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Abstract
In studies analyzing competing time-to-event outcomes, interest often lies in both estimating the effects of baseline cov-

ariates on the cause-specific hazards and predicting cumulative incidence functions. When missing values occur in these

baseline covariates, they may be discarded as part of a complete-case analysis or multiply imputed. In the latter case, the

imputations may be performed either compatibly with a substantive model pre-specified as a cause-specific Cox model

[substantive model compatible fully conditional specification (SMC-FCS)], or approximately so [multivariate imputation by

chained equations (MICE)]. In a large simulation study, we assessed the performance of these three different methods in

terms of estimating cause-specific regression coefficients and predicting cumulative incidence functions. Concerning

regression coefficients, results provide further support for use of SMC-FCS over MICE, particularly when covariate

effects are large and the baseline hazards of the competing events are substantially different. Complete-case analysis

also shows adequate performance in settings where missingness is not outcome dependent. With regard to cumulative

incidence prediction, SMC-FCS and MICE are performed more similarly, as also evidenced in the illustrative analysis of

competing outcomes following a hematopoietic stem cell transplantation. The findings are discussed alongside recom-

mendations for practising statisticians.
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1 Introduction
Missing covariate data are of perennial concern in observational studies in medicine.1 The backbone of such studies are
clinical registries, which collect patient data potentially spanning many countries and centres over long periods of time.
These and other data management complexities can lead to various patterns of (possibly informative) missingness.
Furthermore, these registries are often set up for multiple purposes leading to multiple studies where different potentially
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exclusive survival outcomes could be considered. Consequently, competing risks outcomes are frequently investigated.
This refers to a setting in which individuals can only experience one of several mutually exclusive events.

In studies considering competing risk outcomes, interest can lie in both the probabilities of events occurring over time
and the effect of covariates on the different competing events. Appropriate handling of missing data is then of central
concern in view of avoiding potential bias and/or loss of power when estimating these quantities, as could be expected
when using simple methods such as complete-case analysis (CCA).2

A more principled approach to handling missing covariate data is to use multiple imputation (MI), where a set of com-
plete data sets is generated using samples based on an imputation model to fill in the missing values.3 A substantive model
is then run on each of these data sets, before combining the estimates using rules that adequately reflect the uncertainty in
the imputation procedure.4 The imputation model and the substantive model should ideally be compatible, that is, deriving
from a joint model under which both models are conditionals. If data are missing across multiple covariates, the fully con-
ditional specification approach can be used.5 This involves specifying an imputation model for each variable with missing
values, fully conditional on the other variables, including the outcome. The procedure is better known under its more
popular name ‘multivariate imputation by chained equations’ (MICE).6

In time-to-event analysis, a popular choice of substantive model is the Cox proportional hazards model. White and
Royston7 showed that when using MICE in the context of a Cox model (in absence of competing events), for each covariate
with missing data, the corresponding imputation model should include the remaining covariates, the event indicator, and
the cumulative baseline hazard. To implement this model, the cumulative baseline hazard can be approximated by the mar-
ginal Nelson–Aalen estimate of the cumulative hazard. Moreover, depending on the type of covariate, the imputation
model is simplified with a Taylor approximation for the non-linear terms from the Cox likelihood. In view of this approxi-
mate compatibility between the substantive and imputation model, Bartlett et al.8 proposed a variant of MICE called ‘sub-
stantive model compatible fully conditional specification’ (SMC-FCS). The approach ensures full compatibility between
the imputation model and the substantive model by imputing missing covariate values in a rejection sampling procedure.

In competing risk settings, where the analysis model of interest is often a cause-specific Cox proportional hazards
model, there has been little research addressing the appropriate use of MI when imputing missing covariate data.9 The
most prominent work is that of Bartlett and Taylor, where the SMC-FCS approach was extended for cause-specific
Cox models.10 In a simulation study as part of their work, Bartlett and Taylor compared SMC-FCS to an approximate
MICE procedure proposed by Resche-Rigon et al.11 The proposal was an extension of the work of White and Royston
for cause-specific Cox models. Simulation results suggested using SMC-FCS generally leads to estimates with little
bias and nominal coverage.10 In contrast, the approximate MICE approach was often biased, with some mitigation
using interaction terms in the imputation model.

Importantly, we remark that the algebraic motivation behind the approximate MICE approach is currently unpublished.
Moreover, the work of Bartlett and Taylor is to our knowledge the only empirical comparison of this approximate MICE
approach with the SMC-FCS approach. Thus, questions regarding the performance of both methods in a wider range of
situations still remain. In addition, the question of how both the approaches perform with regard to predicted cumulative
incidence functions is hitherto unexplored.

The aim of the present research is thus threefold. First, we aim to formally extend the work of White and Royston for
cause-specific Cox models. Specifically, we will derive the approximately compatible imputation models for continuous,
binary and multi-level categorical missing covariates. This extension was originally initiated by one of the authors of the
current manuscript and shared as part of an oral presentation.11 Second, we aim to replicate and extend the simulations of
Bartlett and Taylor; additionally manipulating the shape of the competing baseline hazards and the strength of missingness
mechanisms, among other extensions. Third, we will explore how biases in cause-specific Cox models affect predicted
cumulative incidence functions for patterns of reference covariate values. Simulation results will be interpreted alongside
an illustrative analysis using a data set from the field of allogeneic hematopoietic stem cell transplantation (alloHCT).

In the Section 2, we present the motivating data set, and in the Section 3 we introduce notation for cause-specific com-
peting risks analysis. In the Section 4.1 section, the algebraic motivation behind the imputation model for a cause-specific
Cox analysis model is shown. The simulation study is presented in the Section 5, followed by an illustrative analysis in the
Section 6. Findings are discussed alongside recommendations for practice in the Section 7.

2 Motivating example
Schetelig et al.12 assessed long-term outcomes of patients with myelodysplastic syndromes (MDS) or secondary acute
myeloid leukemia (sAML) after an alloHCT. MDS is characterised by the production of deficient clonal blood cells in
the bone marrow and can rapidly progress to more severe sAML.13 AlloHCT is the only treatment that can offer long-term
remission of the disease. Therefore, alloHCT is recommended for disease stages at high risk of transformation into acute
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myeloid leukemia (AML) or death from other complications. However, this procedure is associated with a high risk of
adverse outcomes, either due to relapse of MDS or sAML, or due to side effects of the (pre-)treatment. This leads to
the competing risks outcomes relapse and non-relapse mortality.

The data set contains 6434 patients transplanted between 2000 and 2012, and registered with the European Society for
Blood and Marrow Transplantation (EBMT). Several possible predictors measured at the time of transplantation have a
substantial amount of missing values. Some examples of variables with missing values are cytogenetic classification
(62.2% missing), comorbidity index (59.9% missing) and the Karnofsky performance score (32.8% missing). A cause-
specific model for relapse with the aforementioned three variables as predictors, performed on complete cases only,
makes use of a mere 20% of the full data set. The immediate lack of efficiency here prompted an investigation as to
the performance of MI for such examples.

3 Cause-specific competing risks analysis
In a competing risks setting, we assume that individuals can ‘fail’ from only one of K distinct events. We denote that failure
time as T̃ , and the competing event indicator as D̃ ∈ {1, . . . , K}. In practice, individuals are subject to some right-
censoring time C, which is assumed to be independent of T̃ and D̃, possibly given covariates. We thus only observe rea-
lisations (ti, di) of T = min (C, T̃ ) and D = I(T̃ ≤ C)D̃, where D = 0 indicates a right-censored observation.

If we view competing risks as a multi-state process, with a single (event-free) initial state and K absorbing states, interest
often lies in the cause-specific hazard, defined for a single event k as

hk (t) = lim
Δt�0

P(t ≤ T̃ < t + Δt, D̃ = k ∣ T̃ ≥ t)

Δt
.

This hazard function can be interpreted as the instantaneous force of transition, or intensity, of moving between the initial
state and state k.14,15 A model can then be specified, conditional on a covariate vector Z. A Cox model is a common choice,
defined for a failure cause k as

hk (t ∣ Z) = hk0(t) exp (β
T
k Z),

where hk0(t) is the cause-specific baseline hazard, and βk represents the effects of covariates Z on the cause-specific hazard.
We note that in what follows, we use ‘effect’ to refer to the impact of a covariate in a multivariable model where there may
be non-negligible additional confounding, and this should hence not be interpreted as a fully causal quantity. Furthermore,
the K hazard functions define the failure-free survival probability:

S(t ∣ Z) = exp −
∑K
k=1

∫t
0
hk(u ∣ Z)du

( )
= exp −

∑K
k=1

Hk(t ∣ Z)

( )
,

where Hk(t ∣ Z) =
�t
0hk(u ∣ Z)du is the cause-specific cumulative hazard for cause k. Assuming conditional non-

informative censoring, the likelihood contribution of an individual with observations (ti, di, zi) is then

p(ti, di ∣ zi) = S(ti ∣ zi)
∏K
k=1

hk(ti ∣ zi)
[ ]I (di=k), (1)

where I(·) is the indicator function. The covariate effects βk on the cause-specific hazard can then be estimated by optimis-
ing the partial likelihood.16 This follows from the observation that the above expression factorises into separate factors for
each cause k, which each corresponding to a standard Cox likelihood function where events from all other causes are
treated as censored observations.17

3.1 Cumulative incidence functions
Beyond assessing covariates, cause-specific hazards can also be used to estimate the so-called cumulative incidence func-
tions, defined as

P(T̃ ≤ t, D̃ = k) =
∫t
0
hk (u)S(u−) du, k = 1, . . . , K , (2)

where S(u−) is the failure-free survival probability just prior to u.18 This cumulative incidence function, or transition
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probability, is the probability of experiencing event k before or at time t. It is also known as the absolute, or crude risk. It
can be computed either non-parametrically, or semi-parametrically if Cox models are specified for the hk (u). In the latter
case, the cumulative hazards derived from the Breslow estimator of the cumulative cause-specific baseline hazards are used
as ingredients for estimating the cumulative incidence for cause k.

This implies that we do not need to model the cumulative incidence function directly in order to obtain these predicted
probabilities, as is done when using the Fine-Gray model.19 This is helpful given that in observational studies, interest is
seldom in prediction alone: predictions are often presented after first reporting and interpreting model coefficients. The
cause-specific hazards framework provides a more natural scale on which to interpret covariate effects and allows to
obtain predicted patient-specific cumulative incidence functions for all causes.

4 Methods
In this section, we provide a framework for using MICE and SMC-FCS for both estimation of cause-specific regression
coefficients and cumulative incidence functions. Throughout, we assume that data are missing according to a missing
(completely) at random mechanism, hereafter abbreviated as M(C)AR.

4.1 Fully conditional approach (MICE)
We introduce X as a single, partially observed covariate, and Z as a fully observed covariate. We note that Z could also
represent a vector of complete covariates. Appropriate use of MICE for cause-specific competing risks analysis requires the
specification of an imputation model p(X ∣ T , D, Z), from which a number of imputed data sets are generated. Detailed
derivations for p(X ∣ T , D, Z) are provided in appendix A, which we summarise in the present subsection.

To begin with, we note that by Bayes’ Theorem,

log p(X ∣ T , D, Z) = log p(T , D ∣ X , Z)+ log p(X ∣ Z)+ c, (3)

where c is a constant term that does not depend on X . For p(T , D ∣ X , Z), a cause-specific Cox proportional hazards model
for each failure cause k is specified as hk(t ∣ X , Z) = hk0(t) exp (βkX + γkZ). In case of binary or continuous X and Z, βk
and γk are scalars; for categorical X or Z with two or more levels, βk and γk are vectors and X and Z represent dummy
codings for the levels of the covariates. To impute from the fully conditional distribution in Equation (3), we also need
to specify a model for the missing data, p(X ∣ Z). This model will generally vary depending on the covariate type of X .

4.1.1 Binary X
If X is binary, we could assume logitP(X = 1 ∣ Z) = ζ0 + ζ1Z. If Z is categorical with J ≥ 2 levels (without loss of gen-
erality assuming that Z takes values in 1, . . . , J ), we can write

logit P(X = 1 ∣ T , D, Z) = α0 +
∑K
k=1

αkI(D = k)+
∑K
k=1

αK+kHk0(T )

+
∑J−1

j=1

α2K+jI(Z = j)+
∑J−1

j=1

∑K
k=1

α(j+1)K+(J−1)+kI(Z = j)Hk0(T ),

(4)

which implies that for categorical Z we can impute missing X values using a logistic regression with D (as a factor vari-
able), the cumulative baseline hazards for all causes of failure, Z (as a factor variable), and the complete interactions
between the cumulative baseline hazards and Z. For continuous Z, results are no longer exact. Using a first-order
Taylor approximation for the exp (γkZ) term, we can write

logit P(X = 1 ∣ T , D, Z) ≈ α0 +
∑K
k=1

αkI (D = k)+
∑K
k=1

αK+kHk0(T )+
∑K
k=1

α2K+kHk0(T )Z

+ α3K+1Z,

(5)

which is valid if Var(γkZ) is small. This approximate imputation model thus uses D, Z, all Hk0(T ) and the interactions
between all Hk0(T ) and Z as predictors in a logistic regression. Note that the α parameters used above and in the next sub-
sections represent the imputation model coefficients, and are themselves functions of other (substantive and missing data
model) parameters. Therefore, these will vary depending on the covariate types of X and Z, and the parametrisation of the
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substantive model (i.e. whether each cause-specific model has the same predictors, and their functional forms).

4.1.2 Nominal categorical X
If X is a categorical covariate with J ≥ 2 levels and j = {0, . . . , J−1}, we can specify different imputation models
depending on whether X is ordered or not. In the unordered (nominal) case, we can specify a multinomial logistic regres-
sion for p(X ∣ Z), yielding

log
P(X = j ∣ T , D, Z)
P(X = 0 ∣ T , D, Z)

≈ α j,0 +
∑K
k=1

α j,k I(D = k)+
∑K
k=1

α j,K+kHk0(T )+
∑K
k=1

α j,2K+kHk0(T )Z

+ α j,3K+1Z.

(6)

This comes as a result of generalising logit P(X = 1|Z) = ζ0 + ζ1Z to log P(X=j|Z)
P(X=0|Z) = ζ0 + ζjZ, and holds for continuous Z

as in (5). For categorical or no Z, where for the former I (Z = j) should be used as in equation (4), the expression for the
fully conditional distribution is exact as in the binary case. The predictors to be included in the imputation model are
exactly the same as for binary X .

4.1.3 Ordered categorical X
For ordered categorical X , a proportional odds model could be assumed as logit P(X ≤ j ∣ Z) = ζ j + ζZZ. This however
implies that the fully conditional distribution requires specifying p(T , D ∣ X ≤ j, Z), which does not have a standard
proportional hazards density. Instead, it has a weighted sum of proportional hazards densities. Thus, the expression for
P(X ≤ j ∣ T , D, Z) does not extend from the binary case in any simple form. Nevertheless, a proportional odds model
including D, Z and all Hk0(T ) could still be used to impute the missing X values, though the properties of such a
model are not currently well known. We refer the reader to the book written by McCullagh and Nelder for a detailed
description of both the multinomial logistic regression and proportional odds models.20

4.1.4 Continuous X
If X is a continuous covariate, we could assume it to be normal conditional on Z (possibly after transformation), as
X ∣ Z ∼ N (ζ0 + ζ1Z, σ2). The implied expression for p(X ∣ T , D, Z) is not normal due to the exp (βkX + γkZ) term,
and so a bivariate Taylor approximation is used around the sample means �X and �Z. To the first degree, the approximate
fully conditional density is expressed as

X ∣ T , D, Z ∼ N (α0 + α1Z +
∑K
k=1

αk+1I(D = k)+
∑K
k=1

αK+k+1Hk0(T ), σ2).

This suggests a model for imputing continuous X should be a linear regression withD, Z and allHk0(T ) again as predictors.
With a quadratic approximation for exp (βkX + γkZ), the accuracy of the above model can be improved by additionally
including the interactions between all Hk0(T ) and Z. The approximations are valid under the assumption of small
Var(βkX + γkZ).

We note that the above models, like in the simple time-to-event settings, cannot be implemented without a working
estimate of Hk0(T ) – whose true values we will assume are unknown. For the competing risks setting, we can use the mar-
ginal Nelson–Aalen estimate of the cumulative cause-specific hazard (which requires treating all events other than k as
censored) as an approximation for Hk0(T ). As explained by White and Royston, this approximation becomes poorer
with larger true covariate effects.7 We may then expect the estimated covariate effects after the imputation procedure to
be biased.

4.2 Substantive model compatible approach
We refer the reader to the work of Bartlett et al.8 for a detailed introduction of the SMC-FCS method, and to the work of
Bartlett and Taylor10 for its specific extension to cause-specific Cox proportional hazards models. Briefly, the SMC-FCS
method (in the current setting) is based on the application of Bayes’ theorem,

p(X ∣ T , D, Z) ∝ p(T , D ∣ X , Z)p(X ∣ Z), (7)

which was already introduced on the logarithmic scale in Equation (3). The parameters associated with both p(T , D ∣ X , Z)
and p(X ∣ Z) are omitted for readability. In essence, the procedure involves choosing p(X ∣ Z) as a proposal density and
using rejection sampling to draw possible values for missing X from a density proportional to p(T , D ∣ X , Z)p(X ∣ Z).
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This is under the assumption that p(X ∣ Z) is simple to sample from, as is the case if we specify a model for it, e.g. a linear
regression of X conditional on Z. The imputation model is then compatible with the substantive model in the sense that a
joint distribution exists which contains both the substantive model and the imputation model as its conditional distribu-
tions. If multiple covariates have missing data, it is still possible to specify mutually incompatible models for p(X ∣ Z),
but each fully conditional distribution will be compatible with the substantive model.

In contrast to MICE, the SMC-FCS approach does not require any approximations – neither for the non-linear terms nor
for the cumulative baseline hazard. Of course, the cumulative baseline hazard still needs to be evaluated in order to draw
from (7). In order to do so, the Breslow estimate is used and is updated at each iteration of the imputation procedure con-
ditional on the most recent draws from the posterior distribution of the regression coefficients.

4.3 Regression coefficients
Both the MICE and SMC-FCS procedures result in m = 1, . . . , M imputed data sets. In each of these data sets, the cause-
specific Cox model for one or more of the K causes of failure is fitted. Let θ denote a cause-specific regression coefficient of
interest, and let θ̂m and V̂ar(θ̂m), respectively denote the estimate and associated variance of this coefficient in the mth
imputed data set. We can combine these M estimates using Rubin’s rules, with estimator

θ̂ = 1

M

∑M
m=1

θ̂m.

The associated variance estimator is

V̂ar(θ̂) = 1

M

∑M
m=1

V̂ar(θ̂m)+
(
1+ 1

M

) 1

M − 1

∑M
m=1

(θ̂m − θ̂)2,

which combines estimates of within and between imputation variance.4 The estimate of the standard error is then readily

obtained as ŜE(θ̂) =
��������
V̂ar(θ̂)

√
.

4.4 Predicted probabilities
To obtain the predicted cumulative incidence functions for an individual with fully observed covariates after an MI procedure,
there are at least two possible options. The first is to pool the regression coefficients and baseline hazards separately, and use
those to produce a single predicted curve. The second approach is to use the substantive models fitted in each imputed data
set to create imputation-specific predictions, and then pool those (possibly after transformation) using Rubin’s rules. The articles
by Wood et al.21 and Mertens et al.22,23 recommend the second approach, which is the one we employ in the present paper.

5 Simulation study
We designed a simulation study with the aim of comparing the performance of CCA, MICE and SMC-FCS in the presence
of missing baseline covariate values for cause-specific Cox proportional hazards models with two competing events. We
assessed performance with respect to estimated regression coefficients and predicted cumulative incidence functions.

5.1 Data-generating mechanisms
We generated data sets containing n = 2000 individuals, with one record each containing both predictor and outcome
information.

5.1.1 Covariates
Two covariates X and Z were generated in each data set. We varied the covariate type of X as either continuous or binary,
and Z was fixed as continuous. When both covariates were continuous, they were generated from a bivariate standard
normal distribution X , Z ∼ N (μ, Σ), with means μ = {0, 0}, variances diag(Σ) = {1, 1} and correlation ρ = 0.5.

When X was binary, we assumed X ∼ Bern(0.5) and Z ∼ N (0, 1), with a point-biserial correlation between the two
variables of ρ = 0.5. We can generate observations in this way by first generating X ′ and Z from a bivariate standard
normal distribution with correlation ρ′ ≈ 0.63, and then dichotomising X ′ at 0 (the value of the standard normal quantile
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function for a probability of 0.5) to produce X . We refer the reader to the work of Demirtas and Hedeker for a description of
this well-established procedure.24

5.1.2 Competing event times
We based our simulation of event times on the motivating alloHCT example described in the Section 2 section, focusing on the two
competing events relapse (REL) and non-relapse mortality (NRM) over a 10-year follow-up period. To generate the failure times
for the competing events, we made use of latent failure times, denoted T̃ 1 and T̃ 2 for REL and NRM, respectively.25

Typically in alloHCT studies, patients are at very high risk of both relapse and NRM in the initial period after alloHCT,
with this risk gradually decreasing thereafter as they survive longer. For this reason, generating failure times from a dis-
tribution with a decreasing hazard function is appropriate. The Weibull distribution, with probability density function
f (t) = κλtκ−1 exp (− λtκ), with shape κ > 0 and rate λ > 0, accommodates decreasing hazards for κ < 1. This is the param-
etrisation used in the text by Klein and Moeschberger.26

We thus generated both latent failure times from independent Weibull distributions, assuming cause-specific propor-
tional hazards conditional on X and Z. We furthermore generated independent censoring times from an Exponential dis-
tribution. In summary:

T̃1 ∼ Weibull(κ1, λ1 = λ10e
β1X+γ1Z),

T̃2 ∼ Weibull(κ2, λ2 = λ20e
β2X+γ2Z),

C ∼ Exp(λC),

where λC is the censoring rate, and λ10 and λ20 are the baseline hazard rates for REL and NRM, respectively. We then
defined T̃ = min(T̃1, T̃ 2), with an associated factor variable D̃, where D̃ = 1 if REL occured first, and D̃ = 2 otherwise.
The generated observed (event or censoring) time was then defined as T = min(C, T̃ ), with corresponding indicator
D = I(T̃ ≤ C)D̃.

We used estimates from cause-specific marginal accelerated failure time (AFT) models on the motivating data set to fix
the parameters values of the baseline shape and hazard rates for the latent failure times. Weibull AFT models for both
causes of failure led to fixing κ1 = 0.58, λ10 = 0.19, κ2 = 0.53, and λ20 = 0.21. An exponential AFT model for the cen-
soring distribution motivated setting λC = 0.14. Since the baseline hazards for both competing events were estimated to be
very similar, we decide to also vary {κ1, λ10} = {1.5, 0.04}, such that REL had a steadily increasing hazard. Both these
‘similar’ and ‘different’ baseline hazard configurations lead to comparable marginal 10-year cumulative incidences of both
events, in the 35–45% range. Regarding cause-specific regression coefficients, we varied β1 = {0, 0.5, 1}, and fixed
γ1 = 1, β2 = 0.5 and γ2 = 0.5.

5.1.3 Missing data mechanisms
Z was conserved as a complete covariate, and missingness was induced in X . Let RX indicate whether elements of X were
missing (RX = 0) or observed (RX = 1). We varied the proportion of missing values as either ‘low’ with 10% missing, or
‘high’ with 50%. We defined four separate missingness mechanisms:

1. Missing completely at random (MCAR), defined as P(RX = 0) = 0.5 or P(RX = 0) = 0.1.
2. Missing at random (MAR) conditional on Z, which was defined as logit P(RX = 0 ∣ Z) = η0 + η1Z.
3. Outcome-dependent MAR (MAR-T), which was defined as logit P(RX = 0 ∣ Tstand) = η0 + η1Tstand. Tstand is logT ,

standardised to have zero mean and unit variance. Note that T was the observed (event or censoring) time; if missing-
ness depended on the true event time, this would lead to a missing not at random mechanism.

4. Missing not at random (MNAR) conditional on X , which was defined as logit P(RX = 0 ∣ X) = η0 + η1X.

For mechanisms (2)–(4), η1 represented the strength and direction of the missingness mechanism. For example, if η1 < 0 in
the MAR mechanism, observations with smaller values of the Z had a larger probability (increasing with more extreme η1)
of the corresponding X being missing. In the present study, we varied η1 = {−1, −2}, representing ‘weak’ and ‘strong’
mechanisms, respectively. In this context, the MAR-T mechanism could reflect a measurement that is only collected if a
subject survives long enough into a study and is in follow-up, as may be the case with a genetic test. Although this kind of
measurement is collected or only available at a later point in time, it can still be considered as baseline information and does
not constitute conditioning on the future.

The value of η0 was chosen (in each simulated data set) such that the average missingness probability was equal to either
0.5 or 0.1. This was done via standard root-solving for a fixed value of η1.
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5.1.4 Design
The simulation study is chosen to follow a partially factorial design, where the parameters outlined above are varied sys-
tematically. A full factorial design would result in 4 (missingness mechanisms) × 2 (mechanism strengths) × 2 (proportions
missing data) × 2 (covariate types for X ) × 2 (baseline hazard parametrisations) × 2 (effects magnitudes of X on cause-
specific hazard of REL) = 128 scenarios. However, the strength of the missingness mechanism cannot be varied for
MCAR settings by definition, leaving 112 scenarios in total.

5.2 Estimands
The analysis models of interest are the cause-specific Cox proportional hazards models for REL and NRM, hk(t ∣ X , Z) =
hk0(t) exp (βkX + γkZ) for k = {1, 2}. We then have two main sets of estimands of interest:

• θregr = {β1, γ1, β2, γ2}, which are the data-generating regression coefficients from both cause-specific Cox models.
• θ pred, which is a vector containing the REL and NRM probabilities (cumulative incidences) for a set of reference patients

at 6 months, 5 years and 10 years after baseline.

These reference patients were defined by all combinations of Zref = {−1, 0, 1} with Xref = {−1, 0, 1} for continuous X ,
and Xref = {0, 1} for binary X . Since the data-generating coefficients for both competing events had a positive effect on the
cause-specific hazards, one could for example refer to {Xref , Zref } = {1, 1} as a ‘high risk’ individual, and ‘low risk’ for
{−1, −1}.

5.3 Methods
Five missing data methods were compared in each simulation scenario:

1. CCA – an analysis run on a data set after listwise deletion.
2. CH1 –MI with imputation model predictors including Z, the event indicator solely for event one i.e. I(D = 1), and the

cumulative hazard for REL Ĥ1(T ) (at the end of follow-up for each individual), based on the Nelson–Aalen estimator, as
an approximation of the cumulative baseline hazard H10(T ).

3. CH12 – MI with imputation model predictors including Z, the event indicator D as a three level factor variable, and the
cumulative hazards for both events Ĥ1(T ) and Ĥ2(T ); outlined in the ‘Fully conditional approach (MICE)’ section.

4. CH12,Int – identical to the CH12, with the addition of the interactions Ĥ1(T ) × Z and Ĥ2(T ) × Z; outlined in the Section
4.1.

5. SMC-FCS – the approach outlined in the Section 4.2, using Z as sole predictor in the X ∣ Z model (default setting).

The CH1 method corresponds to the ‘FCS survival’method explored in the simulation study by Bartlett and Taylor, where
failures other than cause one are treated as censored and the cumulative hazard of cause two is omitted from the imputation
model. It corresponds to a direct application of the White and Royston results7 to the cause-specific Cox model for cause
one, which may present itself as intuitive when interest lies in a single failure cause.

Additionally, the model was also fitted on the complete data set prior to any missingness being induced in X . For the imput-
ation methods, the number of imputed data sets was varied as m = {5, 10, 25, 50}. We set max (m) = 50 since no substantial
reduction in empirical standard errors was observed over trial runs withm = 100. We also note that form ≠ 50, the imputations
were not re-run independently. Results were instead pooled across the first 5, 10 or 25 imputed data sets from the original 50.

When X was continuous, the imputation model was linear regression. For binary X , the imputation model was logistic
regression. We note that since there was only one partially observed covariate, chained equations were not needed.
Nevertheless, we still refer to methods CH1, CH12 and CH12,Int under the general umbrella term ‘MICE’ methods when
reporting the results.

5.4 Performance measures
For θregr, we recorded the point estimates, empirical and estimated standard errors, absolute bias and coverage probabilities.
As our primary measure of interest was bias, we based the number of simulation replications per scenario nsim on a desired
Monte–Carlo standard error (MCSE) of bias. As per Morris et al.,27 this is defined as MCSE(Bias) = ����������

θregr/nsim
√

. We
assumed that SD(θ̂regr) ≤ 0.125 (largest empirical standard error to be expected with binary X , based on small trial
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run), and we deemed a MCSE(Bias) ≤ 0.01 to be appropriate. We thus required nsim = 0.1252/0.012 ≈ 156 replications
per scenario, which we rounded up to nsim = 160. We thus generated 160 independent data sets per simulation scenario.

For θ̂ pred, we recorded the point estimates, empirical standard errors, absolute bias, coverage probabilities and root mean
square error (RMSE). We focus primarily on reporting bias and RMSE. Based on trial runs, we assumed SD(θ̂ pred) ≤ 0.05,
which for 160 replications would result in a MCSE(Bias) ≤ 0.05/

����
160

√
≈ 0.004. We thus proceeded with the same

number of simulated data sets.

5.4.1 Software
All analyses were performed using R version 3.6.228. The substantive model compatible imputation was performed using the
SMC-FCS package version 1.4.1,29 and MICE was performed using the mice package version 3.8.0.30 The cause-specific Cox
models were run and subsequent predicted cumulative incidences were obtained using the mstate package version 0.2.12.31

5.5 Results
We focus primarily on β1 (the regression coefficient for X in the cause-specific REL model) and the 5-year probabilities of
REL and NRM. For the imputation methods, we present results only with m = 50. Full results are reported in the
Supplemental materials, linked at the end of the present text.

5.5.1 Regression coefficients
Figure 1 summarises the results with regard to bias in the estimation of β1 with a MAR mechanism induced on continuous
X . The plot is a variant of a nested-loop plot, where each colour-cluster of points represents a scenario defined by the step
functions at the bottom of the plot.32 For example, the left-most bin in the plot corresponds to a scenario with data-
generating β1 = 0.5, 10% missing data, similar hazard shapes and a weak missingness mechanism. For readability, the
CH1 method and the analysis ran on the full data set prior to inducing missing data are omitted from the Figure.

First, we note that in the 16 scenarios depicted, both CCA and SMC-FCS showed little to no bias in the estimation of β1.
For CCA, no bias was expected given that this was a case of covariate-dependent MAR, and results for SMC-FCS were in

Figure 1. Bias in β1 for MAR mechanism with continuous X. Each cluster of points corresponds to a scenario defined by the step

functions at the bottom of the plot. Each step represents a level of a factor being varied and is read from left to right (e.g. for Hazard

shapes, the first step is ‘similar’ while the second is ‘different’). Monte-Carlo standard errors of bias for all scenarios were below 0.008.

Mech.: missingness mechanism; MIR: missing at random.
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line with the simulations of Bartlett and Taylor.10 Second, the MICE methods showed varying amounts of bias depending
on the scenario. With increasing true covariate effects and a higher proportion of missing values, the bias was larger. This
was to be expected in light of the approximations employed in the Section 4.1, which are valid for small covariate effects.
Moreover, the magnitude of the bias was also larger when the baseline hazard shapes were different. Last, adding the inter-
action terms in the imputation model did not significantly reduce bias, except when the missingness mechanism was weak,
and the baseline hazard shapes were different.

In contrast, we also present the results for β1 with a MAR-T mechanism in Figure 2, again with continuous X . In this
case, CCA was consistently biased, as is expected when missingness is dependent on the outcome. Particularly for a high
proportion of missing values, the bias in both MICE methods was even more severe than that of CCA, reaching close to
20% (relatively). Conversely, SMC-FCS was consistently unbiased across the depicted scenarios.

We also briefly summarise some of the more general findings across the simulations reported in the Supplemental mater-
ial. First, efficiency gains (in the form of smaller estimated standard errors) were mainly observed for γ1 and γ2. Second, the
CH1 method yielded the largest biases and lowest coverage probabilities of all methods. This was unsurprising, as CH1

corresponded to imputing X as if competing outcomes were considered as censoring. Third, the findings with MCAR miss-
ingness were largely analogous to those of the MAR reported above; and in presence of MNAR, all imputation methods
(including SMC-FCS) showed appreciable bias. Last, in scenarios with binary X , the overall bias in the MICE methods was
lower with respect to scenarios with continuous X . This could be attributed to the different terms that are being approxi-
mated in the imputation models. In addition to the cumulative baseline hazards, only exp (γkZ) is being approximated in the
case of binary X , whereas in the continuous case a fuller exp (βkX + γkZ) is being approximated.

In terms of RMSE, which summarises both bias and variance, the differences in performance between the methods in
M(C)AR scenarios wwere smaller, aside from when missingness was high and the baseline hazard shapes were different
(see for example Figure 2.1.2 of the Supplemental material on regression coefficients).

5.5.2 Predicted probabilities
Concerning predicted probabilities, we focus on the estimation of 5-year REL and NRM probabilities for a ‘low-risk’ indi-
vidual, i.e. {X , Z} = {−1, −1} with continuous X . Figure 3 summarises the RMSE of these probabilities under a MAR
mechanism where 50% of values are missing.

Figure 2. Bias in β1 for MAR-T mechanism with continuous X. Monte-Carlo standard errors of bias for all scenarios were below

0.008. Refer to Figure 1 for a description on how to read this type of plot. Mech.: missingness mechanism; MAR-T: outcome-dependent

missing at random.

Bonneville et al. 1869



We point the reader to the y-axis of the plot, where results are now on the probability scale. The largest RMSE reported
in the plot was just under 2.5%, with most RMSE values for the imputation methods being under 1.5%, with little to no
difference between them. In these scenarios, the imputation methods outperform CCA, but with the finest of margins. This
is part of a general finding across the simulations: the predicted probabilities when using the imputation methods overall
had very little bias, and little reduction in variability was observed beyond m = 25 imputations. We note that since all
methods were similarly biased under M(C)AR (as seen for example in Figure 1.2.1 of the Supplemental material on pre-
dictions), the RMSE for CCA is expected to be a factor of

��
2

√
larger than for the imputation methods when missingness

was ‘high’, given that CCA used half as much data.
We propose various explanations for this behaviour. First, we note that the prediction results for {X , Z} = {0, 0} (with

X continuous or binary) can be taken as a proxy for how precisely the cause-specific baseline hazards are estimated. For all
non-MNAR scenarios, little to no bias was found in the predicted probabilities for these reference patients. This may be
additionally linked to the fact that X and Z are centred and normal, which could imply that Hk0(T ) is adequately approxi-
mated by the Nelson–Aalen estimator. Second, regarding regression coefficients, bias was primarily observed in β1 and β2,
with the former showing more extreme bias when data-generating β1 = 1. Estimates of γ1 and γ2 however generally only
exhibited biases of up to 5% in the MAR scenarios, and slightly higher for CCA in MAR-T scenarios. Well-estimated
cause-specific baseline hazards in tandem with close to unbiased estimates of γk could then explain the small bias in
the predictions, since bias in the linear predictor as a whole (βkX + γkZ) only reached 10% in the most extreme cases,
and was mostly below the 5% mark otherwise.

5.5.3 Additional simulations
In Supplemental material I (available online), we performed two additional simulation studies. The first investigated the use
of the Breslow estimates of the cumulative baseline hazards in the imputation model, updated at each iteration of the imput-
ation procedure. Consistent with earlier results in the standard survival setting, MICE using intra-iteration updates of the
Breslow estimates performed no better than using the marginal cumulative hazards in the imputation model.7 The second
study assessed the performance of the MI methods in the presence of K = 3 competing events. In this setting, SMC-FCS
remained unbiased, while the MICE methods including additional interaction terms performed slightly better than those
without.

Figure 3. RMSE of 5-year REL and NRM probabilities with {X, Z} = {− 1, − 1} for MAR with 50% missing values. Monte-Carlo

standard errors of RMSE for all scenarios were below 0.002. Refer to Figure 1 for a description on how to read this type of plot. Mech.:

missingness mechanism; RMSE: root mean square error; REL: relapse; MAR: missing at random; NRM: non-relapse mortality.
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6 Illustrative analysis
We used the motivating alloHCT data set introduced in the Section 2 illustrate the methods described in the simulation
study. Cause-specific Cox proportional hazards models were fitted for both REL and NRM, conditional on a set of baseline
predictors chosen on the basis of substantive clinical knowledge. An overview of these predictors, including their names,
descriptions and proportion of missing values, can be found in Appendix B. The same predictors were used in the models
for REL and NRM.

We used the CCA, CH12 and SMC-FCS methods to handle the missing baseline covariate data, which we assumed to be
MAR. Given that CH12,Int did not show much improvement over CH12 in the simulation study, we decided to use the more
parsimonious latter. Therefore, the imputation model for a partially observed covariate using CH12 contained as predictors
the remaining fully and partially observed covariates from the substantive model, and the marginal cumulative hazards for
both events. For SMC-FCS, the imputation model similarly contained the remaining fully and partially observed covariates
from the substantive model, which is the default setting. Continuous covariates were imputed using linear regression, binary
covariates using logistic regression, ordered categorical using proportional odds regression and nominal categorical using multi-
nomial logistic regression. Since missingness spanned multiple covariates, chained equations were required.

To motivate the choice of m for CH12 and SMC-FCS, we used von Hippel’s quadratic rule based on the fraction of
missing information (FMI) rather than the proportion of complete cases.33,34 We first ran a set of m = 20 imputations,
with niter = 20 iterations. After pooling, the coefficient with largest FMI was that of donor age in the model for NRM,
with a value of approximately 0.49. Based on an 95% upper-bound for this FMI, and for a desired coefficient of variation
of 0.05, we would require approximately m = 84 imputed data sets. We rounded this upwards, and performed our final
analysis with m = 100. We conserved niter = 20 as convergence was generally observed from 10 iterations onwards.

Figure 4 summarises the exponentiated point estimates (hazard ratios, HR) and associated 95% confidence intervals (CI)
from the cause-specific model for REL. The CIs for CH12 and SMC-FCS are based on the pooled standard errors and the
t-distribution. First, we observed a clear gain in efficiency across all coefficients for both imputation methods relative to
CCA. Second, there was general agreement between the estimates obtained from both CH12 and SMC-FCS; a finding
which was also reported in the illustrative analysis in the work by Bartlett and Taylor.10 Third, we did note some differ-
ences between CCA and the imputation methods for certain variables, such as remission status or Karnofsky score. The
most surprising case of this was with the MDS class of the patient, which was completely observed. In the model for
REL, the HR for the sAML category estimated with CCA is just above three, whereas the imputation methods estimate
it much closer to two. This also raises the point that for categorical variables, differences in methods can be seen on
the category level rather than on the variable level as a whole – as also evidenced by the estimated HRs for the cytogenetics
variable. Results for the cause-specific NRM model are summarised in Figure 5.

Furthermore, we computed the predicted 5-year cumulative incidences of REL and NRM for a set of three reference patients.
These corresponded to the three MDS classes, all with the median patient and donor ages at transplant, and with reference levels
for the remaining categorical covariates. Table 1 summarises the point estimates, and corresponding 95%CIs. For the imputation
methods, the variances of the predicted probabilities were obtained with the Aalen estimator.35 Subsequently, the 95% CIs were
constructed after transformation on the complementary log-log scale, as described in the work of Morisot and colleagues.36 For
comparability, the CIs for CCA were also constructed on the complementary log–log scale. In line with the results from the
estimated regression coefficients, both imputation methods yielded quasi identical results. By contrast, CCA yielded cumulative
incidences that were generally lower by approximately 3–7 percentage points, with CIs that were up to twice as wide.

Such differences between the MI methods and CCA do question the validity of the M(C)AR assumption made. In the
EBMT registry, many missing values can be considered MCAR, for reasons relating to data management. Variables such
as comorbidity score, cytogenetic classification and donor age became more frequently collected over time as their clinical
relevance grew clearer. Missingness may also be related to the transplant centre, i.e. particular measurements not being
recorded in certain clinics. In the current analysis, both calendar date and transplant centre (categorical, large number
of levels) were not included in the imputation model for simplicity. An option would have been to include them as auxiliary
variables (added as predictor to X ∣ Z, but not to substantive model), however, the use of auxiliary variables was not a focus
of this manuscript, and both MICE and SMC-FCS make different assumptions with respect to the inclusion of these vari-
ables in the imputation model. Specifically, SMC-FCS would assume independence of centre and outcome given the cov-
ariates in the substantive model – an assumption which likely does not hold in the registry.37

7 Discussion
In this paper, we assessed the performance of currently implemented MI methods, MICE and SMC-FCS, that deal with
missing baseline covariate data when the analysis model of interest is a cause-specific Cox proportional hazards model.
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For the MICE approach, we provided motivation for the imputation models to be used for continuous, binary, multi-level
nominal and ordered categorical covariates with missing values. This is an extension of the work of White and Royston on
Cox proportional hazards models for standard survival outcomes.7

We covered a wide range of scenarios in our simulation study, also investigating parameters commonly not addressed in
simulation studies for this or similar problems, such as the shape of the baseline hazard and strength of association in the
missingness model. Our results confirm the findings of the earlier work of Bartlett and Taylor.10 Namely, in terms of

Figure 4. Forest plot with point estimates and 95% confidence interval for the cause-specific Cox model for Relapse. On the x-axis
are the hazard ratios, which is plotted on the log scale where the confidence intervals are symmetric. Variables and their descriptions

can be found in the data dictionary. Per level of factor and for continuous variables, we show the observed counts (n) and the number of

relapse events (# Events) in the full data set.
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estimating regression coefficients, SMC-FCS categorically outperforms MICE across all investigated non-MNAR scen-
arios. Adding the Ĥk (T ) × Z interactions in the imputation model improves performance somewhat, but the substantial
bias remains. When using MICE, bias grows more extreme as both covariate effects and the proportion of missing
values increase and seems also affected by the shape of the baseline hazards and the strength of the missingness mechan-
ism. Interestingly, in scenarios where missingness was outcome-dependent, the MICE approach produced biases even
larger than those with CCA, which is expected to be biased in these scenarios. Although this is clearly concerning, we

Figure 5. Forest plot with point estimates and 95% confidence interval for the cause-specific Cox model for non-relapse mortality

(NRM). On the x-axis are the hazard ratios, which is plotted on the log scale where the confidence intervals are symmetric. Variables

and their descriptions can be found in the data dictionary. Per level of factor and for continuous variables, we show the observed counts

(n) and the number of NRM events (# Events) in the full dataset.

Bonneville et al. 1873



do acknowledge that given the longitudinal nature of survival data, a missingness mechanism that depends on the observed
event time may be rare.

To the best of our knowledge, our work is the first systematic assessment of the performance of MI for missing covari-
ates with regard to the prediction of cumulative incidences. In this respect, the imputation methods performed comparably,
which may be attributed to a solid estimation of both the baseline hazards and of the regression coefficients from the com-
plete covariates. The low biases found are consistent with those reported in the work by Mertens et al.22 on MI and pre-
diction in the context of logistic regression. Furthermore, empirical standard errors did not become smaller beyond around
m = 50 imputed data sets. If interest lies in reducing the variability of individual predictions between replications of an MI
procedure, or replications of a particular study, a choice of m in the order of hundreds will likely be required, as suggested
by the same work by Mertens and colleagues. We also emphasise that since we are predicting for reference patients (for
which we have true data-generating probabilities over time), the assessment of the estimated probabilities is not hindered
by any optimism that we would need to correct for, using for example a cross-validation procedure.

There are various limitations to the present work. First, we remark that the explored scenarios are naturally limited as a
result of the vast possible parameter space for simulation studies in the field of missing data. For example, missingness was
only induced in a single variable. Naturally, more realistic data will be subject to missingness across multiple variables,
among which could be interactions in the substantive model. Second, the imputation of covariates with more complex dis-
tributions (conditional on other variables) fell outside of the scope of this work. There is a clear need for research and guid-
ance on how to properly impute such variables, particularly for continuous measurements which are heavily skewed.38 This
may in turn prevent unnecessary categorisation of these variables, and thus further loss of power. Last, we note that in the
illustrative analysis, various multi-level nominal and ordinal categorical variables were multiply imputed. These covariate
types were not investigated in the simulation study, but are pertinent for further research. Avenues for further exploration
could include issues like category inbalance, and comparisons between imputing with proportional odds, multinomial
logistic and even a latent normal model.39,40

Furthermore, a noteworthy difference between the MICE and SMC-FCS approaches in the present context lies in the
treatment of cumulative cause-specific baseline hazards functionsHk0(T ). While the SMC-FCS approach updatesHk0(T ) at
each iteration of the imputation procedure using the Breslow estimate, the MICE approach approximatesHk0(T ) once using
the Nelson–Aalen estimate and keeps them fixed throughout the imputation procedure. Updating Hk0(T ) iteratively with
MICE was investigated in the single event setting by White and Royston, with simulations failing to justify its use over the
inclusion of the Nelson–Aalen estimates in the imputation model.7 The additional simulation study reported in
Supplemental material I of the present work appears to show that these earlier results do extend to the competing risk
setting. This in turn suggests that the differences in performance between MICE and SMC-FCS could almost entirely
be attributed to the functional form of the imputation model, rather than to any error in estimating Hk0(T ).

For practising statisticians, our work in combination with that of Bartlett and Taylor10 shows that SMC-FCS should be
the current standard when applying MI in the cause-specific competing risks setting. Although in many controlled situa-
tions differences between MICE and SMC-FCS may be small (as in our alloHCT example), the latter seems to be the safest
choice given the inherent lack of knowledge regarding the true underlying missingness mechanism. Naturally, SMC-FCS
can still be biased, and so the researcher is encouraged to think meticulously about the assumptions underlying their data.
We also recommend that a CCA still be a starting point before performing MI, as it will be unbiased when M(C)AR and
covariate-dependent MNAR hold. When biases occur, they may not be as extreme as expected, particularly when the

Table 1. Predicted cumulative incidence (%) of both REL and NRM at 5-years for three reference patients with different MDS classes,

reference levels for categorical covariates and sample median values for continuous covariates. The 95% confidence intervals were

constructed based on a complementary log-log transformation.

MDS class CC CH12 SMC-FCS

REL
MDS without excess blasts 10.7 [6.5; 17.2] 17.2 [14.1; 20.8] 17.1 [13.9; 20.9]

MDS with excess blasts 26.9 [19.4; 36.4] 29.7 [25.8; 34.2] 29.7 [25.6; 34.4]

sAML 29.7 [21.4; 40.2] 34.9 [30.7; 39.6] 34.9 [30.4; 39.8]

NRM
MDS without excess blasts 15.1 [9.7; 23] 18.1 [15.1; 21.7] 17.8 [14.7; 21.5]

MDS with excess blasts 13.1 [9; 18.8] 17.8 [15.2; 20.8] 17.7 [14.9; 20.9]

sAML 14.0 [9.5; 20.4] 17.4 [14.9; 20.2] 17.0 [14.4; 20]

REL: relapse; NRM: non-relapse mortality; MDS: myelodysplastic syndromes; sAML: secondary acute myeloid leukemia.
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proportion of incomplete cases is low. However, in applications where the proportion of incomplete cases is very high and
the M(C)AR assumption is deemed plausible, efficiency gains can be substantial when using MI. This was particularly the
case in our alloHCT example, where smaller standard errors were observed with the MI methods for both regression coef-
ficients and predicted cumulative incidence.

The present findings add to a broader literature concerning missing covariates in the context of Cox models.41–43 Studies
investigating methods for dealing with missing covariates for a substantive Fine-Gray model remain scarce. For the
Fine-Gray model, MI has predominantly been assessed in the context of missing or interval-censored outcomes.44,45

We conclude by remarking that likelihood-based and fully Bayesian approaches have also not yet been explored or imple-
mented in the context of competing risks, despite already showing promise in other applications.46
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Appendix A

Imputation model derivations
Without loss of generality, we assume that X and Z are scalars. The following derivations are valid under the MAR
assumption, but also apply if the missing data are MCAR. Letting RX indicate whether elements of X are missing
(RX = 0) or observed (RX = 1), MAR implies RX⊥⊥X ∣ {T , D, Z} while for MCAR RX⊥⊥X .

We can express the log conditional density of the (right-censored) competing risks outcomes given the covariate data as

log p(T , D ∣ X , Z) = log S(T ∣ X , Z)+
∑K
k=1

I (D = k) log hk (T ∣ X , Z).

Using log S(T ∣ X , Z) = −∑K
k=1 Hk (T ∣ X , Z), and assuming a cause-specific Cox proportional hazards model for each

failure cause k as hk(t ∣ X , Z) = hk0(t) exp (βkX + γkZ), we can write

log p(T , D ∣ X , Z) =
∑K
k=1

{I(D = k)[ log hk0(T )+ (βkX + γkZ)]− Hk0(T ) exp (βkX + γkZ)}.

We can then plug-in the above expression into Equation (3) describing the fully conditional density of X , yielding

log p(X ∣ T , D, Z) = log p(X ∣ Z)+
∑K
k=1

I(D = k)(βkX + γkZ)−
∑K
k=1

Hk0(T ) exp (βkX + γkZ)+ c,

where c may depend on T , D or Z, but not on X . We note that if Z is a categorical variable with more than two levels, γk
represents a vector of coefficients for the dummy codes of Z.

Binary X
Suppose X is a binary covariate, depending on Z through a logistic regression model logitP(X = 1 ∣ Z) = ζ0 + ζ1Z.
Given this missing data model, the objective now is to derive an expression for logitP(X = 1 ∣ T, D, Z). In general
we have that

logitP(X = 1 ∣ T, D, Z) = log p(T , D ∣ X = 1, Z)− log p(T , D ∣ X = 0, Z)+ logitP(X = 1 ∣ Z)

= ζ0 + ζ1Z +
∑K
k=1

I (D = k)βk −
∑K
k=1

Hk0(T ) exp (γkZ)(e
βk − 1).

(8)

If Z is categorical with J ≥ 2 levels (0, . . . , J − 1), the above expression extends to

logitP(X = 1 ∣ T, D, Z) = α0 +
∑K
k=1

αkI(D = k)+
∑K
k=1

αK+kHk0(T )

+
∑J−1

j=1

α2K+jI (Z = j)+
∑J−1

j=1

∑K
k=1

α(j+1)K+(J−1)+kI (Z = j)Hk0(T ),

which suggests that for categorical Z we can impute missing X values using a logistic regression with D (as a factor
variable), the cumulative baseline hazards, evaluated at T , for all causes of failure as covariates, Z (as a factor vari-
able), and the complete interactions between the cumulative baseline hazards at T and Z. The number of parameters,
including intercept, equals JK + J + K . For example, if there are K = 2 competing risks and Z has J = 3 categories,
there are 11 logistic regression parameters to be estimated (intercept included).

If Z is continuous, there are no exact results due to the exp (γkZ) terms. Analogously to White and Royston, we use a first
order Taylor series around �Z to approximate it as exp (γkZ) ≈ exp (γk�Z)[1+ γk(Z − �Z)], which is valid if Var(γkZ) is
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small.7 We can thus write

logitP(X = 1 ∣ T, D, Z) ≈ ζ0 + ζ1Z +
∑K
k=1

I (D = k)βk −
∑K
k=1

Hk0(T )(e
βk − 1) exp (γk �Z)(1− γk �Z)

−
∑K
k=1

Hk0(T )Zγk(e
βk − 1) exp (γk�Z)

= α0 +
∑K
k=1

αkI (D = k)+
∑K
k=1

αK+kHk0(T )+
∑K
k=1

α2K+kHk0(T )Z

+ α3K+1Z.

This suggests an approximate imputation model for binary X and continuous Z including the following predictors: Z,D (as
a factor) and all Hk0(T ). Adding an interaction between all Hk0(T ) and Z improves the accuracy of this approximation.

Nominal categorical X
Suppose X is categorical with J > 2 levels. If we assume the variable to be unordered, we can specify a polytomous logistic
regression (also known as multinomial regression) for p(X ∣ Z). The model can be expressed in log odds form as

log
P(X = j ∣ Z)
P(X = 0 ∣ Z)

= ζ j0 + ζ j1Z.

By coding the reference category as X = 0, analogously to (8) we obtain

log
P(X = j ∣ T , D, Z)
P(X = 0 ∣ T , D, Z)

= ζ j0 + ζ j1Z +
∑K
k=1

I (D = k)β jk −
∑K
k=1

Hk0(T ) exp (γkZ)(e
β jk − 1).

From this it becomes clear that all derivations and approximations of logitP(X = 1 ∣ T, D, Z) for binary X continue to hold

for log P(X=j∣T , D, Z)
P(X=0∣T , D, Z), replacing ζ0 and ζ1 by ζ j0 and ζ j1, and αk ’s by α jk’s. This implies that the imputation model for an

unordered categorical X should contain the same predictors as for a binary X . The above expression is again exact,
given no Z, and also for categorical Z, provided the full interactions between the levels of Z and the cumulative baseline
hazards are used; the expression for categorical Z with more than 2 levels extends in the same way.

Ordered categorical X
We consider X as categorical with J > 2 ordered levels. A proportional odds model can then be specified for p(X ∣ Z),
which can be expressed by

log
P(X ≤ j ∣ Z)

1− P(X ≤ j ∣ Z)
= ζ j + ζZZ,

or simply logitP(X ≤ j ∣ Z) = ζ j + ζZZ for j = {1, . . . , J − 1}.
To motivate the fully conditional imputation model for X , we need an expression for logitP(X ≤ j ∣ T, D, Z). This

involves specifying p(T , D ∣ X ≤ j, Z), which no longer has a proportional hazards density, but instead a weighted sum
of proportional hazards densities. The imputation model for an ordered categorical X thus does not have a simple extension
from the binary case. Nonetheless, including the cumulative cause-specific baseline hazards, D as a factor variable and the
remaining covariates in the imputation model is still reasonable as an ad hoc solution.

Continuous X
In the case of a continuous X , we specify an exposure model X ∣ Z ∼ N (ζ0 + ζ1Z, σ2). We can write

log p(X ∣ T , D, Z) =
∑K
k=1

I(D = k)βkX −
∑K
k=1

Hk0(T ) exp (βkX + γkZ)

− X 2 − 2X (ζ0 + ζ1Z)

2σ2
+ c,

(9)

where the terms that do not depend on X from the normal density are subsumed into c. Note that in what follows, the con-
stant c is used to present anything that is not a function of X , and as such may not be equal from line to line. With the same

1878 Statistical Methods in Medical Research 31(10)



reasoning as in the previous section, a bivariate Taylor approximation is used for the exp (βkX + γkZ) around the sample
means �X and �Z. By taking y = βk(X − �X )+ γk (Z − �Z), we can write the quadratic approximation as

exp (βkX + γkZ) ≈ exp (βk �X + γk�Z)

[
1+ y+ 1

2
y2
]
.

Using first the linear component of the above approximation in Equation (9) yields

log p(X ∣ T , D, Z) ≈
∑K
k=1

I(D = k)βkX −
∑K
k=1

Hk0(T )βkX exp (βk �X + γk �Z)

− X 2 − 2Xζ0 − 2X ζ1Z

2σ2
+ c,

= 2σ2
∑K

k=1 I (D = k)βkX − 2σ2
∑K

k=1 Hk0(T )βkX exp (βk �X + γk�Z)

2σ2

− X 2 − 2Xζ0 − 2X ζ1Z

2σ2
+ c,

(10)

and hence

log p(X ∣ T , D, Z) ≈

− X 2 − 2X
[

ζ0
︷︸︸︷α0

+ ζ1
︷︸︸︷α1

Z +∑K
k=1 I(D = k) βkσ

2
︷�︸︸�︷αk+1

+∑K
k=1 Hk0(T ) (− βk )σ

2 exp (βk �X + γk�Z)
︷���������������︸︸���������������︷αK+k+1 ]

2σ2

+ c.

Thus, approximately

X ∣ T , D, Z ∼ N (α0 + α1Z +
∑K
k=1

αk+1I(D = k)+
∑K
k=1

αK+k+1Hk0(T ), σ2).

Based on a linear approximation for exp (βkX + γkZ), the suggested imputation model for missing X is a linear regression
containing Z, D (as a factor variable) and all Hk0(T ) as covariates. This approximation is valid for small Var(βkX+ γkZ).

For a more precise imputation model, we can revisit (10) and add the remaining terms from the quadratic part of the
approximation (that do not depend on X ). After setting w = exp (βk �X + γk�Z), adding the quadratic terms yields

log p(X ∣ T , D, Z) ≈
∑K
k=1

I (D = k)βkX − X 2 − 2Xζ0 − 2Xζ1Z

2σ2

−
∑K
k=1

Hk0(T )w

[
βkX + 1

2
β2k (X − �X )2 + βkγkX (Z − �Z)

]
+ c.

After adjusting by 2σ2 and adding −∑K
k=1 Hk0(T )w( β

2
k
�X
2
/2) to c, we can write

log p(X ∣ T , D, Z) ≈ −X 2
[
1+ σ2

∑K
k=1 β

2
kHk0(T )

]
2σ2

+ 2X × {
ζ0 + ζ1Z + σ2

∑K
k=1 βk

[
I (D = k)− Hk0(T )w(1− βk �X )

]
2σ2

}

− 2X × {
σ2

∑K
k=1 Hk0(T )wβkγk(Z − �Z)

2σ2
}+ c.

Thus, the conditional distribution of X , given (T , D, Z) is approximately normal with mean

ζ0 + ζ1Z + σ2
∑K

k=1 βk
[
I(D = k)− Hk0(T )w(1− βk �X )

]− σ2
∑K

k=1 Hk0(T )wβkγk (Z − �Z)

1+ σ2
∑K

k=1 β
2
kHk0(T )

,
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and variance

σ2

1+ σ2
∑K

k=1 β
2
kHk0(T )

.

Based on a quadratic approximation for exp (βkX + γkZ), the suggested imputation model for missing X is a linear regres-
sion containing Z,D (as a factor variable), allHk0(T ) and allHk0(T )Z interactions as covariates. As explained byWhite and

Royston, this is only valid by ignoring terms in β2k and for small σ2
∑K

k=1 β
2
kHk0(T ).

7 We also note that the variance of
X ∣ T , D, Z is non-constant in time.

Appendix B
Data dictionary
See Table 2.

Non-relapse mortality – forest plot
See Figure 5.

Table 2. Data dictionary with predictor variables and their descriptions, levels and proportion missing data.

Variable Description Levels % Missing Summary

Age (Donor) Donor age at alloHCT (decades) 49.49 4.21 (3.12, 5.25)

Age (Patient) Patient age at alloHCT (decades) 0 5.6 (4.69, 6.19)

CMV Patient/Donor CMV status in patient and donor −/− 1439 (27%)

−/+ 544 (10%)

+/− 1281 (24%)

+/+ 17.8 2024 (38%)

Comorbidity score HCT-CI score Low risk (0) 1322 (51%)

Interm. risk (1-2) 657 (25%)

High risk (≥3) 59.93 599 (23%)

Cytogenetics Cytogenetics categories used for IPSS-R V. good/good/interm. 1784 (73%)

Poor 287 (12%)

V. poor 62.23 359 (15%)

HLA match patient/

donor

HLA match between patient and donor HLA-identical sibling 2666 (41%)

Other 0 3767 (59%)

Karnofsky Karnofsky performance status ≥90 3130 (72%)

80 898 (21%)

≤70 32.8 295 (7%)

MDS class MDS groups based on subclassification at alloHCT MDS w/o excess blasts 1355 (21%)

MDS w/ excess blasts 2716 (42%)

sAML 0 2362 (37%)

Patient/Donor sex match Sex match patient and donor M/M 2545 (40%)

M/F 1196 (19%)

F/M 1474 (23%)

F/F 1.68 1110 (18%)

Stage Stage at alloHCT CR 2119 (34%)

no CR 2156 (35%)

Untreated 3.17 1954 (31%)

The ‘Summary’ column reports median and interquartile range for continuous variables, as well as counts and proportion per level of categorical variables.

CMV: cytomegalovirus; CR: complete remission; IPSS-R: International Prognostic Scoring System; V.: very; interm.: intermediate; HLA: human leukocyte

antigen; HCT-CI: hematopoietic stemcell transplantation-comorbidity index; M: male; F: female; MDS: myelodysplastic syndromes; sAML: secondary acute

myeloid leukemia; w/: with; w/o: without.
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