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Long-range intrachromosomal interactions play an important role
in 3D chromosome structure and function, but our understand-
ing of how various factors contribute to the strength of these
interactions remains poor. In this study we used a recently devel-
oped analysis framework for Bayesian network (BN) modeling to
analyze publicly available datasets for intrachromosomal interac-
tions. We investigated how 106 variables affect the pairwise inter-
actions of over 10 million 5-kb DNA segments in the B-lymphocyte
cell line GB12878. Strictly data-driven BN modeling indicates that
the strength of intrachromosomal interactions (hic strength) is
directly influenced by only four types of factors: distance between
segments, Rad21 or SMC3 (cohesin components), transcription at
transcription start sites (TSS), and the number of CCCTC-binding
factor (CTCF)–cohesin complexes between the interacting DNA
segments. Subsequent studies confirmed that most high-intensity
interactions have a CTCF–cohesin complex in at least one of the
interacting segments. However, 46% have CTCF on only one
side, and 32% are without CTCF. As expected, high-intensity
interactions are strongly dependent on the orientation of the
ctcf motif, and, moreover, we find that the interaction between
enhancers and promoters is similarly dependent on ctcf motif ori-
entation. Dependency relationships between transcription factors
were also revealed, including known lineage-determining B-cell
transcription factors (e.g., Ebf1) as well as potential novel rela-
tionships. Thus, BN analysis of large intrachromosomal interac-
tion datasets is a useful tool for gaining insight into DNA–DNA,
protein–DNA, and protein–protein interactions.

DNA reeling | DNA looping | enhancers | chromatin

Mammalian chromosomes are very complex structures, con-
taining approximately 108 bp of DNA highly organized

in 3D space, compacted by coiling around nucleosomes and
then folded into various size loops. Due to coiling and folding,
many distant genomic segments, even 1 Mb or more apart, fre-
quently contact each other because they actually are in close
spatial proximity (1). As a prime example, promoters can inter-
act with distal enhancers sometimes 1 Mb or more upstream or
downstream, and this interaction is required for correct timing
and level of gene transcription (2–4). Genome-wide chromoso-
mal interactions are now being successfully investigated by chro-
mosome conformation capture (3C)-based techniques (5), such
as Hi-C and chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) (6, 7). ChIA-PET can ascertain high-
resolution interactions, but this method depends on enrichment
by chromatin immunoprecipitation (ChIP) followed by paired-
end sequencing and so can address only interactions mediated
by a prespecified protein. Hi-C, which depends on the liga-
tion of formaldehyde-fixed, sheared chromatin and then mas-
sive sequencing to detect ligation of distant DNA fragments,
can in theory obtain the interaction frequency between any two
genomic fragments. A high-resolution Hi-C dataset requires high
sequencing depth, so the limit of resolution of Hi-C is currently
about 5 kb. At this resolution a Hi-C dataset contains informa-
tion on pairwise interactions of about 1 million fragments (8).

Bayesian network (BN) modeling (9–12) is an established sys-
tems biology method aimed at optimizing, visualizing, and ana-
lyzing biological network models reconstructed from “big data”

such as generated by Hi-C studies. However, BN modeling has
not been applied to chromatin interaction data before, even
though advantages of the BN approach over other comparative
secondary data analysis methods are numerous, including flexi-
bility of model visualization and interpretation, ability to incor-
porate different variables and biological entities into a single
model, and straightforward statistical and/or biological follow-
up. A primary aim of this study was to see whether BN modeling
could be applied to the large datasets generated by combining
chromosomal conformation capture data (e.g., Hi-C) with Ency-
clopedia of DNA Elements (ENCODE) data on protein binding
and transcription.

Recent Hi-C and other studies (reviewed by ref. 13) have
revealed several chromosomal substructures in which interac-
tion frequencies between distant DNA fragments are higher than
would be expected if interactions were due to random diffu-
sion. As the resolution of Hi-C experiments has increased, sub-
structures of smaller size have emerged. The structure named
chromosomal compartment was identified at 1-Mb resolution
(6). These relatively large compartments, which show variability
between cell types, adopt two states, either transcriptionally inac-
tive, with closed chromatin, or active with open chromatin and
corresponding histone signatures. At a resolution level of tens
of kilobases, a structure named topological associated domain
(TAD) appears (14, 15). TADs, which are megabase sized, are
highly conserved across different cell types, although the disrup-
tion of TAD boundaries has been found to cause developmental
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anomalies and activate proto-oncogenes (16, 17). A recent Hi-C
study using in situ formaldehyde fixation has determined an
interaction matrix at 5-kb resolution in several cell lines, and
this study has revealed new smaller subdomain structures inter-
preted as loops (referred to as “Hi-C loops” in the following).
Hi-C loops average 185 kb and, importantly, and in contrast to
TADs, vary between cell lines (8). The functions of Hi-C loops
have not been fully addressed, but they are likely to be involved
in cell-type–specific gene regulation (13).

In this paper the term “anchor” is used to designate the
nonoverlapping genomic bins involved in Hi-C interactions. Let
H be a symmetric matrix with

Hij = h(bi , bj ), h : C × C → R, [1]

where h(bi , bj ) is the value from the Hi-C dataset for each pair-
wise bin interaction. In the context of this paper we consider only
the upper triangular matrix U defined by Hij such that i < j . We
also refer to bi as the left and bj as the right anchor, respectively.

How is 1D information in DNA converted into a 3D inter-
phase chromosome? How are loops with resultant loop anchors
formed? To explain cis action in X chromosome inactivation,
DNA reeling was proposed in 1990 as a mechanism for forming
loops, with the DNA strand being pulled toward a protein com-
plex fixed in position by sequence-specific DNA binding (18).
According to this model, as DNA is extruded from this site, a
loop is formed. This DNA reeling/loop extrusion process also
would bring distant elements, such as enhancers and promot-
ers into close proximity. More recently it has been proposed that
the cohesin complex, containing RAD21, SMC1, and SMC3, is
involved in chromosome loop formation and chromosome con-
densation (19, 20). A variation of these reeling/extrusion models
(Fig. 1A), with the termination of reeling often being fixed by
CCCTC-binding factor (CTCF) sites, can in large part explain
the pattern of interactions seen by Hi-C experiments as well
as changes in chromosomal interactions and gene function as a
result of deletion or inversion of CTCF sites (21–23).

ChIP-seq experiments have established that TAD and Hi-C
loop anchors are enriched for CTCF and for a complex of CTCF
and cohesin (8, 15). Since the concensus ctcf sequence motif to
which CTCF binds (5′-CCACNAGGTGGCAG-3′) is not palin-
dromic, one can distinguish “forward” (F) and “reverse” (R)
motif directions (8). Thus, each pair of ctcf motifs (and CTCF–
cohesin complexes) falls into one of four categories: (i) con-
vergent, F–R; (ii) divergent, R–F; (iii) tandem plus, F–F; and
(iv) tandem minus, R–R. A striking finding about CTCF–cohesin
complexes locating in the anchors of various chromosome struc-
tures, including contact domains, Hi-C loops, and TADs, is that
they are highly enriched in the convergent (F–R) pattern (8, 24,
25), with RAD21 located on the 3′ side of the ctcf sequence (24,
26). Genome-wide, segments containing the convergent CTCF–
cohesin complex are known to interact at higher strength com-
pared with other combinations, but their role in the forma-
tion and regulation of chromosomal interactions is not yet well
understood.

Important remaining questions are, How are high-intensity
Hi-C interactions formed? And what proteins are involved? In
this study, we address these questions by exploring how various
transcription factors and other chromatin proteins affect the for-
mation or function of these interactions (27). If one extends the
analyses to account for higher-order interactions (two or more
factors acting together in a nonadditive fashion), addressing the
above questions directly by experimental or standard bioinfor-
matics methods becomes intractable due to the sheer combina-
torial complexity. And yet, such higher-order interactions are
biologically very likely. To complicate matters, the analyses are
limited by the resolution of the interaction maps.

For BN modeling (9–12), our strategy encompassed simul-
taneous “(relevant) variable selection” (28), construction, and

A

B

Fig. 1. (A) Loop formation due to DNA reeling. A DNA reeling machine
binds between two CTCF–cohesin complexes and initiates DNA reeling. Reel-
ing is stopped when an appropriately oriented CTCF–cohesin complex is
reached. As a result of this process, two convergent CTCF–cohesin com-
plexes are often pulled close to each other. Paired bent arrows represent
a bidirectional reeling machine pulling in DNA from both sides. Red cir-
cle is left anchor (L-A) segment with an F ctcf motif. Blue square is a right
anchor (R-A) segment containing an R-oriented ctcf motif. (B) BN analysis
for chromosome 1. See Results for an introduction to BN analysis. Shown
is the MN for the variable “hic strength.” This is a part of the complete
BN shown in SI Appendix, Fig. S1. This BN is derived from the chromosome
1 dataset containing interactions wherein both anchors are located within
Hi-C loops. Nodes in the network correspond to the variables, and edges to
the dependencies between the variables. Directionality of the edge (arrow)
is for mathematical convenience only and does not imply causation. “Bold-
ness” of the edge is proportional to the dependency strength, also indicated
by the number shown next to the edge. See SI Appendix, section 5, Tables
S1 and S2.

visualization of biological network models of the above rela-
tionships and interactions (a “systems biology” approach) (29).
Consequently, we built BNs to elucidate and visualize the effect
of various protein factors and other known variables on chro-
mosomal interactions. The primary data we used include bind-
ing information for 64 transcription factors as well as several
other variables collected from the ENCODE Data Coordina-
tion Center (30, 31). Our BN analysis encompasses the high-
resolution (5-kb) dataset for over 10 million intrachromosomal
interactions (8).

We report here that our purely data-driven (without human
expert input) BN analyses suggest that strength of intrachromo-
somal interactions (hic strength) is directly dependent on only 4
of the 106 variables included in our datasets. As expected, dis-
tance and cohesin (RAD21/SMC3) stand out. However, in addi-
tion, two other variables emerged: active transcription starting
sites and the number of CTCF–cohesin peaks between anchors.
Subsequent studies, stimulated by, but not dependent on, the
Bayesian analyses, confirmed the importance of transcription
for Hi-C interaction strength. By a type of analysis that to our
knowledge has not been previously used, we not only confirm
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the expected effect of ctcf sequence motif directionality on Hi-
C loop interactions, but also clearly show a similar directional-
ity effect on enhancer–promoter (EP) interactions. Of potential
importance, we note that most Hi-C loops do not have CTCF at
both anchors.

BNs can also be used to gain information on relationships
between proteins in the ENCODE database. For example, the
known interactions between CTCF and RAD21(part of the
cohesin complex) and between ZNF143 and RAD21 were clearly
revealed. Active TSS activity was found to be dependent on
several transcription factors, such as Ebf1 and Ikzf1, both of
which are known to be important for B-cell development. Sub-
sequent analysis of ENCODE ChIP-seq data indicated that
EBF1 is bound at most active promoter–enhancer pairs in the
B-cell lymphoma cell line GM12878. In addition, other tran-
scription factors (TFs) and chromatin proteins were suggested
as potential key players for B-cell development and/or chromo-
some structure. In general, we found BN modeling to be an excel-
lent methodology for the secondary data analysis of the large-
scale chromatin interaction datasets, on both computational and
interpretation/follow-up levels. Consequently, we have built a
specialized software analysis pipeline that is directly applicable
to such data. It is freely available from the authors.

Results
Bayesian Network Reconstruction. The primary goal of this study
was to see whether BN analysis could help extract useful informa-
tion from complex genome-wide chromatin interaction datasets,
including Hi-C and ChIP-seq. Toward this aim we investigated
the robustness of the BN reconstruction with respect to algorith-
mic, biological, and dataset-related parameters. Special attention
was paid to the integration of different data types within a single
analysis framework, specifically both discrete and continuous vari-
ables. While BNs are generally well established in several biomed-
ical research areas (genomics, expression data, metabolomics,
etc.) (12, 32–34), they have not been used for chromatin interac-
tion analysis. Therefore, a brief introduction is in order.

Traditional statistical techniques are ill suited for analyzing
large-scale, multidimensional data with higher-order interactions
between the variables of different types. In this study we have
up to hundreds of heterogeneous variables (TFs, chromatin vari-
ables, etc.), and one way to coalesce them is via BN model-
ing. Statistically speaking, the BN is a sparse graphical model
of a joint multivariate probability distribution of random (both
continuous and discrete) variables that reflects relationships of
dependence and conditional independence among them. Its pri-
mary goal is reverse engineering (from the “flat” datasets) of
the biological relationships (pathways) between variables, with
an eye toward devising a compact descriptive/predictive model
to guide further analysis and experimentation. The principal
output is a network-looking graph with nodes (variables) con-
nected by edges reflecting significant statistical dependencies
with accompanying numbers quantifying dependency strengths
[see Fig. 1B for an example; variable (node) names and explana-
tions are in SI Appendix, section 5, Tables S1 and S2, and sec-
tion 7, methods which also detail organization of the primary
flat datasets from which the BNs are derived]. The origins of
BN methodology go back to the seminal path analysis work of
Sewall Wright (35); however, due to the computational com-
plexity of the model selection process, application of BN mod-
eling to the nontrivial datasets has become feasible only recently.
We have developed open-source, publicly available BN recon-
struction software that scales up to at least hundreds of thou-
sands of heterogeneous variables and data points, thus mak-
ing it a perfect fit for the present study (12, 36) (BNOmics, at
https://bitbucket.org/uthsph/bnomics/).

We built a series of BNs following different parameters, vari-
able combinations, and visualization shortcuts for the chromatin

states and potentially influencing factors and interpreted their
structures (topologies), using standard criteria to get hypothesis-
generating insights into the underlying mechanistic system. An
example of such insight would be a direct influence of a factor
or factors on a chromatin interaction (dependence, depicted as a
network edge) or absence thereof (conditional independence).

The reader is referred to refs. 37 and 38 for a formal treatment
of conditional independence; for our purposes a simplified con-
cept of Markov neighborhood (MN), similar but not precisely
equivalent to a formal concept of “Markov blanket” (38), of a
network node (variable) is useful. A primary MN refers to a sub-
set of BN nodes directly connected to the node representing a
variable of interest. An extended MN might include a subset of
nodes directly connected to the variables in the primary MN (“2
degrees of separation,” so to speak). The obvious usefulness of
the MN approach lies in visualization and variable selection. The
latter broadly implies that the variables in the MN or extended
MN are suggested by the BN to directly or conditionally influ-
ence the variable of interest, and the remaining variables outside
of the MN are of little to no interest in this regard. There-
fore, MN-contained variables are candidates for further biolog-
ical (analytical, literature, or experimental) follow-up. Recon-
structing BNs from flat data is computationally demanding. A
typical BN analysis of a dataset in this study required 1–4 d
on a modern workstation. There are also memory limits. For
these reasons full BNs for only chromosomes 1 and 2 are pre-
sented (SI Appendix, Fig. S1 C and D). However, the BN analysis
is of course vastly less time and effort consuming than experi-
mental methods.

When interpreting BNs, edge (dependency) strength is impor-
tant and is designated by line thickness and the number next
to the edge. The number is similar to a basic likelihood-ratio
test statistic, in that it is proportional to the ratio of the model
fit of the BN with an edge in question to the one without it.
It is difficult to evaluate in absolute terms (e.g., generate a
P value). However, the numbers within the network (and across
the networks, in this study) can be directly compared with each
other, with a higher number indicating a stronger dependency
(or, in other terms, nonparametric statistical correlation). Con-
sequently, if the investigator knows that the link between two
certain variables is indeed strong, corresponding edge strength
can be used as a benchmark. The edge directionality (“arrows”)
in the presented results is strictly arbitrary, necessary for mathe-
matical tractability only, and should be essentially ignored.

It is important to stress that in its pure form, as done here, the
BN approach is strictly data driven and independent of the inves-
tigators’ input; for example, selection of the variable of interest
does not make that variable different from the others (“depen-
dent variable” in a regression or classification sense) and in the
complete BN such selection is basically for visualization and con-
venience purposes only. Most of our BN analyses were carried
out using the full list of variables (64 transcription factors; 100+
variables in total, depending on the analysis and actual primary
variable of interest).

We used three-bin maximum-entropy–based discretization for
continuous variables, including interaction strength. Previously
we have shown (12) that such discretization is optimal with
respect to preserving the existing biological signal (dependency,
correlation) while minimizing spurious noise. We have experi-
mented with other sensible binnings, and the network topology
was robust to changes in discretization mechanism.

Because the complete BN is difficult to visualize, in Fig. 1B
only the MN of the hic strength variable is shown. However, it is
important to understand that this MN is a subset of the complete
BN, not just a smaller BN built from selected variable sets. The
complete BN is visualized in SI Appendix, Fig. S1 C and D and is
also available directly from the authors as a pdf file and a source
code (dot format) compatible with many network and graph
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visualization software packages. Interested readers can parse the
file or enlarge the figure (using any standard pdf viewer) to
thoroughly investigate MNs of specific nodes/variables. Analy-
ses done so far have been chromosome dataset specific [chromo-
some 1 (chr1) in Fig. 1B and SI Appendix, Fig. S1C and chromo-
some 2 (chr2) in SI Appendix, Fig. S1 A–D]. This brings up the
issue of scalability in terms of data points (approximately 10 mil-
lion intrachromosomal interactions). More data points are avail-
able (hundreds of millions), but using them would substantially
complicate BN reconstruction implementation (predominantly
due to computer memory issues).

An important feature of Hi-C datasets is the location-
dependent “geographic structure” of the data. Therefore, it is
possible, for example, to limit analysis to the interactions that are
less than a predefined distance or interactions located within the
Hi-C loops. In addition to making biological sense, the advan-
tage of such restrictions is a decrease in memory requirements
and computational time without sacrificing sensitivity and speci-
ficity. Given the above nuances, numerous BNs can be inferred
from the same primary datasets. For example, SI Appendix, Fig.
S1A depicts the MN of the hic strength variable in chr2 derived
from the dataset containing interactions within Hi-C loops only,
whereas the MN in SI Appendix, Fig. S1B reflects the uncon-
strained dataset. SI Appendix, Fig. S1 C and D shows full BNs for
chr1 and chr2, respectively, derived from unconstrained datasets.
The BN for the MN shown in Fig. 1B was derived from the
dataset containing interactions within Hi-C loops only. In gen-
eral, our results appear to be robust to the algorithmic variations,
thus suggesting that the differences between the BNs reflect true
biological differences.

BN Analysis Suggests That Intrachromosomal Interaction Strength
Directly Depends Only on Four Types of Variables. We first asked
whether useful chromosomal structure–function information
could be derived just by data-driven BN modeling of a combina-
tion of ENCODE protein-binding data and Hi-C DNA–segment
interaction data. All TF and nonhistone protein-binding data in
the publicly available ENCODE database (30) (ENCODE Data
Coordination Center) for the cell line GM12878 were included.
In addition to the presence or absence of TFs in 5-kb anchor
segments, we included some additional variables such as Tss and
other related features. In total, 106 variables were included in
our BN analysis (SI Appendix, section 5, and Tables S1 and S2).
Orientation of the ctcf motif was considered only for the vari-
ables forward between and reverse between.

The Hi-C dataset used in this study is at a 5-kb resolution
and is for the dataset previously used to identify Hi-C loops
(8). Only interactions locating within a Hi-C loop smaller than
750 kb in chr1 or chr2 are included. Our primary variable of
interest for this study was hic strength, representing the interac-
tion strength between two genomic loci (anchors) as determined
by Hi-C. Of note, as others have done (6, 8), we use O/E (raw
observed interaction strength normalized by the expected inter-
action strength) as the value for the variable hic strength. The
resulting full BN is shown in SI Appendix, Fig. S1 C and D and
the MN for hic strength is shown in Fig. 1B.

Fig. 1B shows that hic strength is directly dependent on only
4 of the 106 variables: (i) distance between interaction anchors,
(ii) presence or absence of the protein RAD21 or SMC3 (two
components of the cohesin complex) in the interaction anchors,
(iii) presence or absence of active transcription (TssHmm) in
the interaction anchors, and (iv) the number of CTCF–cohesin
complexes between anchors (reverse or forward between),
which may reflect smaller, internal loops within larger encom-
passing loops.

For the MN shown in Fig. 1B, and the complete BN shown
in SI Appendix, Fig. S1 C and D, each component of the cohesin
complex (RAD21, SMC3) was treated as a separate variable, and

the orientation of the ctcf motif was not considered. We did this
for two reasons. First, we wanted to minimize user intervention.
Second, consideration of ctcf motif orientation leads to a sin-
gle variable with four states (left anchor forward or reverse and
right anchor forward or reverse), but these states are not inde-
pendent and thus the relationships are not necessarily resolved
optimally by the BN algorithm, given the limited amount of data.
BN analysis with orientation included does, however, generate
convenient local conditional probability tables that are stratified
and sorted for each state. It is one of the principal advantages of
BN treatment that this information can be used for subsequent
analysis.

Active TSS Are Linked to Stronger Hi-C Interactions. The variable
“Tss” designates whether active TSS (CAGE signal, ENCODE)
are found within the interaction anchors. For all 5-kb anchors
in which the TSS activity is detected, about 35% of them are at
more than 1 read per kilobase per million (rpkm). These anchors
either overlap with the annotated gene promoter regions or are
active enhancers [identified by the coexistence of histone 3 lysine
4 monomethylation (H3K4me1) and histone 3 lysine 27 acetyla-
tion (H3K27ac)], which is consistent with previous reports (39,
40). In the dataset used for BN analysis, 2% of total genomic
interactions occur between two Tss sites. Among these Tss–Tss
interactions, about 40% occur between a gene’s promoter region
and an active enhancer and 19% are between two different pro-
moter regions.

BN analysis strongly suggested that TSS activity within the
interaction anchors is an important variable that influences inter-
action strength (Fig. 1B), and this is consistent with previous
reports based on high-resolution analysis of specific chromoso-
mal subregions (13, 27, 41). We found that high-intensity inter-
actions (O/E > 3) are enriched in compartment A, which is the
transcriptionally active chromosomal compartment (8, 41); there
are 29,940 such interactions mapping to compartment A of chr1
but only 8,222 mapping to compartment B. We next did genome-
wide analysis using Hi-C data to study the relationships between
the TSS activity in the left and right anchors and their corre-
sponding interaction strength (Fig. 2 A and B). We found that
interaction strength clearly is positively associated with Tss level
(Fig. 2B). However, it is interesting to note that a higher level
of interaction strength is not observed when only one anchor has
TSS activity (Fig. 2A).

TFs. We found that the hic strength variable, which was the orig-
inal focus of this study, is not directly dependent on most TFs
or the other variables included in this study (SI Appendix, sec-
tion 5, Tables S1 and S2). This does not mean that other TFs
have no influence, but just means that, given Tss information,
additional information about TFs is superfluous for hic strength.
In BN parlance, Tss “shields” hic strength from the TF. Fig. 2C
shows for several TFs that their binding in an anchor segment
affects hic strength differently, dependent on whether Tss activ-
ity is detected. Additional inspection of MNs for hic strength as
well as full BNs for chr1 and chr2 (Fig. 1B and SI Appendix,
section 1) did in fact suggest several other potentially impor-
tant relationships, such as the connection between Rad21 and
Znf143 (Fig. 3), the connections with Ebf1 (Fig. 3 and SI
Appendix, Fig. S1B), and the connection between Rad21 and
Ikzf1 (Fig. 1B). Both Ebf1 and Ikzf1 are known to be important,
lineage-determining factors for B cells, and GM12878 is a B-cell
lymphoma. It is worth noting that cell type came to our atten-
tion only after BN modeling results identified Ebf1 as a poten-
tially important TF. The interaction between Rad21 and Znf143
is a previously known interaction, serving to validate our BN
analysis.

To further illustrate the use of the BN, a MN centered on
Ebf1 was generated (Fig. 3 A and B), and several interesting
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Fig. 2. TSS activity affects interaction strength. (A) Heatmap showing that TSS activity within the two interacting anchors is positively associated with
interaction strength. The color gradient represents the average interaction strength. Tss level is in units of rpkm. (B) Interaction strength affects the chance
to observe Tss–Tss interactions. y axis represents the relative chance of observing the TSS activity (>5 rpkm) at one anchor given the corresponding interaction
strength (x axis) and Tss (>5 rpkm) in the other anchor. (C) Interaction strength between two anchors with at least one occupied by a TF decreases if no
TSS activity is associated with these anchors. W/O Tss: without Tss. W Tss: with Tss. P values were calculated by a Kolmogorov–Smirnov test. The “random”
sample had a similar “distance” distribution to the target sample but was sampled randomly from the whole population.

known and potentially new interactions emerge. For example,
the known strong interaction of Rad21 and Smc3 is clear. Also
for both left and right anchors (Fig. 3 C and D) there is a
three-way dependency between Rad21, Znf143, and Ebf1. These
relationships are not addressed in any detail here as they are
beyond the scope of this study, but it should be noted that
they were identified by unbiased purely data-driven BN anal-
ysis and thus may warrant additional investigation both in sil-
ico and on an experimental level. The potential dependen-
cies between Ikzf1, Rad21, and Ebf1 are also of interest. In
BN analyses, although conditional independence relationships
are often equivocal, dependencies are usually meaningful. With
this in mind, several other potentially interesting relationships
are revealed in Fig. 3 A and B. Chd2 and Maz are strongly
and consistently clustered near Smc3. Chd2 is a helicase with
chromatin-remodeling activity (42), and Maz is a well-known TF
sometimes involved in transcriptional pausing (43). Also, Ebf1
shows a strong dependency on Bhlhe40, a helix–loop–helix TF
known to be involved in immune function (44). These relation-
ships each could, and perhaps should be, addressed in future

A B C

D

Fig. 3. MNs of Ebf1 variable node, separated into left and right anchors. (A) Extended MN of the Ebf1 left variable in the BN derived from the chr1
unrestricted dataset. (B) Same as in A, for Ebf1 right. (C) Visualization of a trivariate interaction between Ebf1, Rad21, and Znf143 variables, left anchor.
(D) Same as in C, right anchor. See Fig. 1B and SI Appendix, section 5, Tables S1 and S2 for general BN designations and principal variable descriptions. Note
that dependency strength is shown as a number (proportional to the likelihood ratio, see text for details) next to the corresponding edge in the network.
Only edges above 40,000 in strength are shown in Fig. 3 C and D for easier network readability.

studies. However, it is noteworthy that these potential interac-
tions were identified by unbiased BN analysis without any input
from us.

The Interaction Between Two Convergent CTCF Pairs Is Stronger Than
in Other Combinations. BN analysis clearly shows the dependence
of hic strength on RAD21 or SMC3 (Figs. 1B and 3). BN analysis
also consistently shows a strong dependency of CTCF on RAD21
and SMC3, two proteins known to be major components of the
cohesin complex (SI Appendix, Fig. S1 C and D) (45). In subse-
quent analysis described next, we further analyzed the CTCF–
cohesin complex, that is, sites that have all three proteins bound.
Importantly, a CTCF–cohesin complex at a ctcf motif has two
directions, with the ctcf motif either in the F or in the R direction
(8). As mentioned earlier, a pair of CTCF–cohesin complexes
have four different orientation patterns: F–R (convergent), R–F
(divergent), F–F, and R–R.

Prior ChIA-PET data obtained after enrichment using anti-
CTCF antibodies led to the conclusion that loops enriched for
the convergent ctcf pairs have a higher frequency than the other
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combinations (23, 24). In our study, we addressed this same ques-
tion by first identifying ctcf motifs from the regions co-occupied
by CTCF, RAD21, and SMC3 and then combining this informa-
tion with published, genome-wide Hi-C data (8). We found that
convergent CTCF–cohesin complexes indeed have higher than
average interaction strength (Fig. 4A). Second, we found that the
interactions between two CTCF–cohesin complexes are stronger
for those located within a Hi-C loop than for those crossing a
Hi-C loop boundary. Moreover, as Hi-C loops are generally
smaller and located within TADs, some convergent CTCF–
cohesin complexes are found within the same TAD but cross-
ing the Hi-C loop boundaries. In detail, for the 304 convergent
CTCF–cohesin complex pairs in chr2 that cross the boundary of
Hi-C loops, 199 are located within a single TAD. Those CTCF–
cohesin complex pairs that cross a Hi-C loop boundary have sig-
nificantly lower contact intensity than those not crossing. Over-
all, the numbers of the four orientation combinations for CTCF–
cohesin complexes are approximately equal, suggesting random
orientation. However, if one examines CTCF pairs restricted
to Hi-C loop regions, convergent CTCF–cohesin complexes
are highly enriched, which may indicate a clustering of same-
orientation CTCF–cohesin complexes within the Hi-C loops
(Fig. 4B).

CTCF–Cohesin Complexes Specify the Direction and Distribution of
Long-Range High-Intensity Genomic Interactions. Since convergent
CTCF–cohesin complexes are overrepresented in high-intensity
interactions, they are likely to affect the distribution of other
high-intensity interactions. Thus, we next examined whether the
anchors of high-intensity interactions in the neighborhood of a
CTCF–cohesin complex show a nonrandom spatial relationship
with respect to the orientation of the ctcf motif in the CTCF–
cohesin complex. For this study, high-intensity interactions are
defined as those that have an O/E value greater than 96% of
total interactions; for chr2 this is O/E > 3. We define a neighbor-
ing region as 25 kb upstream or downstream of a CTCF–cohesin
complex, binned into 5-kb segments, with upstream or down-
stream being determined by the standard chromosomal DNA
sequence numbering system. First, we found that the anchors
of high-intensity interactions are indeed enriched within regions
at or near CTCF–cohesin complexes, with a peak centered at
the CTCF–cohesin site (Fig. 5A). We then categorized all these
high-intensity interactions into three classes according to their
anchors’ relationship with the neighboring regions of CTCF–
cohesin complexes. For class 1 interactions (22% of total high-
intensity, O/E > 3 interactions), the left anchor is located within
the neighboring regions of a CTCF–cohesin complex with an

A B

Fig. 4. Orientation of convergent CTCF–cohesin complexes affects interaction strength. F: The CTCF–cohesion complex is in the forward orientation. R:
The CTCF–cohesin complex is in the R orientation. (A) Convergent CTCF–cohesin pairs (F R) interact more strongly compared with the other orientations.
In loop: The two anchors (containing CTCF–cohesin complexes) of an interaction are in the same loop. Crs loop: The two anchors cross the loop boundaries.
(B) Genome-wide, convergent CTCF–cohesin complex pairs that are within loops (8) are more frequent than the other orientation combinations. Overall,
if Hi-C loops are not selected, the four categories of ctcf pairs occur in about equal numbers: F–R, 23,836, 24%; R–F, 25,935, 26%; F–F, 24,709, 25%; R–R,
24,283, 25%.

F motif and the right anchor is located within the neighboring
region of a CTCF–cohesin complex with an R motif. For class
2 interactions (46% of total high-intensity interactions), either
the left anchor is located within the neighboring regions of a
CTCF–cohesin complex with an F motif or the right anchor is
located within the neighboring regions of a CTCF–cohesin com-
plex with an R motif, but not both. Class 3 interactions are the
remaining high-intensity interactions with neither anchor in a
CTCF–cohesin neighboring region. We find that the first two
classes constitute 68% of all high-intensity interactions. It should
be kept in mind that 78% of high-intensity interactions (O/E >
3) are not between two CTCF–cohesin complexes; the majority
of these have a CTCF–cohesin complex in only one anchor. For
all annotated Hi-C loops (8), not just those with high-intensity
(O/E > 3) interactions, also about 22% (2,857/12,903) are class
1, with both anchors containing ctcf motifs in convergent ori-
entation. We obtained a similar ratio from the chr2 dataset.
Only 24% (178/706) of annotated Hi-C loops in chr2 have a
unique F motif in the left anchor and a unique R motif in the
right anchor. We note that many high-intensity interactions, as
well as annotated loops, do not have a convergent ctcf motif in
both anchors. Also up to 62% of total identified CTCF–cohesin
complexes are not associated with the anchor regions of a
Hi-C loop.

We next investigated the effect of ctcf motif orientation on the
distribution of high-intensity interactions. Fig. 5B shows, for 5-
kb bins near a forward CTCF–cohesin complex, the probability
of the bin containing either a left anchor (red curve) or a right
anchor (blue curve) of a high-intensity interaction (O/E > 3),
with the other anchor being at any distance. Fig. 5C shows a
similar plot for an R CTCF–cohesin complex. Note that ctcf ori-
entation and left or right anchor designation are based on the
standard chromosomal nucleotide base numbering convention,
not their relative orientation. Using Fig. 5B as an example, a left
anchor located in a 5-kb segment containing a ctcf F motif (and
a bound CTCF–cohesin complex) indeed does have the high-
est probability of interacting with a downstream anchor at high
intensity. This is consistent with Fig. 5A. Importantly, however,
the profiles seen in Fig. 5B are strongly dependent on the ori-
entation of the ctcf motif. In Fig. 5B, the probability of finding
a segment containing the left anchor of a high-intensity interac-
tion near an F motif is much higher than the probability of find-
ing a segment containing the right anchor. This dramatically dif-
ferent pattern, which is seen on all chromosomes (SI Appendix,
section 6), cannot be easily explained by interactions resulting
from random diffusion, but, as illustrated in Fig. 5D, is consis-
tent with DNA-reeling/extrusion models with an appropriately
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Fig. 5. CTCF–cohesin complexes affect the distribution and direction of high-intensity intrachromosomal interactions. (A)The probability profile for
5-kb segments neighboring CTCF–cohesin complexes containing the anchors of high-intensity interactions. The y axis has the same meaning in A–C.
(B) The probability profile for 5-kb segments neighboring the CTCF–cohesin complexes with F motifs containing the left or right anchors of a high-intensity
interaction. (C)The probability profile for 5-kb segments neighboring the CTCF–cohesin complexes with R motifs containing the left or right anchors of a
high-intensity interaction. (D) The formation of an asymmetrical distribution in B can be explained by a DNA-reeling/extrusion model. In this model, reeling
and loop formation initiated downstream will be terminated by an F CTCF–cohesin complex.

oriented CTCF–cohesin complex acting as a strong barrier to
reeling/extrusion that begins downstream.

CTCF–Cohesin Complexes Specify the Choice of Targets in EP Inter-
actions. EP interactions with high interaction strength are of
particular interest. Using Hi-C and Encode datasets (30), we
selected a group of EP interactions based on the following cri-
teria (39, 41): (i) The enhancer is occupied by the transcrip-
tional activator P300 and is marked with H3k4me1 and H3k27ac,
(ii) the gene promoter is active (Tss > 0), (iii) the interac-
tion strength between the enhancer and promoter is three times
higher than the expected background level (O/E > 3), and
(iv) the EP interactions locate within a Hi-C loop. Since the
enhancer can be either upstream or downstream of the pro-
moter, we named these two interaction sets “EP upstream” and
“EP downstream,” respectively. (“Upstream” or “downstream”
in the name denotes the position of the enhancer with respect to
the promoter in the EP and is not related to transcription direc-
tion. The complete list of promoter–enhancer interactions can be
found in Dataset S1.) Based on previous studies, these enhancers
are active and cell-type specific (39). Of interest, we found more
than 95% of EP interactions have Ebf1 in either the enhancer
or the promoter. For EPs in chr1 (defined above), about 79%
(709/899) of promoters and 84% (751/899) of enhancers have
Ebf1 binding.

We found that the enhancers in the EP upstream set do not
significantly overlap with the enhancers in the EP downstream
set. If an enhancer could sometimes choose an upstream pro-
moter and sometimes a downstream promoter to interact at high
intensity, one would expect considerable overlap. This is not the

case, so clearly EP interactions are not random but are direction-
ally biased. In more detail, we found that in chr2, of 214 and 156
enhancers interacting with downstream and upstream promot-
ers, respectively, only 8 interact with both, thus making the vast
majority of enhancers directional.

Importantly, EP interactions genome-wide clearly show direc-
tional bias related to the CTCF–cohesin complex orientation.
Fig. 6A shows that enhancers located upstream of promoters
(“En left”) are enriched within the neighboring regions of an
F CTCF–cohesin complex, whereas for downstream enhancers
(“En right”) (Fig. 6B) the enrichment is within the R CTCF–
cohesin complex. Of note, our criteria for identification of
these EP interactions do not include the presence of either ctcf
sequence motifs or CTCF–cohesin complexes. After identify-
ing the EP interacting segments, they were then interrogated
for CTCF–cohesin complexes. These results are consistent with
appropriately oriented CTCF–cohesin complexes strongly influ-
encing the formation and/or stability of EP loops. It is also note-
worthy that the asymmetry seen in Fig. 6A, for example, is sim-
ilar to that seen in Fig. 5B and can be explained similarly. A
promoter downstream of an enhancer is blocked from “cross-
ing” a forward CTCF–cohesin complex to participate in a high-
intensity EP interaction. These results are thus consistent with
ctcf-containing elements being able to act as insulators by being a
barrier to EP loop formation, perhaps by terminating DNA reel-
ing (13, 21, 22).

Convergent CTCF–Cohesin Complexes Increase Interaction Strength
by Forming Intermediate Structures, Probably Loops. Our BN anal-
ysis (Fig. 1A) showed that the interaction strength variable
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A B

Fig. 6. CTCF–cohesin complexes affect EP interactions. (A) The genome-wide occurrence of upstream enhancers (En left) and downstream enhancers (En
right) within the 5-kb segments neighboring CTCF–cohesin complexes with F motifs. (B) The Same as in A but with the R CTCF–cohesin complex. Note
that upstream and downstream follow the standard chromosomal base-numbering convention relative to the interacting promoters, not related to the
transcription direction. A similar finding is obtained by targeting the high-intensity interactions crossing loop boundaries (SI Appendix, section 3 and
Fig. S3 A–C).

(hic strength) is dependent on the variables Forward between
and Reverse between (representing the number of F and R
CTCF–cohesin complexes between the interaction anchors).
How can this be explained? A large fraction of CTCF–cohesin
complexes (62% of total) are not associated with the endpoints
of the Hi-C loop structures, TADs, or other so far identified
chromosomal substructures (8, 15), and our analysis of Hi-C
datasets revealed that 78% of high-intensity interactions con-
tain between the anchors one or more CTCF–cohesin com-
plexes. Thus, many loops contain within them additional CTCF–
cohesin complexes. Whether the interaction strength between
two genomic segments, for example those identified as loop
(Hi-C loops) anchors, is affected by convergent CTCF–cohesin
complexes located between them was not known. Given that
convergent CTCF–cohesin complexes are likely to form or sta-
bilize loops, we hypothesized that these intermediate structures
may bring two bracketing anchor segments into closer proximity,
thereby increasing the probability of interaction. For this rea-
son, we introduced a variable that we name reduced distance
(RD) to model effects caused by the convergent CTCF–cohesin
complexes. RD is the distance remaining after subtracting the
length of DNA in potential loops demarcated by the conver-
gent CTCF–cohesin complexes. In the example shown in Fig.
7A, two genomic loci i and j encompass one pair of conver-
gent CTCF–cohesin complexes. We found that the interaction
strength between two genomic anchors whose RD is more than
half of the linear distance is significantly higher than the back-
ground (Fig. 7B).

Discussion
BN modeling has been widely used for analyzing the complex
relationships within the “big data” repositories generated in
modern biomedical research, but to the best of our knowledge
BNs have not been applied to a study of intrachromosomal 3D
structure. Here, we used newly developed software (12, 36) and
asked the questions, What factors influence chromosomal 3D
structure as measured by the probability of contact between dis-
tantly located segments of DNA? And can BNs help identify
these factors? We applied BN modeling to analyze the relation-
ships between the Hi-C–derived intrachromosomal interaction
strength and various genetic elements, interacting proteins, and
other variables for which detailed information is available in the
publicly available Encode database. A primary conclusion is that
the BN analysis works well in this application.

The advantages of BN modeling over more traditional analy-
sis methods (such as univariate statistical approaches, regression,

classification, and clustering) are fivefold: (i) The entire biologi-
cal network underlying the observed data is reconstructed, allow-
ing one to model and visualize mechanistic underpinnings of
the chromatin biology; (ii) such networks are immediately useful
for both testing existing hypotheses and automatically generat-
ing novel ones; (iii) heterogeneous variables can be incorporated
within the same analysis framework (a single network) without
information loss due to type conversion and violated distribu-
tional assumptions; (iv) investigators can “switch” from scruti-
nizing one variable/node within the network to another without
carrying out the analysis de novo; and (v) resulting networks (and
generated hypotheses) can be validated, and compared, using
simple built-in instruments and criteria (statistical resampling,
localized likelihood-ratio tests).

Our BN analysis identified only four categories of factors
directly related to interaction strength. These categories are dis-
tance, cohesin complex components (e.g., Rad21), TSS activity,
and the number of CTCF–cohesin complexes between anchors.
Finding that baseline BN modeling highlights CTCF and Rad21
as important variables serves to validate the approach. Inspec-
tion of Fig. 1B also shows that given the above categories, inter-
action strength is conditionally independent of TFs, with only
one exception, Izkf1. Ikzf1 is known to be an important TF for
hematopoietic cell differentiation (46), so it may not be just
a coincidence that the Hi-C and Encode data we used were
obtained from a B-cell lymphoma. We are not aware of stud-
ies implicating a relationship between Ikzf1 and RAD21 (or
the cohesin complex), so this is an example of insight obtained
by BN analysis. In Figs. 1B and 3 C and D a connection is
seen between Znf143 and Rad21, which is a known interac-
tion (27), again serving to validate our approach. As shown
in SI Appendix, Fig. S1 C and D, we also observe a connec-
tion between Tss and Ebf1, a known lineage-determining B-cell
TF. It is likely that Tss is “shielding” hic strength from most
TFs because given Tss information additional information about
TFs is superfluous for hic strength. Nevertheless, when the MN
is refocused on a TF, dependency relationships for that factor
emerge. For example, if one examines the MN around Ebf1 (Fig.
3 C and D), a three-way dependency is seen between Rad21,
Znf143, and Ebf1. The dependencies between Rad21 and Znf143
and between Ebf1 and Znf143 are stronger than the depen-
dency between Ebf1 and Rad21, so it is likely that the effect
of Rad21 on Ebf1 is mostly indirect, through its effect on the
interaction of Znf143 with Ebf1. This illustrates the type of
nuanced insight that can be obtained from BN analysis of ChIP-
seq datasets for numerous TFs. As another example, there is
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Fig. 7. Convergent CTCF–cohesin complex pairs affect interaction strength via a “reduced distance” (RD) effect. (A) An example to show the principle of
RD. The genomic anchors i and j are separated by a pair of CTCF–cohesin complexes with convergent direction. If the loop is formed between a and b, the
distance between i and j changes from d to d1 + d2. (The calculation of the RD is shown in detail in SI Appendix, section 4). (B) The interactions that are
affected by the RD have higher interaction strength than average.

also a three-way dependency between Maz, Chd2, and Bhlehe40
(Fig. 3 A and B).

With regard to BN software development, so far we have con-
structed full BNs for only two chromosomes, each taking sev-
eral days of computer processing time. Furthermore, resampling
can also be used (together with relative edge strengths) to evalu-
ate and validate the BNs via cross-validation or bootstrapping,
at the cost of computational efficiency. Finally, one can sim-
ulate a number of artificial variables with gradually increasing
known dependency strength to calibrate all of the edges in the
BN. This approach, although time consuming and domain spe-
cific, is known to be effective (“artificial positive controls”) (36).

Numerous chromatin interaction studies, including Hi-C, have
established that chromatin is highly organized in 3D space by dis-
tant DNA segments being brought physically close together, thus
necessarily looping out the DNA between them (13). Moreover,
primarily based on the directionality of CTCF–CTCF and EP
interactions (24), it is becoming increasingly evident that DNA
looping does not result from specific interactions formed by ran-
dom diffusion in 3D space but rather from a mechanism that acts
in one dimension along the DNA (13, 21, 22). Our BN results
shown in Fig. 1 highlight the importance of the CTCF–cohesin
complex, and results shown in Fig. 5 provide strong evidence that
directionality of loop formation is determined by the orientation
of the ctcf motif in a CTCF–cohesin complex. As others have
discussed and reviewed (13, 21, 22), such directionality is very
difficult to explain by diffusion-based mechanisms. More likely
a molecular motor is pulling the DNA segments together, that
is, reeling in DNA and extruding a loop between them (18, 21,
22). Sanborn et al. (22) and Fudenberg et al. (21) have devel-
oped computer models assuming that cohesin serves as a molec-
ular motor, with a cohesin dimer binding between convergent
ctcf motifs and the CTCF complex serving to terminate reel-
ing/extrusion. With these assumptions, computer-derived inter-
action patterns match well with experimentally determined Hi-C
interactions. As illustrated in Fig. 5D, the results of our analy-
ses are consistent with an appropriately oriented CTCF complex
acting as a barrier to loop formation.

Our BN analysis highlighted the dependence of hic strength
on active transcription at start sites (TSS), and this was confirmed
by our subsequent analysis showing that interaction strength does
increase with transcription level at TSS (Fig. 2 A and B). Previ-
ously, Tang et al. (24) used ChIA-PET to study RNA polymerase

(Pol II)-containing chromatin interaction anchors and compared
these data with Hi-C data. They found that Pol II is frequently
associated with CTCF at the base of Hi-C loops, with housekeep-
ing genes located near the base of CTCF–cohesin loops and cell-
type–specific genes more centrally located within the loops. They
also found that clusters of CTCF complexes, called CTCF foci,
colocalize with foci of Pol II, which have been called transcrip-
tion factories (21, 47). As a result, they suggested that transcrip-
tion by Pol II selectively draws genes into these CTCF foci. Fig. 6
very clearly shows that strong EP interactions are sensitive to the
orientation of CTCF–cohesin complexes, with directionality very
similar to that seen for the high-intensity interactions in Fig. 5.
We thus speculate, as have others (24, 48), that transcription may
sometimes be part of the process bringing distant DNA elements
into close physical contact. Whatever the motor driving loop for-
mation, Fig. 6 shows that the directionality of EP interactions is
strongly influenced by the orientation of the CTCF complex. We
interpret this finding to be consistent with models in which an
appropriately oriented CTCF complex terminates reeling/loop
extrusion (21, 22), whether derived from cohesin complex reel-
ing, transcription, or other mechanisms. Another, not mutually
exclusive, model is that the CTCF complex initiates reeling near
the ctcf site, as proposed by Nichols and Corces (49). In either
case, the CTCF complex can act as a barrier to reeling/extrusion
in the “wrong” direction, thereby serving to insulate a promoter
from the influence of an enhancer.

It should be noted that only 22% of O/E > 3 anchor pairs have
a CTCF–cohesin complex at both anchors; 32% do not have a
CTCF–cohesin complex at either anchor. Thus, most loops do
not have CTCF at both anchors, suggesting that reeling/extrusion
can be stopped or paused by protein complexes or structures
that do not contain CTCF. Earlier studies in yeast found that
cohesin was found mostly between sites of convergent transcrip-
tion and it was suggested that transcription can push cohesin,
causing it to redistribute on the chromosome (50). Very recently,
while our manuscript was under review, Busslinger et al. (51) and
Haarhuis et al. (52) reported that the distribution and direction-
ality of movement of cohesin in the mouse genome is influenced
by transcription. These results were interpreted as supporting
loop/extrusion models (21, 22), with CTCF being a boundary ele-
ment limiting the movement of cohesin. It thus seems likely that
some high-intensity interactions may be due to direct or indirect
consequences of transcription.
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Finally, BN analysis indicated that hic strength is directly
dependent on the number of right- or left-oriented CTCF–
cohesin complexes located between the interaction anchors (for-
ward between and reverse between in Fig. 1). How can this be
explained? We suggest, as have others (53), that convergent
CTCF-cohesin pairs located between the anchors can form inter-
nal loops, thereby reducing the apparent distance.

In conclusion, we have used recently developed BN method-
ology and software for an investigation of how various fac-
tors affect interaction strength between distant chromosomal
anchors. BN results highlighted the importance of several fac-
tors, some of which were expected, others not. These find-
ings generated hypotheses that were used to guide further data
analysis.

Materials and Methods
Constructing BNs and Mapping Encode Data. BN analysis was performed as
in ref. 12. We selected the Hi-C datasets at 5-kb resolution from Encode
datasets for the cell line GM12878. A total of 64 TFs (Encode project) were
mapped to 5-kb–sized bins corresponding with the Hi-C map. The data were

arranged into a table in which each row represents the state of a specific
interaction between any two anchors and each column (variable) represents
whether a specific protein binds at the anchors (upstream or downstream).
We set “resolution” at delta = 150 bins (equaling 750 kb).

CTCF–Cohesin Complexes. We used HOMER (54) to search for the ctcf motifs
in 5-kb loci co-occupied by CTCF, RAD21, and SMC3 ChIP-seq signals. Specific
loci with more than one ctcf motif (only 2% of total) were labeled “for-
ward” or “reverse,” depending on which orientation was more frequent.
Additional details are in SI Appendix, Fig. S2 and section 2.

Normalization of Hi-C Data and the Variables for Interaction Strength. Two
values, termed O/E and raw observed, were used to represent the genomic
interaction strength, following previously published methods (8). BN anal-
ysis was based on O/E. Other results were generated using both O/E and
raw-observed values (SI Appendix, section 6), but the latter is shown in the
main text.
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