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Abstract

Background

Decisions regarding the evaluation of children with influenza infection rely on the likelihood

of severe disease. The role of early vital signs as predictors of severe influenza infection in

children is not well known. Our objectives were to determine the value of vital signs in pre-

dicting hospitalization/recurrent emergency department (ED) visits due to influenza infection

in children.

Methods

We conducted a prospective study of children aged 6 months to 8 years of age with influ-

enza like illness evaluated at an ED/UC from 2016–2018. All children underwent influenza

testing by PCR. We collected heart rate, respiratory rate and temperature, and converted

heart rate (HR) and respiratory rate (RR) to z-scores by age. HR z scores were further

adjusted for temperature. Our primary outcome was hospitalization/recurrent ED visits

within 72 hours. Vital sign predictors with p< 0.2 and other clinical covariates were entered

into a multivariable logistic regression model to determine odds ratios (OR) and 95% CI;

model performance was assessed using the Brier score and discriminative ability with the C

statistic.

Results

Among 1478 children, 411 (27.8%) were positive for influenza, of which 42 (10.2%) were

hospitalized or had a recurrent ED visit. In multivariable analyses, adjusting for age, high-

risk medical condition and school/daycare attendance, higher adjusted respiratory rate (OR

2.09, 95%CI 1.21–3.61, p = 0.0085) was a significant predictor of influenza hospitalization/

recurrent ED visits.
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Conclusions

Higher respiratory rate adjusted for age was the most useful vital sign predictor of severity

among young children with PCR-confirmed influenza.

Introduction

Influenza remains a significant public health threat, with unpredictable epidemics, pandemics

and variable vaccine effectiveness leading to substantial yearly morbidity and mortality. While

patients with certain medical conditions are at high risk for complications from influenza [1],

severe illness can occur among healthy individuals, especially among children less than 5 years

of age [2–4]. Early identification of children with influenza may lead to earlier treatment initia-

tion and improved outcomes [5–7]). Determining early, objective measures that do not require

laboratory or radiographic testing is of high value to help identify children at risk for higher

morbidity and help guide providers’ clinical decision-making for enhanced care.

Despite advancements in diagnostics and therapeutics, one of the most significant chal-

lenges facing clinicians is in deciding which patients to test and treat for influenza. Clinically,

influenza is often indistinguishable from other viruses, and there is no single symptom or sign

with adequate sensitivity to make informed clinical decisions regarding testing or treatment

[8, 9]. In one study, clinician judgment had sensitivity of only 29% in accurately diagnosing

influenza [10]. While molecular testing platforms are more reliable than rapid antigen tests,

they are expensive, and not widespread. Antivirals lead to a reduction in illness duration, and

are associated with a decreased risk of lower respiratory tract infection, hospitalization and

death [11, 12], but should be limited to patients who are at the highest risk for complications,

to avoid widespread resistance to current therapeutics [13]. There is a critical need to increase

the pre-test probability of children with influenza with the highest risk of morbidity, avoid

excessive testing and treatment, and provide objective measures of severity to help determine

when to escalate treatment or make decisions regarding disposition to improve the outcomes

of children with severe disease.

Objective measures utilizing early vital sign data show promise in predicting more severe

outcomes among adults with influenza using oxygen saturation, blood pressure, temperature

and respiratory rate [14, 15]. However, pediatric evidence is sparse in the literature [16, 17].

Therefore, the objective of this analysis was to determine the usefulness of early vital signs in

children to predict severe influenza infection defined as hospitalization or recurrent emer-

gency department or urgent care visits.

Methods

This study underwent full board review and was approved by the Colorado Multiple Institu-

tions Review Board (COMIRB No.15-2308). This is a secondary analysis of a prospective study

to evaluate a new moderate to severe classification of influenza in children [18]. Briefly, chil-

dren 6 months-8 years of age presenting with influenza-like-illness (ILI) to the Children’s Hos-

pital Colorado (CHCO) ED and an affiliated Urgent Care center were enrolled during two

influenza seasons (January-April 2017 and November 2017-April 2018). ILI was defined as a

temperature of�37.8⁰C and at least one of the following: cough, sore throat, runny nose or

nasal congestion [19]. Children were excluded if they had respiratory symptom duration of

greater than 14 days, if they were enrolled in the study within the prior 14 days, or if they had

nurse-only visits. Nasopharyngeal swabs were obtained from all children and tested using the
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Cepheid Xpert1 influenza real time RT- PCR (Sunnyvale, CA). Written informed consent

was sought from all study participants. For children less than 7 years of age, written consent

was obtained from parents/guardians, and for children 7 years of age and older, in addition to

written consent from parents/guardians, additional written assent was obtained from children

participating in the study per institutional policies. We evaluated our primary outcome firstly

with the entire cohort, and secondly, with the subset of children who tested positive for influ-

enza. Caregivers were interviewed in the ED or Urgent care regarding the child’s demographic

characteristics, presenting symptoms, medical comorbidities, influenza vaccination status and

household size. Vital sign data (heart rate, respiratory rate, oxygen saturation, blood pressure,

capillary refill time) collected by chart abstraction, included the first set of vital signs and the

highest heart rate/respiratory rate or temperature. Children were characterized as high-risk if

they had a comorbidity increasing their risk of complications from influenza [20]. A vacci-

nated individual was defined as a child who received the adequate number of influenza vac-

cines for a given season, as defined by the Advisory Committee on Immunization Practices

[21].

The primary outcome was hospitalization or recurrent ED or UC visits within 72 hours of

the index visit. Data were summarized descriptively using frequencies for categorical variables

and measures of central tendency for continuous variables. Proportions were compared using

the Chi-square test or the Fisher’s exact test when needed. Mean values were compared using

student’s t test. To examine the predictive value of vital sign data for PCR-confirmed influenza

of subjects in the study cohort and hospitalization of the influenza-positive subjects, multivari-

able logistic regression was used. Heart rate and respiratory rate z score by age were calculated

using a reference for expected heart rate and respiratory rate in hospitalized children [21].

Heart rate z scores were further adjusted for temperature [22]. A bivariable analysis was per-

formed for each predictor of interest with outcome. Correlation between predictors was

assessed with Pearson and Spearman correlation coefficients. Model performance was assessed

with the scaled Brier score with higher values indicating better model performance. Discrimi-

native ability was evaluated with the C statistic (Values >0.7 indicate good model discrimina-

tion) [23]. SAS v 9.4 (Cary, NC) was used for all analyses.

Results

Among 1516 children with ILI enrolled in the study, 38 (2.5%) were excluded due to study

withdrawal, meeting exclusion criteria or for other reasons. Of the remaining 1478 chil-

dren, 252 were hospitalized, 45 had a recurrent ED visit within 72 hours of study enroll-

ment; 411 (27.8%) tested positive for influenza type A or B, of which 28 (6.8%) were

hospitalized and 14 (3.4%) had a recurrent ED visit within 72 hours of study enrollment.

No hospitalized children who tested positive for influenza in our study required intensive

care. We excluded 24 children who had a recurrent ED or UC visit after 72 hours from

these analyses. The mean age of children with influenza was 4.2 years (IQR 2.2–6.1); 27%

were considered at high-risk for influenza complications, and 37% were completely vacci-

nated against influenza for that season. Sociodemographic and clinical characteristics

among children with influenza infection with and without hospitalization or recurrent ED

visits are shown in Table 1. Children with influenza infection who were hospitalized or

had a recurrent ED visit within 72 hours were more likely to have a high-risk medical con-

dition (57% vs 23%, p < 0.01). The commonest reason for hospitalization among influenza

positive patients was due to respiratory distress, hypoxia and dehydration. A higher pro-

portion of children who were influenza negative were admitted for hypoxia compared

with children who were influenza positive (3.8% vs 2.7%; p < 0.01).
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Predictors of hospitalization or recurrent ED visit from influenza infection

The bivariable analyses of vital sign data as predictors of hospitalization among children with

ILI and PCR-confirmed influenza illness are shown in Table 2. Temperature, heart rate, oxy-

gen saturation and respiratory rate were significant predictors in bivariable analyses for the ILI

cohort. Of these, clinically meaningful vitals sign data (peak heart rate, respiratory rate z score

and initial oxygen) were used for the multivariable logistic regression models. The first model

included vital signs only, and the second model included other covariates (age, high risk medi-

cal condition and school/daycare attendance) (S1 Table). Results of the multivariable analysis

indicated respiratory rate z score (1.76 (95% CI 1.48–2.10) as a risk factor and high initial oxy-

gen saturation (0.85 (95% CI 0.81–0.89) as a protective factor for hospitalization/recurrent ED

visits among children with ILI. This model had improved discriminatory ability with the inclu-

sion of age, high risk medical condition, and school/daycare attendance as additional covari-

ates (c-index = 0.76) and performance (Scaled Brier score 0.17).

Initial oxygen saturation and initial respiratory rate were significant predictors for severe

influenza infection in bivariable analyses and were subsequently used for the multivariable

Table 1. Sociodemographic characteristics of study participants.

Variables Total Influenza

Positive

Influenza

Negative

p-valuea Influenza Positive Influenza Positive p-valuea

(n = 1478) Recurrent ED visit/

Hospitalization

No Recurrent ED visit/

Hospitalizationn (%) (n = 411) (n = 1067)

n (%) n (%) (n = 42) (n = 363)

n (%) n (%)

Age in years, mean (SD) 3.2 (2.2) 4.2 (2.3) 2.9 (2.0) <0.01b 3.9 (2.2) 4.3 (2.4) 0.33b

Male gender 793 (54) 206 (50) 587 (55) 0.09 19 (45) 183 (50) 0.53

Race/Ethnicity:

Hispanic/Latino 741 (50) 236 (57) 505 (47) <0.01 24 (57) 210 (58) 0.93

White Non-Hispanic 477 (32) 108 (26) 369 (35) 12 (29) 93 (26)

Black Non-Hispanic 127 (9) 38 (9) 89 (8) 4 (20) 34 (9)

Other 133 (9) 29 (7) 104 (10) 2 (5) 26 (7)

High-risk medical

condition

425 (29) 111 (27) 314 (29) 0.36 24 (57) 85 (23) < .01

Insurance Status:

Private 450 (30) 100 (24) 350 (33) <0.01 19 (21) 89 (25) 0.82

Medicaid 989 (67) 297 (72) 692 (65) 31 (74) 262 (72)

Other 39 (3) 14 (3) 25 (2) 2 (5) 12 (3)

Vaccination Status:

Completely vaccinated 710 (50) 149 (37) 561 (54) <0.01 19 (45) 127 (36) 0.52

Partially vaccinated 179 (13) 42 (11) 137 (13) 4 (10) 37 (11)

Unvaccinated 542 (38) 207 (52) 335 (32) 19 (45) 186 (53)

Enrollment Location:

Urgent Care 476 (32) 143 (35) 333 (31) 0.19 14 (29) 129 (36) 0.40

ED 1,002 (68) 268 (65) 734 (69) 30 (71) 234 (64)

Attends daycare/school 867 (59) 284 (69) 583 (55) <0.01 24 (57) 258 (71) 0.06

Test Result:

Influenza B 180 (44) 180 (44) n/a n/a 18 (43) 159 (44) 0.88

Influenza A 229 (56) 229 (56) n/a n/a 24 (57) 202 (56)

a- Chi-square unless otherwise specified

b- b-Student’s T test

https://doi.org/10.1371/journal.pone.0272029.t001
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logistic regression. In multivariable analyses, among children with influenza infection, only

higher adjusted respiratory rate z score remained a significant predictor of hospitalization or

recurrent ED visits (OR 1.84, 95%CI 1.17–2.90) (Fig 1). However, the model had poor discrim-

ination (c-index = 0.67) and performance (Scaled Brier score = 0.05). For improved model

performance, we conducted analyses using a second model that adjusted for age, high risk co-

morbidities and school or daycare attendance. Initial higher adjusted respiratory rate

remained a significant predictor of hospitalization or recurrent ED visits (OR 1.97 1.22–3.19),

with overall improved discrimination (c-index 0.77) and performance (Scaled Brier score

0.12) (Fig 1).

Discussion

Our observational cohort study of children with influenza like illness being evaluated in the

ED/UC setting demonstrated that higher respiratory rate adjusted for age was the most signifi-

cant vital sign predictor of hospitalization or recurrent ED/UC visits within 72 hours among

young children with PCR-confirmed influenza. While adjusted heart rate during peak temper-

ature and lower oxygen saturation were significant in bivariable analyses, they were no longer

significant in our adjusted analyses. Model performance improved significantly after including

age, high risk co-morbidities and school or daycare attendance. For children with ILI, the

most important vital signs predicting hospitalization among children with ILI were both age

adjusted respiratory rate, and oxygen saturation. Our findings demonstrate that a predictive

model which includes age, respiratory rate z score, high risk co-morbidities and school or

Table 2. Predictive value of vital sign data on hospitalization or recurrent ED visit within 72 hours among children with ILI and PCR-confirmed influenza evalu-

ated in an ED and urgent care setting- bivariable analyses.

Variables Total

(n = 1454)

Hospitalized/

recurrent ED

visit

(n = 297)

Not hospitalized/

recurrent ED visit

(n = 1157)

p-

value

Influenza

positive

(n = 405)

value (%)

Influenza positive

hospitalized

/recurrent ED visit

(n = 42) value (%)

Influenza negative not

Hospitalized/

recurrent ED visit

(n = 363)

value (%)

p-

valuea

Duration of fever (days), mean

(SD)

2.8 (2.1) 3.0 (2.4) 2.7 (2.0) 0.43 2.9 (2.3) 3.9 (3.4) 2.7 (2.1) 0.06

Highest temperature in ED/

UC, mean (SD)

38.4 (1.1) 38.6 (1.0) 38.3 (1.1) < .01 38.6 (1.1) 38.9 (1.2) 38.6 (1.1) 0.19

Initial heart Rate, mean (SD) 143.5

(24.4)

151.5 (23.3) 141.5 (24.2) < .01 138.3 (23.6) 144.3 (25.7) 137.6 (23.3) 0.08

Heart rate during highest

temperature in ED/UC, mean

(SD)

143.5

(24.4)

151.6 (23.2) 141.4 (24.1) < .01 138.3 (23.4) 144.7 (24.8) 137.6 (23.1) 0.06

Peak heart rate z score (age/

temp adjusted)

0.5 (0.9) 0.7 (1.0) 0.4 (0.9) < .01 0.2 (0.9) 0.4 (0.9) 0.2 (0.9) 0.24

Initial heart rate z score (age/

temp adjusted), mean (SD)

0.6 (1.0) 0.9 (1.0) 0.5 (0.9) < .01 0.3 (0.9) 0.5 (1.0) 0.3 (0.9) 0.21

Initial oxygen Saturation,

mean (SD)

95.3 (3.2) 93.3 (4.3) 95.8 (2.7) < .01 95.9 (2.7) 94.6 (3.8) 96.0 (2.5) < .01

Initial respiratory Rate, mean

(SD)

35.3 (11.7) 42.5 (14.7) 33.4 (10.0) < .01 31.2 (9.4) 36.1 (13.2) 30.7 (8.7) < .01

Initial respiratory rate z score

(age adjusted), mean (SD)

0.8 (0.9) 1.3 (0.9) 0.7 (0.8) < .01 0.6 (0.8) 1.1 (0.8) 0.6 (0.7) < .01

ED—Emergency Department, UC—Urgent Care, SD—standard deviation

a—Student’s T test

https://doi.org/10.1371/journal.pone.0272029.t002
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daycare attendance can help risk-stratify children with more severe outcomes from influenza

infection.

Early vital sign data predicting more severe outcomes among children with influenza is lim-

ited in the literature. One matched case-control study among outpatients with respiratory

symptoms showed that fever was an independent predictor for influenza, however, the study

did not investigate other vital sign measurements nor its applicability to hospitalization and

severity [16]. Another study of hospitalized children reported that low initial oxygen saturation

at admission predicted the need for intensive care [17], but this was not found to be an inde-

pendent predictor in multivariate analysis. Low oxygen saturation has also been shown to be a

useful predictor of severe outcomes in a respiratory index of severity in children (RISC) score,

which forecasts the probability of death in a young child with lower respiratory tract infection

[24].

Studies of influenza infection in children and adults have similarly demonstrated the value

of respiratory rate in predicting hospitalization. One study evaluating vital signs as predictors

of hospitalization of children and adults with H1N1 influenza, demonstrated that in multivari-

ate regression analyses of all vital signs, tachypnea was a significant risk factor for hospital

admission (OR = 1.1; 95% CI 1.02 to 1.13, p<0.01) [25]. Our findings are also consistent with

another study evaluating adults with H1N1 influenza demonstrating that tachypnea is a signifi-

cant risk factor for hospitalization [26].

Respiratory rate has been shown to be a useful predictor of severity for acute respiratory

infections and pneumonia. For example, children with tachypnea as defined by the World

Health Organization (WHO) respiratory rate thresholds are more likely to have pneumonia

than children without tachypnea [27]. However, using tachypnea as a dichotomous variable

Fig 1. Odds of hospitalization and recurrent ED visits among children with PCR-confirmed influenza using vital sign data as clinical

predictors, model adjusted for age, high risk co-morbidities, school or daycare attendance.

https://doi.org/10.1371/journal.pone.0272029.g001
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may decrease the overall model performance. While using vital sign z scores rather than the

presence or absence of tachypnea is more complex, it enhances the statistical power over using

a dichotomous threshold, and these data can be effectively used in EHR systems and computer

algorithms to risk-stratify children [28, 29]. The utility of this approach has been shown in

model predictors for identifying children with serious bacterial infections, showing that the

most robust model used age adjusted heart rate and respiratory rates [30].

Other studies have also demonstrated that hypoxia or requirement for oxygen was also an

important risk factor for hospitalization or ICU admission [31, 32], which we found in our

bivariable analyses for influenza-confirmed infection, but after adjusting for other important

covariates, this was no longer significant. Our study suggests that respiratory rate is a more

reliable predictor of influenza severity than oxygen saturation in children, but our findings

may be difficult to interpret since the effects of higher altitude in Colorado may have impacted

the interpretation of oxygen saturation in this study [33–35]. Further, the higher proportion of

hypoxia among children testing negative for influenza likely represented younger children

with RSV infection, which was co-circulating during the enrollment period of our study,

known to be associated with hypoxia in children [36]. The stronger association of hypoxia due

to RSV may also explain why oxygen saturation was a significant predictor for our ILI cohort,

but not for our influenza-confirmed cohort.

Decisions regarding the investigation and treatment of children with influenza and infec-

tion rely on factors such as incidence of influenza in the community and likelihood of severe

disease. Early predictors can help the clinician target testing and treatment to high-risk indi-

viduals, which is especially crucial during times of limited testing capacity, as evidenced by the

current pandemic. Existing respiratory severity assessment scores may underestimate the risk

of influenza severity, especially in younger individuals [37], and therefore a model specific to

influenza is necessary. A predictive model using objective early clinical parameters can be

incorporated in the clinical setting through clinical decision support tools in the EHR, for risk

stratification for influenza infection, which can help to standardize care, while reducing

unnecessary testing and antiviral use. The ED and inpatient floors are potential settings in

which such clinical tools can have a high impact, since the population of interest is sicker, reli-

able testing platforms are available, thus enhancing the diagnosis, prompt initiation of antivi-

rals and ongoing monitoring among those with confirmed influenza infection [38]. Such

clinical guidance would be especially important when resources are limited, as evidenced dur-

ing the COVID-19 pandemic, to help the provider triage the appropriate level of care and

determine appropriate therapies, while conserving resources.

There are several limitations that warrant discussion. First, our study was conducted at a

single center among children evaluated in an ED or UC setting, which may limit its external

validity to other sites and settings. Extrapolation of our clinical prediction tool to other settings

is underway. Our cohort of children with influenza had a low rate of hospitalization, so we

used a composite outcome of hospitalization or recurrent visits, but limited the recurrent visits

to within 72 hours of the index hospitalization. Given the rare outcome, the model was sensi-

tive to overfitting, but when comparing our logistic regression model with 3 covariates com-

pared with 6 covariates, there was little change in the 95% confidence intervals, indicating

stability of our expanded model, which is considered an acceptable analytic approach [39, 40].

Next, we used vital sign data collected during the index visit and were not able to account for

day of illness in our model, and thus our vital sign data was collected during different phases

of the illness course, when they sought care. Our study was conducted in a setting that used

machine-read heart rate and respiratory rate data, but these have been shown to correlate well

with electrocardiograph heart rate and physician measures [41, 42]. Finally, we did not explore
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other predictive modeling approaches, such as including influenza results as a covariate in the

ILI model, but will be the subject of future study.

Our study demonstrates the clinical utility of a prediction model that incorporates age, high

risk medical condition, school or daycare attendance and respiratory rate z score in predicting

hospitalization or recurrent ED visits for children aged 6 months to 8 years of age with influ-

enza infection. This study has important implications for researchers as well as clinicians,

because determining early, objective measures that do not require laboratory or radiographic

testing is of high value to help improve the pre-test probability for determining which children

are at risk for higher morbidity, to help guide providers’ clinical decision-making process

regarding testing and treatment. These findings are especially timely during a time when influ-

enza is co-circulating with COVID-19, when there may be shortages in testing reagents,

trained personnel and more restrictive testing capabilities, highlighting an important need to

identify which children should be tested for influenza as well as SARS-CoV-2. Further work

including z score thresholds and external validation is ongoing, but these findings show prom-

ise for use in clinical prediction tools in the ED and hospital setting.

Supporting information

S1 Table. Multivariable logistic regression analyses evaluating association between vital

sign data and hospitalization/recurrent ED visits among children with ILI.
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