentations of biomedical sentences to detect biomedical
entity relationships. They extract and aggregate features of

sentences from semantic and syntactic aspects, and from
multiple views for identifying relations [3]. Along this line,
recent research moves relationship mining from the sen-
tence level to the document level to further enrich the
knowledge extraction results [4].

Pretrained models

AI-based text mining often relies on robust semantic repre-
sentations with pretrained models on large-scale web
corpora by self-supervised learning. The pretrained models
can be furtherfine-tunedwith a relatively small dataset for a
specific task. Some well-known NLP models include BERT,
T5, and GPT. BioBERT [5] is a widely used domain-specific
language representation model pre-trained on large-scale
biomedical corpora (PubMed abstract and PMC full-text
article) starting from the general BERT model. BioBERT
is able to extend to biomedical NER, RE, and question
answering (QA). Another tool PubMedBERT [6] uses Pub-
Med’s abstracts and PubMedCentral’s full-text articles for
pre-training from scratch. SciFive [7] is a domain-specific T5
model pre-trained on large biomedical corpora for text
understanding tasks (i.e., NER, RE, and QA) and biomedical
text generation. More recently, BioGPT [8] pre-trained the
GPT-2 model with 15 million PubMed abstracts from scratch
to generate fluent descriptions for biomedical terms.

AI-based pathway figure mining

In addition to text, the biomedical literature also contains
valuable knowledge in the form offigures. Researchers often
use diagrams, such as biological pathways, to summarize
their findings in publications for molecular events leading
to a biological process or disease. The advancements in
AI-based image understanding technologies have improved
our capacity for extracting entities and relationships from
pathway diagrams, which may be used to complement the
same knowledge extracted from text.

Bio-entity mining from pathway figures

Early AI-based methods extracted biomedical entities using
Optical Character Recognition (OCR) techniques to recover
the gene names from pathway figures. Due to the challenges
of nonstandard abbreviations and terminologies, such an
approach requires domain experts to manually create some
entity normalization rules to ground the gene names. A
study applied this method to the pathway figures from the
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Figure 1: Scope of AI technologies in biomedical literature mining. The
figure comprises two panels that showcase the different directions and
applications of AI in textmining (on the left) and image understanding (on
the right). The left panel features red boxes that outline the various tasks
involved in text mining, while the right panel highlights green boxes that
represent the tasks of image understanding in the context of biomedical
literature mining. Additionally, the figure includes blue boxes that
enumerate some promising AI advances aimed at addressing the
limitations of current AI methods for biomedical literature mining. The
figure’s outer circle depicts some typical AI applications in biomedical
literature mining. AI, Artificial Intelligence.
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publications in the past 25 years and recognized thousands
of genes missing from pathway databases [9].

Bio-interactions mining from pathway
figures

Furthermore, our tool Pathway Curator [10, 11] was designed
to extract molecular entities and their interactions from
pathway figures. Our pipeline integrates an image under-
standing model and an image processing strategy to capture
the locations, names, and interactions of pathway entities in
the figure. The pipeline can recognize genes using symbols
and gene relationships using arrows (for upregulation) or
T-bars (for inhibition). Pathway Curator provides a com-
plementary approach to text-mining in biological literature
mining and a comprehensive view of a disease pathway
across multiple publications. Our approach can be extended
to other RE tasks for figures, such as microRNA-gene and
chemical-protein interactions.

Challenges and outlook

Even though AI technologies, especially deep learning algo-
rithms, have shown great capacity for curating biomedical
entities and relationships in an automatic procedure, some
limitations of AI technologies still hinder their replacement
of manual literature curation:
(1) Limited annotated data from the biomedical literature.

Annotating sufficient biomedical concepts and
relationships for AI training is challenging due to the
large volume of publications and the diversity of
expressions used. The quantity and quality of labeled
data play a crucial role in the robustness of AI models
in biomedical literature mining.

(2) Limitations of current AI’s capacities in discovering
objects from an established vocabulary. Currently, most
AI approaches are built on pre-defined corpora or pre-
labeled datasets. This data dependency limits the abil-
ity of AI technologies to mine objects outside the
vocabulary.

(3) Limitations of current AI’s capacities in handling
inconsistencies from the literature. The biomedical
literature contains outdated or incorrect statements,
which may mislead AI approaches.

The rapid development of AI technologies, particularly
deep-learning methods, has created new opportunities for

curating biomedical knowledge. OpenAI’s recent AI-based
chatbot, Chat Generative Pre-trained Transformer (ChatGPT),
impressed users with its ability to write essays, answer
questions, and mimic human conversation. With a compre-
hensive knowledge base, ChatGPT can be used to retrieve
biomedical knowledge at a user’s request, paving theway for
more efficient and accurate knowledge mining in the
biomedical domain.While ChatGPT currently often provides
incorrect or unreproducible information, continuous up-
grades and better prompt learning techniques offer the po-
tential formore accurate and reliable biomedical knowledge
mining. ChatGPT can also be more trained/aligned to target
the biomedical field specifically for building hypotheses,
finding new drug targets, and generating new small mole-
cules and antibodies. It is promising to change the way of
mastering knowledge and skills, assisting doctors to make
clinical decisions, and reducing medical errors.

Several new AI approaches hold great potentials to
advance literature mining from both text and figure
modalities. Active learning allowing iteratively training
models with newly labeled data offers the opportunity to
gradually upgrade AI models against limited annotated
data. Reinforcement Learning from Human Feedback
(RLHF) enhances the robustness and generalization of AI
algorithms by aligning predictions with human values and
preferences. By incorporating human feedback, RLHF can
improve the accuracy and reliability of AI predictions,
going beyond the limitations of annotated data. In addition,
contrastive learning for multiple modalities (i.e., text and
image) enables one to learn the common (joint) semantic
representations between corresponding text and image,
e.g., a gene name ‘AKT’ in text and an image snippet con-
taining ‘AKT’ for better performance. Additionally, meta-
learning and few-shot learning strategies are also prom-
ising to generalize the AI technologies modeling on large-
scale general corpora to the biomedical-specific domain.

In clinical practice, various clinical documents, such as
Electronic Health Records (EHR) and Pathology Reports
(PR), contain significant biomedical and pathological
information that can benefit from applying AI technologies
for large-volume curation. Several studies have developed
AI-based mining tools for EHR [11] and PR [12–14], which
utilize similar technologies as those used in literature
mining to recognize diagnostic entities and relationships
from unstructured text and biomedical images. Integrating
the mining results from biomedical literature and clinical
documents can facilitate clinical studies and precision
medicine. This approach holds great promise for future
medical research and patient care.
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The rapid growth of biomedical literature presents both
opportunities and challenges for biomedical knowledge
mining. With more efforts to apply cutting-edge AI technol-
ogies to biomedical literature mining, the pace of related
annotation, prediction, and knowledge base construction
will be accelerated for biomedical research and clinical
practices.
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