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Abstract: Osteosarcopenic obesity is a unique clinical condition where low bone and muscle mass
coexist in individuals with obesity. Alterations in adipose tissue, skeletal muscle and bone are strictly
interconnected, and vitamin D plays key roles in several metabolic pathways that are involved in
maintaining musculoskeletal health and glucose homeostasis. We reviewed the available literature
on mechanisms underlying osteosarcopenic obesity, with a focus on the role of vitamin D in the
pathogenesis and treatment of the condition. We found that, although evidence from large observa-
tional studies and pre-clinical experiments strongly supports a role of vitamin D deficiency in the
pathogenesis of osteosarcopenic obesity, the common belief that vitamin D improves musculoskeletal
health lacks solid clinical evidence, as trials specifically aimed at assessing the effects of vitamin D
supplementation in patients with osteosarcopenic obesity are not available, and trials that investi-
gated the role of vitamin D on muscle and bone health in other patient populations either showed no
or even detrimental effects. We conclude that large observational and interventional studies including
individuals with osteosarcopenic obesity representative of different sex, age and race are needed to
better define the role of vitamin D in the pathogenesis and treatment of this condition.
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1. Introduction

Sarcopenic obesity is now recognized as a specific clinical entity characterized by
excess fat mass (obesity) with reduced skeletal muscle mass and function (sarcopenia) [1].
Several metabolic alterations occur in the skeletal muscle of individuals with obesity that
may negatively impact muscle mass and function. Inflammation and oxidative stress
exert catabolic effects and may induce anabolic resistance in skeletal muscle, ectopic fat
accumulation with fatty infiltration (myosteatosis) results in lipotoxicity, alterations in mus-
cle stem cell may determine a shift towards adipocyte differentiation, and mitochondrial
dysfunction leads to less efficient energy production and oxidative stress [2]. With the
progression of obesity, functional limitations imposed by increasing body mass and muscu-
loskeletal complications may further worsen skeletal muscle and bone health. The latter is
also affected by the metabolic alterations and the proinflammatory milieu associated with
obesity. For a long time, obesity has been thought to have favorable effects on bone, due to
the anabolic stimulus of mechanical load [3] and estrogen levels [4] associated with excess
fat mass. However, recent evidence suggests that, despite increased bone mineral density
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(BMD), fracture risk is increased at specific skeletal sites in individuals with obesity [5]. In
older adults with sarcopenic obesity, femoral neck BMD was lower than in older adults
with obesity alone [6]. These observations confirm previous evidence of reduced BMD in
subjects with sarcopenic obesity as compared to obesity alone, and support the concept that
sarcopenia may increase the risk of low bone mass and fracture risk [7,8], as an increase
in muscle mass parallel to the increase in fat mass appears to be necessary for BMD to
increase [9]. It appears clear that alterations in adipose tissue, skeletal muscle and bone are
strictly interconnected. The term “osteosarcopenic obesity” was introduced to describe the
co-existence of low bone and muscle mass in individuals with obesity [10,11], although an
univocal consensus on diagnostic criteria is still lacking [12], as was for sarcopenic obesity
until recently [1]. Osteosarcopenic obesity is often underrecognized, despite being associ-
ated with poor functional and metabolic outcomes [13]. Vitamin D is a micronutrient that
is essential to musculoskeletal health [14] but also exerts extra-musculoskeletal functions,
being involved in several metabolic pathways [15]. Its deficiency possibly plays a role in
the pathogenesis of osteosarcopenic obesity, but whether affected patients would benefit
from vitamin D supplementation is uncertain. The aim of this narrative review is to provide
an overview of the mechanisms underlying osteosarcopenic obesity, with a focus on the
role of vitamin D in the pathogenesis and treatment of the condition.

2. Osteosarcopenic Obesity: Prevalence, Risk Factors and Impact on Health Outcomes

Prevalence estimates of osteosarcopenic obesity vary widely depending on the pop-
ulation and the definition used, ranging from ~0% to 19% [16–19] and increasing with
age [19], although reduced bone and skeletal muscle mass have been reported even in
young (18–21 years old) subjects with overweight/obesity [20]. The risk of osteosarcopenia
increases with increasing fat mass: prevalence ratios of 1.46 (95% CI 1.11 to 1.92) and
2.25 (95% CI 1.71 to 2.95), respectively, were found in men and women aged 60 years or
older [21]. In keeping with these findings, subjects with the metabolic syndrome, which
is almost invariably associated with excess adiposity and insulin resistance, were found
to have a ~2.5-fold risk of having osteosarcopenic obesity as compared with controls [22].
Age, sex, race and excess alcohol consumption are all factors associated with increased
odds of having osteosarcopenic obesity [19]. Dietary factors have also been implicated,
such as low calcium [23] and protein [24] intake, poor diet quality [25], and higher dietary
inflammatory index [26].

It is possible that specific populations are at increased risk of osteosarcopenic obesity
due to conditions or treatments associated with loss of skeletal muscle and bone alongside
gains in adipose tissue. As examples, patients with Cushing’s disease due to excess gluco-
corticoid exposure [27], patients with type 2 diabetes, as type 2 diabetes is associated both
with overweight/obesity and poor bone quality [28,29] and insulin resistance/deficiency
may contribute to sarcopenia [30], kidney transplant recipients, who often gain weight and
are treated with long-term steroid therapy after transplantation [31], as well as patients
with chronic obstructive pulmonary disease, human immunodeficiency virus, cancer [11],
and—possibly—patients who survived severe forms of COVID-19, due to high-dose steroid
treatment and increased adiposity due to disproportional abdominal fat regain following
weight loss in the acute phase [32]. Although no specific studies have been conducted so
far in these populations, it is likely that the prevalence of osteosarcopenic obesity is high.

Osteosarcopenic obesity strongly impacts several health outcomes. Skeletal muscle is
the major site of insulin-stimulated glucose utilization. It is not surprising that reduced
muscle mass in obesity is strongly associated with insulin resistance and altered glucose
metabolism, particularly in the elderly [33,34]. Although the association between sar-
copenic obesity and insulin resistance is widely recognized [35], few studies so far have
assessed the relationship between osteosarcopenic obesity and insulin resistance. In non-
diabetic Korean men and postmenopausal women aged 50 years or older, the odds for
insulin resistance were highest in subjects with obesity or osteopenic obesity, followed by
sarcopenic obesity and osteosarcopenic obesity, whereas those without obesity had the
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lowest risk [36]. Another Korean study in subjects with obesity aged 50 years or older from
the Korea National Health and Nutrition Examination Survey found that women with
osteosarcopenic obesity had significantly greater insulin resistance (HOMA-IR 3.3) than
those with obesity (HOMA-IR 2.6) or osteopenic obesity (HOMA-IR 2.8), and similar to
those with sarcopenic obesity (HOMA-IR 2.9), whereas, among men, those with sarcopenic
obesity had the greatest insulin resistance [37]. Associations have also been reported be-
tween osteosarcopenic obesity, the metabolic syndrome [37] and its individual components,
namely dyslipidaemia [38] and arterial hypertension [37,39]. Both insulin resistance and
the metabolic syndrome have been associated with frailty risk [40,41], and may therefore
further aggravate the burden of osteosarcopenic obesity on functional status. A study in
Chinese community-dwelling elderly individuals found that those with osteosarcopenic
obesity had significantly lower physical performance, as assessed by the timed up-and-go
test, as compared with obesity alone [42]. Postmenopausal women with osteosarcopenic
obesity have significantly lower handgrip strength, slower normal and brisk walking
speed, and shorter time for each leg stance than women with obesity alone [17]. Within
subjects with osteosarcopenic obesity, those with predominantly increased visceral fat
appear to be at higher risk of fracture as compared with those in whom subcutaneous fat
predominates [43], highlighting once again the key role of visceral adiposity and related
inflammation. Overall, osteosarcopenic obesity is associated with poor functionality, and
might thus increase the risk of frailty.

3. Pathogenic Mechanisms Underlying Osteosarcopenic Obesity
3.1. Role of Endocrine Dysregulation

The endocrine system is considered as one of the main regulating actors in obesity,
sarcopenia and sarcopenic obesity [44]. Endocrine dysregulation, through complex inter-
relationships with the hypothalamic–pituitary–adrenal (HPA) axis, brain, immune system,
skeletal muscle and adipose tissue, may negatively influence body composition with
deleterious systemic consequences (Figure 1).

Glucocorticoids (GCs), in addition to the well-known effects on immune system and
stress regulation, are also known to influence skeletal muscle, bone health and adipose
tissue [45,46]. Elevated GC levels lead to muscle atrophy, bone damage with secondary
osteoporosis, and increase of abdominal and visceral adiposity [47–49]. In line with these
findings, several studies indicate that chronically elevated cortisol levels, possibly due to
aging, sleep deprivation and stress, and an impairment of the HPA axis feedback regulation,
are strictly associated with frailty in older male and female patients and poorer health
outcomes in later life [50–53]. Elevated cortisol levels have been reported in elderly subjects
with sarcopenic obesity [54], but also in young subjects with overweight/obesity, who
exhibited greater fat mass and lower muscle and bone mass as compared with normal
weight subjects [20]. These findings highlight that osteosarcopenic features may be detected
even in young individuals with overweight/obesity, and suggest that increased cortisol
levels may play a role in determining these alterations.

Human growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are key determinants
of body composition, exerting anabolic effects on muscle mass, decreasing total and visceral
body fat mass and favoring osteoblastogenesis, bone formation and chondrogenesis. Serum
GH levels decline with aging, reaching a nadir at the sixth decade, with older individuals
exhibiting a daily GH secretion ranging from 1/5 to 1/20 of that observed in young
adults [55]. A negative correlation between either GH or IGF-1 and the ratio between
truncal fat mass and appendicular skeletal muscle mass has been reported in subjects
with obesity, suggesting that altered GH/IGF-1 status may play a role in determining the
sarcopenic obesity phenotype [56].

Androgens have several beneficial effects on skeletal muscle mass, adiposity and bone
health increasing muscle protein synthesis, lipolysis and bone formation [57–59]. Testos-
terone levels decrease with advancing age, falling by around 2% of bioavailable hormone
levels per year [58]. A bidirectional mechanism regulates the strict relationship between
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testosterone and fat mass: low testosterone levels lead to an increase in adipose tissue and,
in turn, adipose tissue—especially visceral fat, converts testosterone to estradiol due to
augmented aromatase enzyme expression and activity, reducing testosterone bioavailable
circulating levels [60]. Several studies have shown that the correction of testosterone levels
in men with obesity and in men with normal to low testosterone levels was associated
with a reduction of body weight, waist circumference, visceral fat mass and a simultaneous
increase of muscle mass [61–64]. Moreover, a recent placebo-controlled trial on testos-
terone treatment for 1 year in older men with low testosterone levels showed, compared
to placebo, a significant increase of volumetric BMD and estimated bone strength [65].
Thus, a testosterone-replacement treatment could be considered for elderly patients with
obesity and low levels of testosterone, as this treatment option appears to be associated
with adequate cardiovascular safety [66].
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Figure 1. Role of endocrine and inflammatory/immune dysregulation in the pathogenesis of osteosar-
copenic obesity. Red, curved arrows: negative influence; bidirectional red curved arrows indicate
mutual influences perpetuating the pathogenic vicious cycle. Upward arrows indicate an increase.
Causes of glucocorticoid excess include Cushing disease/syndrome, aging, sleep deprivation, stress,
steroid therapy; ageing is associated with GH, IGF1 and androgen deficiency; adipose tissue dys-
function triggers low-grade chronic inflammation. See text for detailed explanation. GH, growth
hormone; IGF1, insulin-like growth factor 1; TNF-α, tumor necrosis factor-alpha; IL-1, interleukin 1;
IL-6, interleukin 6; CRP, C-reactive protein; PG-E2, prostaglandin E2; LT-B4, leukotriene B4. Created
with BioRender.com, accessed on 31 March 2022.

3.2. Low-Grade Chronic Inflammation

Mechanisms underlying osteosarcopenic obesity reflect the multiple pathophysio-
logical facets of the organism’s response to stress, which ultimately leads to metabolic
derangements and dysfunctional body composition. Distinguishing the effects of acute and
chronic stress on body homeostasis is paramount to fathom osteosarcopenic obesity. While
acute stress prompts a flexible adaptation in a synchronous and self-resolving way [67],
chronic stress induces maladaptive, yet self-perpetuating processes that culminate in persis-
tent homeostatic imbalance [67,68]. The HPA axis is a major actor in the response to stress,
its activation leading to different downstream effects depending on the type and duration
of the insult [69]. Acute stress results in a rapid surge of energy through the secretion
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of catecholamines from the adrenal medulla and cortisol from the adrenal cortex, with
beneficial hormonal, neural and immune consequences aimed for survival [70]. Chronic
stress, instead, disrupts the physiological circadian fluctuations in cortisol release and
causes constantly high or low serum cortisol levels [71]. The resulting prolonged, steady
stimulation of glucocorticoid receptors located on immune cells leads to their progressive
desensitization, with profound repercussions on immune equilibrium. Specifically, local
and/or systemic inflammatory molecules, including nuclear factor kappa-beta (NF-kB),
tumor necrosis factor (TNF)-alpha, and pro-inflammatory interleukins (i.e., IL-1, IL-6),
become overexpressed in the absence of the regulatory control of cortisol on immune cells,
ultimately leading to increased inflammation [71]. As expected, inflammation induced by
chronic stress is in itself chronic, as both processes influence and perpetuate each other.
Sources of chronic stress include diet and lifestyle, impaired psychological status, chronic
diseases, etc. [68]. Therefore, in light of the aforementioned considerations, all these factors
also lead to low-grade chronic inflammation, which in turn foments chronic stress as in a
vicious cycle. Low-grade chronic inflammation is defined as the persistent increase in pro-
and anti-inflammatory mediators or immune cells in the circulation [72]. A dysregulation
of resolvins and protectins, key mediators of inflammation resolution, has been implicated
in low-grade chronic inflammation [73]. Body composition fits into these processes as both
the influencer and influenced, through several interconnected mechanisms. The inflamma-
tory effects of excess and dysfunctional adiposity, as in patients with obesity, parallel the
accumulation of more body fat through a positive feedback loop, suggesting that adipose
tissue plays a major role in low-grade chronic inflammation [10,72,74]. Pro-inflammatory
lipid mediators, especially prostaglandin (PG) E2 and leukotriene (LT) B4, induce the
activation of peroxisome proliferator-activated receptor gamma (PPAR g) signaling, pro-
moting further adipocyte proliferation [68]. The resulting increased adipose metabolism, in
turn, fuels the production of inflammatory cytokines and perpetuates low-grade chronic
inflammation. Accordingly, abnormal circulating levels of TNF-α, IL-6, C-reactive protein
(CRP) and leptin have been found in individuals with obesity, reflecting their overexpres-
sion in adipose tissue [75,76]. Adiponectin and leptin, adipocyte-produced adipokines,
have opposing effects, the first bearing anti-inflammatory properties [77], the latter be-
ing pro-inflammatory [78]. Obesity is characterized by a decreased adiponectin/leptin
ratio, which has been recently suggested as an estimator of dysfunctional adipose tis-
sue [79,80]. The actions of leptin are not limited to energy metabolism but extend to bone
formation through hypothalamic interactions, with anti-osteogenic effects under certain
conditions [81]. In bone, low-grade chronic inflammation stimulates osteoclastogenesis
through the action of proinflammatory cytokines such as IL-6, IL-1 and TNF-α, which are
produced by stressed adipocytes and adipose tissue-resident macrophages [82]. Another
important mechanism of obesity-associated osteopenia involves mesenchymal stem cells
(MSC), precursors of both osteoblasts and adipocytes. Low-grade chronic inflammation
may disrupt MSC lineage commitment, favoring adipogenic differentiation at the expense
of osteoblastogenesis [10,74]. Upregulated proinflammatory cytokines in patients with
obesity may also induce osteopenia and osteoporosis by regulating the receptor activator of
nuclear factor kappa-B (RANK)/RANK ligand/osteoprotegerin pathway, with a resulting
decreased expression of osteoprotegerin and increased RANK signaling, culminating in
osteoclastogenesis activation and bone resorption [10,83].

Obesity and obesity-related low-grade chronic inflammation deeply impact skeletal
muscle health. Elevation of circulating inflammatory cytokines is associated with decreased
muscle mass in the elderly [84]. Moreover, having MSC also myogenic potential, MSC
lineage commitment dysfunction leading to increased adipogenesis induced by low-grade
chronic inflammation is associated also to muscle tissue loss (i.e., sarcopenia) in addition
to osteopenia [10]. Besides the deleterious action on MSC, obesity-associated low-grade
chronic inflammation, through the increase in proinflammatory mediators and the acti-
vation of immune-mediated mechanisms, may lead to a progressive decrease in muscle
mass paralleled by a shift in tissue composition towards fat deposition and accumulation



Nutrients 2022, 14, 1816 6 of 16

in muscle due to increased insulin resistance [85]. Both reduced muscle mass and fatty
infiltration of muscle (i.e., myosteatosis) may affect bone health. Low appendicular muscle
mass and muscle strength have been associated with a more rapid decrease in total vol-
umetric BMD and cortical bone parameters evaluated by HR-pQCT in older men [86,87],
and myosteatosis of paraspinal muscles was inversely associated with lumbar BMD in
middle-aged and elderly men and women [88]. Furthermore, the progressive physical
inactivity that typically characterizes patients with obesity increases adipose tissue and
decreases muscle mass even further, exacerbating metabolic dysfunction [85]. Decreased
mobility also decreases bone formation, disrupting body composition thoroughly in a
positive feedback loop.

4. Hypovitaminosis D and Osteosarcopenic Obesity
4.1. Vitamin D: Brief Overview

Vitamin D is a fat-soluble steroid hormone crucial for skeletal health and intestinal
calcium absorption, demonstrated to prevent osteomalacia/rickets and also has many
other extra-skeletal systemic actions [89]. In humans, vitamin D is prevalently produced
in the skin after the exposure to sunlight as a result of irradiation of 7-dehydrocholesterol
(pro- vitamin D), normally present in the skin, by UV-B rays [90,91]. UV-B irradiation of
7-dehydrocholesterol promotes a photochemical cleavage generating the pre- vitamin D3
hormone that, through a temperature-dependent molecular rearrangement, in the following
48 h is transformed into vitamin D3 (called cholecalciferol), and into tachysterol and
luminosterol, two biologically inert products. Dietary intake provides not more than 20%
of daily vitamin D requirements, the major dietary sources being represented by fortified
cereal and dairy products, egg yolks, mushrooms, fish oils, and plants (the latter are a
source of vitamin D in the vitamin D2 form, called ergocalciferol, a vitamin D form activated
equally efficiently by the vitamin D–hydroxylases). Vitamin D is secreted as a pro-hormone,
thereafter it is transferred into the circulation by binding to the serum vitamin D-binding
protein (DBP) [92]. Approximately 90% of vitamin D circulates bound to the VDBP, 0.03% is
free, and the rest 10% circulates bounding to the albumin. To obtain the biologically active
form of vitamin D, a succession of two hydroxylation reactions of VD3 is required. The first
hydroxylation step occurs in the liver by the VD-25-hydroxylase (CYP2R1), which converts
cholecalciferol into 25-hydroxycholecalciferol (25(OH)D); the second hydroxylation step
occurs in the kidney proximal tubules by the vitamin D-1-hydroxylase (CYP27B1), which
converts 25-hydroxycholecalciferol into 1,25-dihydroxycholecalciferol (called calcitriol), the
active form of vitamin D. This latter mechanism is under the strict control of endogenous
parathyroid hormone (PTH) action, serum calcium, phosphates, and the fibroblast growth
factor-23 (FGF-23), whereas the mechanisms regulating the first hydroxylation step are
poorly understood [93–95].

The vitamin D receptor (VDR) is widely expressed on several organs and tissues, and
a very high number of genes (about 3% of the human genome) are under the indirect or
direct control of vitamin D in its active form, suggesting a widely ranging in the biological
spectrum of vitamin D activities. In fact, vitamin D is crucial for skeletal and calcium
homeostasis, and has also many extra-skeletal actions [89], including immunomodulation
and body composition regulation. Assessment of total 25OH-vitamin D is widely accepted
as a marker of the vitamin D status, with 25OH-vitamin D levels below 20 ng/mL repre-
senting deficiency and levels above 30 ng/mL sufficiency [95]. Vitamin D deficiency is a
widespread health issue worldwide and as many as one-third of the world’s population is
deficient, ranging from <20% of the population in Northern Europe, to 30–60% in Western,
Southern and Eastern Europe and up to 80% in Middle East countries [96]. Several physio-
logical and pathological conditions are known to negatively influence vitamin D production
and metabolism, including ageing, skin color, diabetes mellitus, obesity, adiposity and
sarcopenia [97–102].
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4.2. Vitamin D, Insulin Resistance and Musculoskeletal Health

Vitamin D deficiency was found to be associated with insulin resistance in a wealth
of large epidemiological and cross-sectional studies [103], the strength of this association
increasing with increasing BMI, being highest in subjects with obesity [104]. Several
mechanisms have been called into question to explain the association between vitamin D
and glucose metabolism. Via modulation of intracellular Ca2+ concentration, vitamin D
is involved in the regulation of insulin secretion by pancreatic β cells and of membrane
translocation of glucose transporters in insulin-sensitive tissues, including skeletal muscle
and adipose tissue [105]. Vitamin D also plays a role both in the innate and adaptive
immune system [106,107], and may exert antioxidant and anti-inflammatory effects that
could counteract the inflammation driven by insulin resistance. Vitamin D modulates
the gene expression of various components of the adipocyte secretome, including the
adipokines such as leptin, but preclinical and clinical studies have yielded heterogeneous
results on the association between vitamin D and leptin [108]. Vitamin D is also known
to play a role in adipose tissue adipogenesis, lipogenesis, lipolysis and inflammation. Of
note, vitamin D deficiency may affect the adipose tissue capacity of storing fatty acids,
which in turn might be re-directed to other tissues, including skeletal muscle, where ectopic
fat deposition may trigger inflammation and impair insulin sensitivity [109]. Consistent
with preclinical evidence supporting its role in glucose metabolism and body composition,
vitamin D supplementation was reported to improve insulin resistance and to reduce in
total trunk fat mass in patients with obesity [110], to improve glycemic control in subjects
with prediabetes [111], and to be inversely associated with insulin resistance [104], although
not all studies point towards a beneficial effect of vitamin D on insulin sensitivity [112].

Vitamin D may also be involved in the crosstalk between skeletal muscle and bone, by
stimulating the production of bone- and skeletal muscle-derived factors such as osteocalcin,
sclerostin, vascular endothelial growth factor (VEGF), IGF-1 and myostatin, that may act
as endocrine signals between the two tissues [113]. Undoubtedly, maintaining vitamin D
levels within the normal range is key to musculoskeletal health. Both direct and indirect
mechanisms have been postulated, with the crucial role of vitamin D in the regulation in
the calcium–phosphorus metabolism being prominent. In fact, low calcium and phosphate
levels, and elevated PTH secondary to hypovitaminosis D may impair muscle function and
repair, leading to proximal muscle weakness; low phosphate levels impair chondrocyte
maturation and, if calcium is also low, may reduce mineralization of osteoid; high PTH lev-
els increase bone resorption, increasing cortical bone porosity and fracture risk [114]. Direct
effects of vitamin D on skeletal muscle repair and mitochondrial function have also been
reported [115–117], as well as a protective action against IL-6-induced inflammation [118].
Pre-clinical evidence indicates that vitamin D is involved in the regulation of skeletal
muscle cell proliferation, differentiation, protein synthesis and bioenergetics by modulating
the expression of myogenic regulatory factors [119]. Downregulation of the VDR results
in skeletal muscle atrophy and functional decline [120], while VDR overexpression has
been associated with skeletal muscle hypertrophy [121]. Consistent with this evidence,
individuals with severe vitamin D deficiency either due to congenital mutations or to
end-stage kidney disease develop severe muscle weakness that rapidly improves after
treatment with 1,25(OH)2D [122]. In older people with type 2 diabetes, low vitamin D
intake was associated with skeletal muscle loss over approximately 14 months [123]. A
large population study in older Koreans showed that vitamin D levels were significantly
lower in those with low skeletal muscle mass, with or without obesity, as compared with
non-sarcopenic subjects [124]. The authors found a strong correlation with vitamin D levels
and the risk of sarcopenia. Similar results were reported in a subsequent cross-sectional
study conducted within the framework of the Ansan Geriatric (AGE) study including
216 men and 268 women aged 65 years and older, and in another cross-sectional analysis
of the Korean Sarcopenic Obesity Study (KSOS) including healthy men and women. Both
studies reported lower vitamin D levels in patients with sarcopenic obesity compared to the
other three groups, especially in males [125,126]. A further analysis of the Korea National
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Health and Nutrition Examination Survey (KNHANES), restricted to 4452 participants
aged 60 years and older, including 1929 men and 2523 women, showed lower vitamin
D levels in the group with sarcopenic obesity compared to the other three groups (sar-
copenia, obesity and non-sarcopenia/non-obesity) and that the prevalence of sarcopenia,
obesity and sarcopenic obesity increased with decreasing the dietary intake of vitamin D
and protein [127]. A clinical study including patients with osteoarthritis reported semi-
nal evidence regarding the role of leptin in sarcopenic obesity, and its relationship with
vitamin D [128]. Serum leptin plays essential roles in inflammation, bone metabolism and
body composition [79,80,129,130]. The authors reported that serum leptin levels positively
correlated with body mass index, waist circumference, fat mass and visceral fat, and nega-
tively with skeletal muscle index [128]. Patients with sarcopenic obesity had significantly
higher serum leptin levels compared to patients with obesity alone and normal weight and,
in multivariable regression models, serum leptin was negatively correlated with vitamin D.
Based on the available evidence, it appears that the relationships among adipose tissue,
bone and skeletal muscle are strictly entangled, and that vitamin D might play a role in
modulating, at least in part, this interorgan crosstalk (Figure 2).
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Figure 2. Potential role of vitamin D deficiency in the development of osteosarcopenic obesity.
Vitamin D deficiency may reduce immune, antioxidant and anti-inflammatory capacity, is associated
with multi-organ insulin resistance and altered adipogenesis, lipogenesis, lipolysis and inflammation
in adipose tissue, might impair bone–skeletal muscle crosstalk and, by altering calcium–phosphorus
metabolism, may impair muscle function and repair, chondrocyte maturation, bone mineralization
and increase bone resorption. All these mechanisms could contribute (rightward arrow) to the
development of osteosarcopenic obesity. PTH, parathyroid hormone. Upward arrow, increase;
downward arrow, decrease. Created with BioRender.com, accessed on 31 March 2022.

4.3. Vitamin D in Osteosarcopenic Obesity: Is There a Therapeutic Role?

Most data on the association between vitamin D and osteosarcopenic obesity are
derived from large population studies from Korea. In KNHANES IV and V, including
5908 patients (2485 men, 3423 women) aged 50 years or older, high serum vitamin D
level was associated with significantly lower odds of having adverse body composition
features (osteopenia/osteoporosis, obesity, sarcopenia), especially osteosarcopenic obesity,
in both males and females [131]. A subsequent analysis, aimed at specifically investigating
the clinical manifestations and factors associated with osteosarcopenic obesity in 3267
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(1080 men, 2187 women) subjects from KNHANES, confirmed that vitamin D deficiency
was associated with osteosarcopenic obesity, both in men and women [37]. In fact, the
prevalence of vitamin D deficiency was highest in subjects with osteosarcopenic obesity, as
compared with those with obesity, sarcopenic obesity or osteopenic obesity.

Based on the favorable, pleiotropic effects of vitamin D on tissues involved in the
pathogenesis of osteosarcopenic obesity, inflammation and glucose metabolism, as well
as on the association between low vitamin D levels and osteosarcopenic obesity, there
is a strong rationale for supplementing subjects with osteosarcopenic obesity with vi-
tamin D. To the best of our knowledge, no studies have specifically investigated the
effects of vitamin D supplementation in osteosarcopenic obesity. The best available ev-
idence to date comes from systematic reviews and metanalyses that investigated the
effect of vitamin D supplementation, at different doses and in subjects with different
characteristics, on insulin resistance, body composition and indices of muscle function.
A large random-effects meta-analysis and trial sequential analysis of randomized con-
trolled trials of vitamin D in adults showed that vitamin D had no effect on total fracture
(RR 1.00 [95% CI 0.94–1.07]), hip fracture (RR 1.11 [0.97–1.26]), falls (RR 0.97 [0.93–1.02]),
or BMD at any site (range −0.16% to 0.76% over 1–5 years) [122]. Another systematic
review and meta-analysis of randomized placebo-controlled trials showed either no dif-
ference or even worsening of muscle function tests such as the timed up and go test
(0.15 [95% CI 0.03 to 0.26] more seconds spent performing the test) or the maximum knee
flexion strength [−3.3 (95% CI −6.63 to −0.03) Newton] compared with placebo [132]. The
studies included in this analysis were conducted in humans of any age (except athletes),
supplemented with vitamin D2 or D3 versus placebo, regardless of mode or duration of
administration, with or without calcium co-supplementation. Mean study duration was
only 6 months. More recently, another systematic review and meta-analysis of placebo-
controlled trials found that vitamin D monotherapy did not improve any sarcopenia
indices (handgrip strength, timed up-and-go, and appendicular lean mass) in community-
dwelling adults aged 50 years or older, and was associated with a significant reduction
in physical performance, as assessed by the short physical performance battery score
(−0.23 [95% CI −0.40 to −0.06] versus placebo) [133]. A randomized controlled study in
Lebanese subjects with overweight/obesity aged 65 years or older with baseline hypovi-
taminosis D (10–30 ng/mL) treated for 1 year with either low (600 IU) or high (3750 IU)
doses of vitamin D3 daily, in conjunction with calcium supplementation (1000 mg/day),
showed no change in appendicular lean mass index, nor in adiposity indices including
visceral adipose tissue [134]. When given in conjunction with protein supplementation
(10–44 g/day), vitamin D (100–1600 IU/day) exhibited statistically significant beneficial
effects on muscle strength, as assessed by handgrip strength (+0.38 [95% CI 0.18 to 0.47] kg
versus placebo) and the sit-to-stand time (−0.25 [95% CI −0.06 to −0.43] seconds versus
placebo) [135]. The co-supplementation of vitamin D and protein tended to increase muscle
mass, although this effect was marginally non-significant. Finally, favorable effects on
appendicular muscle mass index in sarcopenic elderly subjects have been reported when
vitamin D is administered in conjunction with whey protein and leucine [136].

5. Conclusions

We reviewed the available literature on osteosarcopenic obesity and the potential role
of vitamin D in the pathogenesis and treatment of this condition. Evidence from large
observational studies and pre-clinical experiments strongly supports a role of vitamin D
deficiency in the pathogenesis of osteosarcopenic obesity (Figure 2). Vitamin D has a key
role in musculoskeletal health, and data indicate an association between low vitamin D
levels and the risk of osteosarcopenia in subjects with obesity. However, the common
belief that vitamin D improves musculoskeletal health lacks solid clinical evidence, as
trials specifically aimed at assessing the effects of vitamin D supplementation in patients
with osteosarcopenic obesity are not available, and trials that investigated the role of
vitamin D on muscle and bone health in other patient populations showed either no or
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even detrimental effects. However, strong limitations of these studies are the lack of data
on baseline and post-treatment vitamin D levels as well as the huge variability of vitamin
D doses and length of follow-up. In fact, enrollment of vitamin D sufficient subjects at
baseline may heavily influence the effect of supplementation and the use of excessive dose
of the hormone may result in undesired effects [137,138]. Evidence suggests that vitamin
D supplementation is beneficial to skeletal muscle when associated to protein or amino
acid supplementation. Therefore, it is possible that vitamin D improves musculoskeletal
health synergistically with other nutrients [139]. In fact, several other mineral and vitamin
deficiencies may contribute osteosarcopenic obesity [140]. Thus, more complex nutritional
strategies may be needed to counteract the syndrome. Physical activity has also been
shown to exert favorable effects on body composition in sarcopenic obesity [141] and
osteopenia/osteoporosis in the context of obesity [142], and should therefore be part of
every intervention aimed at improving the features of osteosarcopenic obesity.

Studies are needed to clarify the role of vitamin D deficiency and supplementation
in patients with osteosarcopenic obesity and low vitamin D levels, with more precise
assessment of fat distribution and muscle function, besides muscle mass. In fact, in the
largest studies on osteosarcopenic obesity, sarcopenia was defined using only muscle mass,
and an appropriate evaluation of muscle strength was lacking. A more precise definition of
the syndrome is necessary, and large studies including individuals with osteosarcopenic
obesity, representative of different sex, age and race, are needed to better define the role of
vitamin D in the pathogenesis and treatment of this condition.
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