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ABSTRACT

The thylacine is popularly used as a classic example of convergent evolution between
placental and marsupial mammals. Despite having a fossil history spanning over
20 million years and known since the 1960s, the thylacine is often presented in both
scientific literature and popular culture as an evolutionary singleton unique in its
morphological and ecological adaptations within the Australian ecosystem. Here, we
synthesise and critically evaluate the current state of published knowledge regarding
the known fossil record of Thylacinidae prior to the appearance of the modern
species. We also present phylogenetic analyses and body mass estimates of the
thylacinids to reveal trends in the evolution of hypercarnivory and ecological shifts
within the family. We find support that Mutpuracinus archibaldi occupies an
uncertain position outside of Thylacinidae, and consider Nimbacinus richi to likely
be synonymous with N. dicksoni. The Thylacinidae were small-bodied (< ~8 kg)
unspecialised faunivores until after the ~15-14 Ma middle Miocene climatic
transition (MMCT). After the MMCT they dramatically increase in size and develop
adaptations to a hypercarnivorous diet, potentially in response to the aridification of
the Australian environment and the concomitant radiation of dasyurids. This fossil
history of the thylacinids provides a foundation for understanding the ecology of the
modern thylacine. It provides a framework for future studies of the evolution of
hypercarnivory, cursoriality, morphological and ecological disparity, and
convergence within mammalian carnivores.

Subjects Evolutionary Studies, Paleontology, Zoology
Keywords Tasmanian tiger, Thylacinus cynocephalus, Marsupial, Hypercarnivory, Body mass,
Parsimony, Phylogeny, Middle Miocene climatic transition

INTRODUCTION

The thylacine (Thylacinus cynocephalus Harris, 1808) is arguably a modern Australian
icon. Since the last known individual died in captivity in 1936, it has served as a cautionary
tale of the impact of humans on ecosystems and a potent symbol for the conservation of
endangered species (Moeller, 1997; Paddle, 2000; Wemmer, 2002; Prowse et al., 2013;
Barnett ¢ Lorenzen, 2018). Recent interest in the thylacine has produced a slew of media
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activity surrounding the animal, including (in brief) popular books (Freeman, 2014),
popular-science conference presentations (Windle, 2017), and even a full-length motion
picture (Nettheim, 2011). This is in addition to peer-reviewed scholarly output, which has
also seen a recent increase in number of publications and of researcher interest
(Sleightholme & Campbell, 2016; Berns & Ashwell, 2017; Feigin et al., 2017; Haygarth, 2017;
Newton, Feigin ¢ Pask, 2017; White, Mitchell & Austin, 2017; White et al., 2018).

While these studies have brought about intriguing results, they are hampered by the fact
that the thylacine was the only member of the family Thylacinidae to persist until modern
times. In effect this presents the thylacine as a one-oft, singular organism unique in its
evolution and traits, a concept highlighted in many studies (Miller et al., 2009; Menzies
et al., 2012; Feigin et al., 2017; Newton et al., 2018). Although this seeming uniqueness has
prompted much research into the thylacine, of which the examples given here are only
a small portion, it can potentially hinder efforts or present false signals when attempting to
understand its ecology or behaviour.

The thylacine last shared a common ancestor with extant dasyuromorphians ~38.2 Ma
(Dos Reis et al., 2012; Mitchell et al., 2014; Westerman et al., 2016; Kealy & Beck, 2017).
This deep split in evolutionary history between thylacines and their closest extant relatives/
marsupial analogues is similar in depth to, e.g., that separating the drastically disparate
meerkat (Suricata suricatta) and tiger (Panthera tigris) — ~37.1 Ma (Eizirik et al., 2010;
Zhou, Wang & Ma, 2017). This separation makes it difficult to draw tightly constrained
conclusions regarding the ecologic niche of the thylacine. Additionally, their superficial
similarity to canids and difference from any living marsupial has frustrated analyses and
often led to dissimilar results. As an example, recent studies have found remarkable levels
of morphologic similarity and convergence between thylacines and placental analogues
(Feigin et al., 2017; Newton, Feigin ¢ Pask, 2017). Conversely, other research has served to
underscore how distinct they were from perceived analogues, both functionally and
presumably ecologically (Jones ¢ Stoddart, 1998; Jones, 2003; Wroe et al., 2007; Attard
et al., 2011; Figueirido & Janis, 2011; Janis ¢ Figueirido, 2014).

To add to these difficulties, recent phylogenetic work has radically refined our
understanding of the time-depth of the dasyuromorphian radiations along with the
position of the thylacinids within the clade (Meredith et al., 2009; May-Collado,
Kilpatrick & Agnarsson, 2015; Archer et al., 2016; Westerman et al., 2016; Kealy & Beck,
2017). The understanding of the relationship of the thylacinids to the other Australian
marsupials has had a convoluted history. Sinclair (1905) considered the thylacine to be a
derived member of what was then known as the borhyaenids, which are now found to
be members of various lineages within the South American non-marsupial metatherian
Order Sparassodonta (Forasiepi, 2009; Ladeveze ¢ De Muizon, 2010; Beck et al., 2014;
Forasiepi, Judith Babot & Zimicz, 2015; Suarez et al., 2016; Wilson et al., 2016). These taxa
(e.g., Borhyaena, Prothylacinus, Cladosictis, and Sipalocyon (Amphiproviverra)) were
grouped by Sinclair (1905) with the thylacinids on the basis of various dental and
postcranial characters. Wood (1924) supported this view, but various dissenting
hypotheses were prevalent (Matthew, 1915; Pocock, 1926; Cabrera, 1927; Fig. 1). Both
Matthew (1915) and Simpson (1941) argued that the dental characters linking the two
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Figure 1 Historical concepts of the interrelationships between the carnivorous metatherians. (A) after Sinclair (1905), Wood (1924); (B) after
Matthew (1915), Pocock (1926), Simpson (1941); (C) after Cabrera (1927); (D) after Marshall (1977); (E) after Marshall (1977), Archer (1982).

Full-size k&l DOL: 10.7717/peerj.7457/fig-1

groups were most likely due to a remarkable degree of convergence on hypercarnivory,
although authors as late as Archer (1976) posited the possibility of a common ancestor for
the two to the exclusion of the dasyurids. Marshall (1977) suggested that the apparent
affinities of the thylacinids and borhyaenids were due to strong convergence, and argued
for the thylacinids to be allied with the dasyurids. It was not until the early 1980s that
molecular evidence would lend support to an increasing number of morphologic studies
confirming the inclusion of Thylacinidae within Dasyuromorphia (Marshall, 1977; Archer,
1982; Sarich, Lowenstein & Richardson, 1982; Szalay, 1982). Within Dasyuromorphia
the position of Thylacinidae has been recovered as either the sister-group to the dasyurids
with a deeper Myrmecobiidae (Krajewski, Wroe ¢ Westerman, 2000; Wroe & Musser,
2001) or as sister to both Dasyuridae and Myrmecobiidae (Miller et al., 2009). Recently,
consensus has coalesced around the latter hypothesis, with Thylacinidae sister to a clade
formed by Myrmecobiidae + Dasyuridae (May-Collado, Kilpatrick ¢ Agnarsson, 2015;
Westerman et al., 2016; Kealy ¢ Beck, 2017).

Our understanding of the thylacinid phylogeny has been greatly aided by dramatic shifts
in our knowledge of fossil thylacinids (Wroe, 2003; Yates, 2015). The first pre-Pleistocene
fossil thylacinid (i.e., not Thylacinus cynocephalus) was not described until the end of
the 1960s (Woodburne, 1967). It would be over two decades until a second fossil thylacinid
was described (Muirhead ¢» Archer, 1990). From that point no fewer than ten additional
taxa have been described, with new species described as recently as 2015 (Yates, 2015).
This had greatly increased our ability to place the recently extinct thylacine into an
evolutionary context, and has underscored the deep divergence and potential evolutionary
distance between the thylacine and its closest extant relatives.

We aim to provide a synthesised review of the current state of knowledge of the pre-
Pleistocene fossil Thylacinidae, including biological and ecological implications of their
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Figure 2 Dental terminology of generalised marsupial molars. (A) Right maxillary molar. (B) Left
mandibular molar. Labels “A-E” refer to stylar cusps. Full-size K&l DOT: 10.7717/peerj.7457/fig-2

evolutionary history and gaps in our knowledge. It is hoped that by highlighting the history
of the thylacine, future studies may benefit from contextualising their research within this
framework. This evolutionary history underscores that the thylacine was not a unique
organism, but like all organisms part of an evolutionary radiation with clear trends towards
what would ultimately be represented in Thylacinus cynocephalus.

MATERIALS AND METHODS

Adult thylacinid dental formula is 4.1.3.4/3.1.3.4 following the premolar/molar boundary of
Flower (1867) and Luckett (1993). Terminology of molar morphology is presented in Fig. 2,
largely following Kielan-Jaworowska, Cifelli ¢ Luo (2004; pp. 412, 434). Our use of the
terms faunivory and hypercarnivory refer to specific derivations within general carnivore
ecology. Faunivory here refers to dental morphology suggesting a subequal consumption of
invertebrate and vertebrate prey, without any specialised trends towards either insectivory
or the heavy consumption of vertebrate flesh. Hypercarnivory is generally defined as a
diet consisting of >70% vertebrate flesh (Van Valkenburgh, 2007), but as the dietary habits
of fossil taxa are unobservable, is here used to refer to any dental trend towards the
simplification of the carnassial and molar teeth and lengthening of their cutting blades,
effectively increasing their shearing and reducing their grinding capabilities.

The phylogenetic history of Thylacinidae was explored via both parsimony and
Bayesian Mkv models. We compiled a morphological dataset modified from that of Yates
(2014) and Kealy ¢ Beck (2017) comprising 80 characters scored across 25 taxa, including
all currently described thylacinids. Where characters for fossil thylacinids needed scoring,
or to cross-check previous scores, published descriptions and specimen photographs
were used, as the physical specimens were unavailable for examination. The parsimony
analysis was performed in tree analysis using new technology (TNT) v. 1.5 (Goloboff,
Farris & Nixon, 2008). A skeleton constraint tree for the extant dasyurids was constructed
in Mesquite v. 3.51 based on recent molecular phylogenies (Archer et al., 2016; Westerman
et al., 2016; Kealy ¢ Beck, 2017; Maddison ¢» Maddison, 2018). As the number of taxa
was relatively low, the analysis was conducted via implicit enumeration. Support for the
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tree nodes was assessed in TNT by calculating the Bremer support on suboptimal trees,
and group present/contradicted frequency values generated by symmetric resampling

(P = 33) at 5,000 replicates, using tree bisection reconnection. The resultant consensus tree
was time-scaled with the Bell ¢ Lloyd (2014) R package ‘strap’ using the ‘equal’
methodology adapted therein from Brusatte et al. (2008). Age ranges for the fossil taxa are
based on published literature and references for the non-thylacinid taxa given in Dataset
54, with justifications for the thylacinids provided below in Systematic Palaeontology.

Regarding thylacinid intrafamilial relationships, the middle Miocene taxon
Mutpuracinus archibaldi was initially found to be a plesiomorphic member of
Thylacinidae (Murray ¢» Megirian, 2000, 2006a; Wroe, 2003; Yates, 2014, 2015). However,
recent work has grouped the taxon with the plesiomorphic dasyuromorphian Barinya
wangala, both of which have been shown to consistently fall outside Thylacinidae (Archer
et al., 2016; Kealy & Beck, 2017; Travouillon ¢ Phillips, 2018). To assess the hypothesis that
Mutpuracinus archibaldi is a thylacinid, an altered skeleton tree was used along with the
‘force’ command to produce this constraint, and a second parsimony analysis was run.
A Templeton test was performed in TNT against both the resultant consensus trees as well
as against the first most parsimonious tree for each analysis to determine the significance
of any difference.

The Bayesian analyses were performed in MrBayes v. 3.2.6 on the CIPRES Science
Gateway (Miller, Pfeiffer & Schwartz, 2010; Ronquist et al., 2012). An undated Mkv + G
model analysis was performed on the morphological matrix, with a root, ingroup, and
Phascogalini constraint topology to serve as an analogue to the skeleton tree used in the
TNT analysis above. This analysis was comprised of four runs of four chains, sampling
every 5,000 generations, for 20 million generations, generating a post-burn-in 50%
majority rules consensus tree.

A tip-dating analysis was performed on the morphological matrix with the addition of
ribosomal 12S RNA molecular data. The single gene was chosen as we had complete
coverage of our extant taxa, and as to limit the potential of overwhelming the small set of
morphological data, especially considering that our study clade is near-entirely devoid of
genomic data. The molecular data and partitioning scheme was taken from Kealy ¢» Beck
(2017), and Genbank accession numbers provided in Table S3. A single independent
gamma rates clock model was used and a fossilised birth-death prior assumed. Extant
sampling was set to ‘random’ as we had an unequal sampling of extant dasyurids, with a
sample probability of 0.0833 for the extant taxa. Default speciation, extinction, and
fossilisation priors were used, and extant terminal taxa were assigned an age of zero Ma.
Age range justification was the same as that used in the parsimony tree time-scaling above.
The resulting ‘allcompat’ consensus tree was then also time-scaled with the R package
‘strap’ as a separate methodological comparison.

Body mass estimates for all published pre-Pleistocene thylacinid specimens known from
craniodental material were calculated from the dasyuromorphian-only regression
equations developed by Myers (2001). Body mass estimates for several of the pre-
Pleistocene thylacinids have been published (Wroe, 2001; Travouillon et al., 2009; Yates,
2014, 2015), but a comprehensive set of estimates using all applicable published specimens
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has yet to be performed. The highest ranked variable possible was chosen for each
specimen, and as each specimen was therefore potentially subject to a different calculation,
individual values are given in lieu of mean values for species. Regarding the large
Thylacinus megiriani and Thylacinus potens, dental metrics exceed that covered by the
equations of Myers (2001). Wroe (2001) discussed this and noted that both taxa appear to
vary in their dental proportions from the extant species, and chose to use geometric
similitude with Thylacinus cynocephalus to estimate the mass of these large thylacinids. We
here instead choose to employ the equations of Myers (2001), firstly as there is no a priori
reason to view geometric similitude as necessarily a more accurate estimate, given the
noted proportional difference between the taxa, and secondly to give a comparative set of
estimates to be complementary to those of Wroe (2001).

All data matrices, R code, and body mass estimates are presented in the Supplemental
Material.

The dating of Australian fossil localities has been a slow and difficult process, with the
majority of sites having no associated absolute ages. Dating the Australian fossil sites has
historically been based on biochronology, with many papers seeking to stratify, order, and
correlate the localities (Archer et al., 1989; Murray ¢ Megirian, 1992; Travouillon et al.,
2006; Megirian et al., 2010; Arena et al., 2015). Recent work has begun to provide
radiometric dates for some sites (Woodhead et al., 2016). We have attempted to correlate
sites and specimens with dates wherever possible, using biocorrelation seriations correlated
with sites that now have been quantitatively dated. However, the quantitative dating of
Australian fossil localities is very much in its infancy, so we stress that the site dates and
taxa age ranges given here are estimates.

RESULTS

Phylogenetic analysis

The undated parsimony and Bayesian phylogenetic results are presented in Fig. 3. The
parsimony analysis using implicit enumeration recovered 30 most parsimonious trees
(length 171, CI: 0.520, RI: 0.645), after a posteriori removal of Maximucinus muirheadae
(85% missing characters; Fig. 3A). Bremer support values higher than 1.0 were found for
all nodes, though bootstrap values equal to or higher than 50% were only recovered for
Perameles + Dasyuromorphia (100), extant Dasyurus (excluding Dasyurus dunmalli; 78),
a clade comprising Thylacinus spp. excluding Thylacinus macknessi (51), and a polytomy
containing Thylacinus megiriani, Thylacinus yorkellus, and Thylacinus cynocephalus (60).
The forcing of Mutpuracinus archibaldi into Thylacinidae resulted in a slightly longer tree
(length = 174, CI: 0.511, RI: 0.6432), indicating less support for that hypothesis, although
both Templeton tests found the difference to be not significant.

Bayesian analysis of the morphological data recovers a very similar, though less resolved
topology (Fig. 3B). Monophyly of Dasyuridae received higher support here (Bayesian
posterior probability (BPP) = 0.83). As with the parsimony analysis, placement of the fossil
dasyurids did not support their generic attributions, though with the necessary caveat that
the current study was not designed to uncover the relationships within Dasyuridae.
Thylacinidae receives moderate supports (BPP = 0.84), though the intrafamilial
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Figure 3 Phylogenetic results based on the 80 character morphological dataset. (A) Majority rules 50% consensus of 30 most parsimonious trees
under implicit enumeration (length 171, CI: 0.520, RI: 0.645) after removal of Maximucinus muirheadae from the matrix. (B) Bayesian analysis
majority rules 50% consensus of post-burn-in trees. Branch lengths are arbitrary. Circles at nodes are bootstrap GC values in (A), BPP in (B), only
values 250% are shown. Thylacinidae in magenta.

Full-size kal DOI: 10.7717/peer;j.7457/fig-3

relationships are highly unresolved and only weakly supported, comprised of a basal
polytomy, a polytomy containing Tyarrpecinus, Wabulacinus, and Thylacinus macknessi
(BPP = 0.67), and a clade containing the remainder of Thylacinus spp. (BPP = 0.66). The
only thylacinid clade here with a relatively strong support is that containing Thylacinus
megiriani, Thylacinus yorkellus, and Thylacinus cynocephalus (BPP = 0.91).

The molecular + morphology tip-dated Bayesian analysis is presented in Fig. 4. Again,

a monophyletic Dasyuridae is supported, but less strongly (BPP = 0.73). A clade consisting
of Mutpuracinus, Barinya, and Dasyuridae is relatively well supported (BPP = 0.84)
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although the placement of these two taxa within this clade is uncertain, with little support
for their sister relationship (BPP = 0.34). Within Dasyuridae, Sminthopsis floravillensis and
Dasyurius dunmalli again cluster with Dasyurini, although with minimal support (BPP =
0.55). A surprising result is the clade comprised of Sminthopsis murina and Dasyuroides
achilpatna (BPP = 0.73), a topology not recovered by Kealy ¢» Beck (2017) or Archer et al.
(2016). Thylacinidae here is unsupported (BPP = 0.29), with only three internal nodes
receiving even marginal support: a clade containing Ngamalacinus, Nimbacinus, and
Muribacinus (BPP = 0.80), a clade containing Thylacinus megiriani, Thylacinus yorkellus,
and Thylacinus cynocephalus (BPP = 0.80), and the sister relationship of Thylacinus
yorkellus and Thylacinus cynocephalus (BPP = 0.95). A very interesting result is the non-
monophyly of Thylacinus, caused by the exclusion of Thylacinus potens. This result is not
recovered in the other analyses and is not well supported here.

The split of Thylacinidae from the rest of Dasyuromorphia was estimated to be
41.8-35.7 Ma, comparable to that of past studies (range of ~43.0-30.7 Ma; Dos Reis et al.,
2012; Mitchell et al., 2014; Westerman et al., 2016; Kealy & Beck, 2017; see Fig. S1). The
internal structure of Thylacinidae is poorly resolved, but some timing can be hypothesised.
Badjcinus appears to have split from the rest of Thylacinidae approximately 34.8-32.5 Ma,
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with the Ngamalacinus + Nimbacinus + Muribacinus clade again splitting 29.0-25.9 Ma.
The clade including Tyarrpecinus + Thylacinus cynocephalus originated 24.1-25.4 Ma,
and the clade including Thylacinus megiriani, Thylacinus yorkellus, and Thylacinus
cynocephalus approximately 13.5-8.0 Ma.

The analyses all support placing Mutpuracinus archibaldi outside of Thylacinidae as
potentially sister to Dasyuridae or as a stem dasyuromorph, similar to placements
recovered by Kealy ¢ Beck (2017) and Travouillon ¢ Phillips (2018). Badjcinus turnbulli is
generally recovered as sister to the remainder of Thylacinidae, with a topology further
separated into two internal clades—one comprised of plesiomorphic, small-bodied
thylacinids (Nimbacinus, Muribacinus, Ngamalacinus) and one consisting of Tyarrpecinus,
Wabulacinus, and Thylacinus. This is similar to topologies recovered in previous work
(Yates, 2015; Archer et al., 2016; Kealy & Beck, 2017).

Body mass

Body mass estimates for the 35 applicable specimens are given in Table S2. Badjcinus
turnbulli is estimated to be between 1.7 and 3.1 kg, roughly comparable to the modern
Dasyurus maculatus. Both specimens of Muribacinus gadiyuli are small, at 1.6 and 1.7 kg,
respectively, while Maximucinus muirheadae is surprisingly large (18.4 kg) as stated in
Wroe (2001). Both Ngamalacinus timmulvaneyi and Nimbacinus dicksoni are slightly
larger than extant quolls, at 5.7-8.4 and 2.9-6.8 kg, respectively. Tyarrpecinus rothi and
Wabulacinus ridei are also estimated to be of similar size at 5.4 and 5.3-7.8 kg, respectively.

The members of the genus Thylacinus are larger as a whole than the other taxa within
the family. The small and early-diverging Thylacinus macknessi is estimated at 6.7-9.0 kg.
The large-bodied thylacinids Thylacinus megiriani and Thylacinus potens are estimated to
be 49.1 and 28.3-55.0 kg, respectively, and Thylacinus yorkellus at 14.5-17.8 kg. Recorded
masses for the recent Thylacinus cynocephalus are scant, but the estimated range of 15-35
kg by Moeller (1970) is likely accurate.

SYSTEMATIC PALAEONTOLOGY

Class Mammalia Linnaeus, 1758

Subclass Theria Parker ¢ Haswell, 1897

Infraclass Metatheria Huxley, 1880

Supercohort Marsupialia (I/liger, 1811) Cuvier, 1817
Cohort Australidelphia Szalay, 1982

Order Dasyuromorphia Gill, 1872
Dasyuromorphia incertae sedis

Genus Mutpuracinus Murray & Megirian, 2000
Mutpuracinus archibaldi Murray & Megirian, 2000

Holotype: NTM P907-3, partial left maxilla.

Type Locality: Bullock Creek Local Fauna (LF), Blast Site, Northern Territory, Australia.
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Referred Specimens: see Table S1

Distribution and Age: The Bullock Creek LF in Northern Territory is currently undated,
but has been estimated to be Camfieldian (~17-12 Ma) sensu Megirian et al. (2010).

Diagnosis: Following the amended diagnosis by Murray ¢» Megirian (2006a),
Mutpuracinus archibaldi difters from Dasyuridae in: elongate snout; retention of three
premolars; overall reduction of stylar crest and stylar cusps; reduction of paracones;
widened angle of the centrocrista; reduction of protocones, conules, and distal cingulae;
presence of a carnassial notch in the cristid obliqua (referred to as the prehypocristid by
Murray & Megirian (2006a); uniform reduction of the metaconids; reduction of the
entoconid. Differs from Badjcinus turnbulli, Nimbacinus dicksoni, and Thylacinus
cynocephalus in: full enclosure of the petrosal and alisphenoid hypotympanic sinuses by
the alisphenoid tympanic wing; posterior process of the maxillae narrow unlike Thylacinus
cynocephalus in which the posterior maxillary processes flare widely, interposing the
lacrimals, and nasals.

Remarks: The taxon is represented by several cranial specimens, including a near-
complete cranium and partial mandible (Murray ¢» Megirian, 2000, 2006a). Our findings
agree with those of Archer et al. (2016), Kealy ¢ Beck (2017), and Travouillon ¢ Phillips
(2018) in consistently falling outside Thylacinidae. The placement of Mutpuracinus
archibaldi is a currently unresolved position within, sister, or stem to either
Myrmecobiidae or Dasyuridae. We therefore refer Mutpuracinus archibaldi to
Dasyuromorphia incertae sedis pending more conclusive results.

Family Thylacinidae Bonaparte, 1838
Genus Badjcinus Muirhead & Wroe, 1998
Badjcinus turnbulli Muirhead & Wroe, 1998

Holotype: QM F30408, partial skull (Fig. 5D)

Type Locality: White Hunter Site, D-Site Plateau, Riversleigh World Heritage Area,
Queensland, Australia

Referred Specimens: see Table S1

Distribution and Age: Riversleigh World Heritage Area, northwestern Queensland,
Australia. The White Hunter Site is currently undated, but biocorrelation with the central
Australian Ngama LF of South Australia suggests a late Oligocene date of ~26.0-24.0 Ma
(Woodburne et al., 1994; Travouillon et al., 2006, 2011). However, fossil bats recovered
from the site (Brachipposideros nooraleebus) have been noted to be similar to those found
in the 17.4-16.8 Ma Bitesantennary Site as well as 20.4-16.0 Ma Burdigalian sites in France
(Sigé, Hand ¢ Archer, 1982; Archer et al., 1989; Hand ¢ Archer, 2005). As such, the date is
relatively uncertain, but the White Hunter site is likely to be latest Oligocene/earliest
Miocene in age.
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Figure 5 Non-Thylacinus fossil thylacinids. (A) Muribacinus gadiyuli QMF 30386 right maxilla and QMF 30385 right dentary. (B) Nimbacinus
dicksoni QMF 36357 cranium and left dentary. (C) Ngamalacinus timmulvaneyi QMF 30300 left maxilla. (D) Badjcinus turnbulli QMF 30403 left
premaxilla and maxilla. (E) Tyarrpecinus rothi NTM P98211 maxilla fragment. (F) Maximucinus muirheadae right M?. (G) Wabulacinus ridei QMF
16851 right maxilla fragment. Photo credits: (A) modified from Wroe (1996); (B) modified from Wroe ¢ Musser (2001); (C) and (G) © Queensland
Museum, Muirhead (1997); (D) modified from Wroe (2003); (E) modified from Murray & Megirian (2000), courtesy Museum and Art Gallery of the
Northern Territory; (F) modified from Wroe (2001). All photos reproduced with permission. Full-size k&l DOT: 10.7717/peerj.7457 /fig-5

Diagnosis: Following Muirhead & Wroe (1998): very small thylacinid; lacking a squamosal
epitympanic sinus; tympanic bulla lacks contribution by petrosal part of periotic; M'
preparacrista subparallel to the long axis of the tooth row; M; and M, , metaconids
differentially reduced. Distinguished from Nimbacinus dicksoni (Muirhead ¢ Archer,
1990) by: stylar shelf, protocone, and conules reduced; more elongate postmetacristae;
posterior cingulid joining hypocristid at base of hypoconid. Further differentiated from
other similar-sized thylacinids by: protoconules and metaconules less reduced; entoconids
and M,_, metaconids relatively unreduced; hypocristid transversely oriented; cristid
obliqua lacking carnassial notch and anterior termination less lingually shifted than in later
occurring thylacinids.

Remarks: Badjcinus turnbulli is the earliest named thylacinid currently known, and is
established from relatively complete cranial material. The known elements consist of a
partial skull, including the left premaxilla, partial left maxilla, nasals, frontals, zygomatic
arches, parietals, and a well-preserved basicranium, as well as partial left and right
dentaries and a dentary fragment consisting mostly of dentition and alveolar bone
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(Muirhead & Wroe, 1998). The entire postcanine mandibular dentition excepting P, are
represented within the collected specimens, while the postcanine maxillary row is present
excepting P°.

The rather plesiomorphic state of many of the characters of Badjcinus turnbulli has
resulted in some uncertainty regarding its phylogenetic placement. It has occasionally been
found to fall outside the clade as a potential dasyurid (Wroe et al., 2000) or stem-
dasyuromorphian (see discussion in Kealy ¢» Beck, 2017). Most phylogenetic analyses,
however, recover it as sister to the remainder of Thylacinidae (Muirhead ¢» Wroe, 1998;
Wroe & Musser, 2001; Murray ¢ Megirian, 2006a; Kealy & Beck, 2017).

Genus Maximucinus Wroe, 2001

Maximucinus muirheadae Wroe, 2001

Holotype: QM F30331, right M? (Fig. 5F).

Type Locality: Ringtail Site, Riversleigh World Heritage Area, Queensland, Australia.
Referred Specimens: none

Distribution and Age: Riversleigh World Heritage Area, northwestern Queensland,
Australia. The middle Miocene Ringtail Site has been radiometrically dated to ~14.2-12.9 Ma
(Woodhead et al., 2016).

Diagnosis: Modified from Wroe (2001): mid-sized thylacinid; all following features
referring to M”: stylar cusps B and D well-developed and laterally compressed; anterior
cingulum is continuous with the preparacrista; very small protoconule and metaconule.

Remarks: Maximucinus muirheadae is represented by a single M> (Wroe, 2001). The tooth
is interestingly large given the middle Miocene age of the specimen. The molar shows

a large reduction in size of the protoconule and metaconule, but considering the
well-developed stylar cusps is clearly less specialised towards hypercarnivory than that
of derived members of Thylacinidae.

Genus Muribacinus Wroe, 1996
Muribacinus gadiyuli Wroe, 1996

Holotype: QM F30386, partial right maxilla and jugal (Fig. 5A).

Type Locality: Dwornamor L, Gag Site, Riversleigh World Heritage Area, Queensland,
Australia.

Referred Specimens: see Table S1

Distribution and Age: Riversleigh World Heritage Area, northwestern Queensland,
Australia. Muribacinus gadiyuli is known from both Gag Site and Henk’s Hollow Site,
Riversleigh. Neither localities have direct dates available, however, Gag Site and Henk’s
Hollow have been found to be biostratigraphically correlated with the middle Miocene
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AL90 and Ringtail Sites (Travouillon et al., 2006, 2011; Arena et al., 2015). These correlated
sites give a date range of ~15.1-12.9 Ma (Woodhead et al., 2016).

Diagnosis: Following Wroe (1996): very small thylacinid; differs from other thylacinids by:
greater separation between paracones and metacones; large protocones; unreduced stylar
shelf; preparacrista long relative to postmetacrista on M'~>; P smaller than P,; M;_4
metaconids less reduced; relatively large talonids.

Remarks: The holotype and paratype consist of a right maxillary and jugal fragment,
respectively, and an unassociated, mostly complete right dentary (Wroe, 1996). Both the
maxillary and mandibular specimens retain the last premolar and full molar row.
Muribacinus has plesiomorphically unreduced metaconids on all four lower molars,
indicating a possible early reversal in dental trends towards hypercarnivory in the clade.

Genus Nimbacinus Muirhead & Archer, 1990
Nimbacinus dicksoni Muirhead & Archer, 1990
Syn. Nimbacinus richi Murray & Megirian, 2000

Holotype: QM F16802, left M;.

Type Locality: Henk’s Hollow Site, Gag Plateau, Riversleigh World Heritage Area,
Queensland, Australia.

Referred Specimens: see Table S1

Distribution and Age: Riversleigh World Heritage Area, northwestern Queensland, and
Bullock Creek, Northern Territory, Australia; all middle Miocene. Nimbacinus dicksoni has
been recovered from the Riversleigh Henk’s Hollow and AL90 Sites. Henk’s Hollow has
not been directly dated, but the two sites have been biostratigraphically correlated with
each other and AL90 has been radiometrically dated to 15.1-14.2 Ma (Arena et al., 2015;
Woodhead et al., 2016). Bullock Creek in Northern Territory is currently undated, but has
been biostratigraphically allied with the Camfieldian Land Mammal Age (17-12 Ma;
Arena et al., 2015).

Diagnosis: From Muirhead ¢» Archer (1990): small thylacinid; unreduced stylar shelf with
prominent stylar cusps B and D in addition to small stylar cusps C and E on M'™%
retention of prominent protoconules and metaconules on M'~>; prominent protocristae;
retention of small metaconids on all lower molars.

Remarks: Unlike the majority of fossil thylacinids, Nimbacinus dicksoni is represented by
multiple specimens, including a beautifully preserved, near-complete skull and mandible
and a near-complete but to date undescribed skeleton (Muirhead ¢ Archer, 1990; Wroe ¢
Musser, 2001; Fig. 5B). The rostrum exhibits little of the mediolateral pinching
characteristic of Thylacinus and is relatively short, with only modest diastemata present in
the premolar rows, although there is a diastema between the mandibular canine and the P,
in Nimbacinus dicksoni contra Thylacinus cynocephalus. The skull is more robustly

Rovinsky et al. (2019), PeerdJ, DOI 10.7717/peerj.7457 13/41


http://dx.doi.org/10.7717/peerj.7457/supp-1
http://dx.doi.org/10.7717/peerj.7457
https://peerj.com/

Peer/

constructed than that of Thylacinus cynocephalus (Attard et al., 2014). The dentition of
Nimbacinus dicksoni is relatively plesiomorphic for the family, with a reduction in stylar
cusps, stylar shelf, and paracone that is greater than that of dasyurids, but an unelongated
postmetacrista. The mandibular dentition is similarly plesiomorphic; the metaconids are
reduced but present, and the talonid basin and protocone are reduced over that of
dasyurids but not derived to the level seen in Thylacinus.

The validity of Nimbacinus richi has been questioned on the grounds of potential
intraspecific variation and ambiguous fossil preservation (Wroe ¢ Musser, 2001). As per
Murray & Megirian (2000), Nimbacinus richi differs from Nimbacinus dicksoni in the
differential expression of metaconids and entoconids, with Nimbacinus richi displaying a
reduced metaconid on M;, large, well-developed metaconids on M, 4, and large conical
entoconids on M;_3. The recovery of additional Nimbacinus dicksoni material (QM F36357)
led Wroe & Musser (2001) to conclude that the differential metaconid expression shown
between the putative specimens of Nimbacinus richi and Nimbacinus dicksoni falls within the
range of variation exhibited by other known thylacinids. Furthermore, the authors note that
the difference in entoconid size alone is likely to not be a viable character to differentiate
species, as shown by variable entoconid expression (including presence/absence) in
dasyurids (Dickman et al., 1998; Crowther, Dickman ¢ Lynam, 1999).

Along with these arguments explicitly provided in Wroe & Musser (2001), the
specimens of Nimbacinus richi (NTM P9612-4, P98695-92, and P904-7) are of a similar
estimated body size to Nimbacinus dicksoni (range of 2.9-6.6 vs. 3.9-6.8 kg, respectively;
see Table S2). We consider the likelihood of two near-identical species occurring in a
temporally and spatially restricted space to be small. We find it more parsimonious to refer
the Nimbacinus ‘richi’ specimens (NTM P9612-4, P98695-92, and P904-7) to Nimbacinus
dicksoni rather than split the genus into two species.

Genus Ngamalacinus Muirhead, 1997

Ngamalacinus timmulvaneyi Muirhead, 1997
Holotype: QM F16853, partial right dentary

Type Locality: Inabeyance Site, Godthelp Hill, Riversleigh World Heritage Area,
Queensland, Australia

Referred Specimens: see Table S1

Distribution and Age: Riversleigh World Heritage Area, northwestern Queensland,
Australia. Ngamalacinus timmulvaneyi is found at both the Inabeyance and Camel Sputum
sites at Riversleigh (Muirhead, 1997). The Camel Sputum Site has been radiometrically
dated to ~18.5-17.0 Ma (Woodhead et al., 2016). The age of the Inabeyance Site has not
been directly dated, but biocorrelation with the RSO and Neville’s Garden Sites suggest an
age of ~18.5-16.2 Ma (Arena et al., 2015; Woodhead et al., 2016).

Diagnosis: Modified from Muirhead (1997): small-sized thylacinid; relatively reduced
conules and stylar shelf; retention of small stylar cusps B and D; narrower angle of
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maxillary molar cristae, less anteroposterior molar elongation, and less reduced talon basin
than more derived thylacinids; retention of hypoconulid, entoconid, and relatively large
metaconid (larger than paraconid) with distinct metacristid.

Remarks: The small thylacinid Ngamalacinus timmulvaneyi is represented by
unassociated partial right dentary preserving M, _y, left maxilla preserving P>~-M?, and an
isolated M (Muirhead, 1997; Fig. 5C). The mandibular M, is only partially erupted, indicating
that this dentary belongs to a juvenile. Nimbacinus timmulvaneyi displays a mixture of
plesiomorphic and derived dental characters without obvious specialisations towards
hypercarnivory. There are, however, a handful of interesting characters to note. The maxillary
dentition is moderately specialised, with relatively reduced stylar cusps and a reduction of the
stylar shelf. The mandibular dentition is relatively plesiomorphic, with a relatively large
talonid and possessing tall, distinct metaconids. The lower carnassial (M,), however, has a
relatively reduced talonid basin with a present but small entoconid and hypoconid.

Genus Thylacinus Temminck, 1824
Thylacinus macknessi Muirhead, 1992

Holotype: QM F16848, right dentary (Fig. 6A).

Type Locality: Neville’s Garden Site, Riversleigh World Heritage Area, Queensland,
Australia.

Referred Specimens: see Table S1

Distribution and Age: Thylacinus macknessi has been recovered from the early Miocene
Neville’s Garden and Mike’s Menagerie sites, Riversleigh (Muirhead, 1992). Neville’s
Garden has been dated to ~18.5-17.7 Ma, and Mike’s Menagerie estimated to ~18.5-16.2
via biostratigraphic correlation (Arena et al., 2015; Woodhead et al., 2016).

Diagnosis: Modified from the amended diagnosis by Muirhead ¢ Gillespie (1995):

a mid-sized thylacinid; M! anterior cingulum well developed, continuous with protocrista,
and lacking sulcus for preceding premolar; retention of small metaconule and lack of
stylar shelf on M'; M' with relatively unreduced paracone; retention of entoconid on

all mandibular molars and a small metaconid on M3_4 M; protoconid centrally located
on crown, with the preprotocristid, postprotocristid, and cristid obliqua in line
anteroposteriorly; reduction of anterior cingulum present on M;; main cusps of P;_,
anteriorly inclined and vertical on P;; anterior cuspule retained on P;_3; M,
anteroposteriorly shorter in length than preceding molar unlike other species of
Thylacinus; coronoid process of the mandibular ramus departs from the corpus at a more
acute angle than Thylacinus cynocephalus (~120° vs. ~130°).

Remarks: Thylacinus macknessi is known from a near-complete dentary and scattered
mandibular dentition. The taxon shows a degree of the facial elongation characteristic of
the genus, as well as dental reduction and cristae alignment indicative of the dental
trending towards hypercarnivory.
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Figure 6 Non-Pleistocene fossil Thylacinus spp. (A) Thylacinus macknessi QMF 16848 right dentary. (B) Thylacinus megiriani NTM P9618 partial
left maxilla. (C) Thylacinus yorkellus SAM P29807 partial left dentary. (D) Thylacinus potens CPC 6746 palatal view. (E) Modern Thylacinus
cynocephalus WAM M195 3D surface scan for comparison (image reversed due to damage). Image credits: (A) © Queensland; (B) and (D): Museum
and Art Gallery Northern Territory, Adam Yates; (C): © The Museum Board of South Australia, Mary-Anne Binnie; (E) DS Rovinsky. All photos
reproduced with permission. Full-size Kal DOI: 10.7717/peerj.7457/fig-6

There is an additional specimen (QM F16850; partial right M%) ascribed to the species
by Muirhead (1992). This specimen is recovered from the Dwornamor LF of Gag Site,
Riversleigh, long noted to be middle Miocene in age based on biocorrelation with the
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~15.1-14.2 Ma AL90 site (Archer et al., 1989; Arena et al., 2015; Woodhead et al., 2016).
The specimen is currently the only maxillary specimen attributed to this species, thus not
directly referable to the holotype, and it is not clear precisely why Muirhead (1992)
attributed the tooth to Thylacinus macknessi. At the time of this initial publication,
there were no lower dentitions known that would have occluded with an upper first molar
(i.e., M;_5; of which M; was unknown and M, missing anterior to the protoconid).
Without a mandibular occlusal surface to match, it is difficult to have confidence in the
attribution of the maxillary specimen. In a subsequent publication, Muirhead ¢ Gillespie
(1995) provide an amended description of the holotype QM F16848 after the anterior
section of the dentary was discovered, but they do not supply any additional commentary
regarding the M' (QM F16850). We feel that pending the recovery of additional specimens
supporting the alignment of QM F16850 with Thylacinus macknessi, it conservatively
should be removed and placed within Thylacinidae incertae sedis.

Thylacinus megiriani Murray, 1997

Holotype: NTM P9618, partial left maxilla (Fig. 6C).

Type Locality: Ongeva LF, Alcoota Station, Northern Territory, Australia.
Referred Specimens: see Table S1

Distribution and Age: The Ongeva LF has not been directly dated, but various
biostratigraphic studies have shown correlations with the nearby Alcoota LF as well as the
Beaumaris LF, Victoria (Murray, Megirian ¢» Wells, 1993; Megirian, Murray & Wells, 1996;
Megirian et al., 2010; Rich, Darragh & Vickers-rich, 2003; Black et al., 2012). Strontium
dating of the Beaumaris LF has provided an age of ~6.2-4.5 Ma for that formation
(Dickinson & Wallace, 2009). The Ongeva LF is at least slightly younger than the
stratigraphically lower Alcoota LF (Woodburne, 1967; Murray, Megirian & Wells, 1993).
The zygomaturine Kolopsis torus is present at both the Alcoota and Ongeva LFs but not
Beaumaris LF, and it has been noted that K. yperus, present in the Ongeva LF, shares close
similarities with and may be synonymous with the Beaumaris LF K. gilli (Megirian,
Murray & Wells, 1996). This suggests that the three deposits all may have formed within a
span of a few million years at most, with the Alcoota LF the earliest and Beaumaris LF the
latest (Murray, Megirian & Wells, 1993; Megirian, Murray & Wells, 1996; Rich, Darragh ¢
Vickers-rich, 2003; Megirian et al., 2010). As a conservative estimate, we consider the
Alcoota LF to likely span 8.5-5.5 Ma, and the Ongeva LF 7.5-4.5 Ma.

Diagnosis: Following the revised diagnosis by Yates (2015): very large thylacinid; small
postcingulum between the metastyle and protocone of M* M® mesiodistally longer than
wide; absence of a precingulum on M! and M?; absence of a metaconule on all maxillary
molars; M> much longer than M?; reduction of the paracone; relative elongation of the
postmetacrista; hypertrophied torus along the ventrobuccal margin of the dentary;
diastema between P; and M,. Further differs from Thylacinus potens in: P" in line with P*~
instead of obliquely oriented.
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Remarks: Thylacinus megiriani is only known from a partial maxillary fragment and
recently described partial dentary fragments (Murray, 1997; Yates, 2015; Fig. 6C). The
specimens suggest at an animal larger than the modern species, and of roughly similar
rostral length but greater posterior palatal width than that of Thylacinus potens. Body mass
based on geometric similitude with Thylacinus cynocephalus has estimated Thylacinus
megiriani to be approximately 57.3 kg (Wroe, 2001), though see discussion below. As with
Thylacinus macknessi, the general dental complexity reduction and elongation of shearing
cristae indicate an increasing trend towards hypercarnivory.

Thylacinus potens Woodburne, 1967

Holotype: CPC 6746, partial palate (Fig. 6B).

Type Locality: Alcoota LF, Alcoota Station, Northern Territory, Australia.
Referred Specimens: see Table S1

Distribution and Age: The Alcoota LF is likely to have spanned from 8.5 to 5.5 Ma; see the
above discussion regarding Thylacinus megiriani for details.

Diagnosis: Following the amended diagnosis by Yates (2014): large thylacinid; mesiodistal
axis of P' mesiobuccally oriented; M' mesiodistally longer than wide; palatal fenestrae
greatly reduced; absence of a diastema between P;_,; P, longer than P; and M;. Yates
(2014) additionally notes that Thylacinus potens may be further distinguished from
Thylacinus cynocephalus by: ventrally facing sulcus forming the ventral border of the root
of the zygomatic arch on the maxilla; P* longer than M'.

Remarks: Thylacinus potens was the first pre-Pleistocene thylacinid to be discovered. The
taxon is known from craniodental material including a large palatal fragment, maxillary
and dentary fragments, and scant postcrania (Woodburne, 1967; Yates, 2014). A striking
aspect of Thylacinus potens is the size of taxon, which has been estimated at 38.7 kg
(via geometric similitude with Thylacinus cynocephalus; Wroe, 2001), and 40.9-120.6 kg
(Yates, 2014). While the upper estimate is clearly an outlier probably caused by the relative
robusticity of the dentition (see comments in Yates, 2014), it is clearly still substantially
larger than the average body mass commonly cited for Tasmanian Thylacinus
cynocephalus (29.5 kg; Paddle, 2000).

Thylacinus yorkellus Yates, 2015

Holotype: SAM P29807, partial left dentary (Fig. 6D).

Type Locality: Curramulka LF, Cora-Lynn Cave, South Australia, Australia.
Referred Specimens: see Table S1

Distribution and Age: The Curramulka LF of Cora-Lynn Cave has yet to be directly dated.
Megirian et al. (2010) suggest it is within the Tirarian Australian Land Mammal Age
(defined therein at ~5.0-3.0 Ma). They note, however, that there may be limited temporal
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and taxonomic separation between deposits of the oldest Tirarian and youngest Waitean
(the Waitean is defined as 12.0-~5.0 Ma), with some taxa sharing close phyletic ties across
the two ages. Several taxa present in the Curramulka LF support the younger age, such as
the Zanclean and younger Baringa cf. nelsonensis, Tropsodon cf. bowensis, and
Protemnodon cf. chinchillaensis (Megirian et al., 2010). Despite intensive excavation no
rodent fossils have been recovered from the Curramulka LF, suggesting that the fauna
predates the expansion of rodents into Australia (Pledge, 1992; Yates, 2015). The oldest
definitive fossil evidence of rodents, at both Bluff Downs and the Chinchilla LF, occurs by
~4.5-3.6 Ma (Hand, 1984; Pledge, 1992; Tedford, Wells ¢ Barghoorn, 1992; Mackness,
Whitehead & McNamara, 2000; Turnbull, Lundelius & Archer, 2003; Ogg, 2012). This date
is supported by molecular evidence of the radiation of Sahul rodents (5.5-5.1 Ma) and
their estimated expansion into Australia (3.7-3.4 Ma, CI: 4.5-2.4 Ma; (Rowe et al., 2008).
This suggests a range of ~5.3-3.6 Ma for the Curramulka LF.

Diagnosis: Following Yates (2015): large thylacinid; strongly developed precingulid
terminating in a cuspidule on the mesiobuccal face of the paraconid of M;_;; small basal
mesial cuspidule on P,_;; absence of metaconids on M,, M3, and presumably M,;
diastemata between C;-M;; mesiodistal lengths of P, and P; both exceeding that of M.

Remarks: Thylacinus yorkellus was originally described by Pledge (1992) as Thylacinus sp.
in the early 1990s, with a subsequent find (SAM P38799 right M;) prompting specific
designation (Yates, 2015). The taxon is represented by an incomplete dentary fragment
and isolated lower molar, and appears to have been rather longirostral, with diastemata
between the canine—P3, as well as larger premolars than Thylacinus cynocephalus.

Thylacinus sp. indet.
Referred Specimens: see Table S1

Distribution and Age: Big Sink LF (New South Wales), Chinchilla LF (Queensland), Awe
LF (Papua New Guinea). Neither Big Sink LF nor Chinchilla LF have been directly dated.
However, the biostratigraphic correlation of Chinchilla LF with the geomagnetically dated
Kanunka LF of the Tirarian Fm suggests a date of ~4.2-3.6 Ma for the Chinchilla LF
(Tedford, Wells & Barghoorn, 1992; Ogg, 2012). The Big Sink LF has been noted to be
Tirarian in age and correlate based on biostratigraphy with the Chinchilla LF (Dawson,
Muirhead & Wroe, 1999; Mackness et al., 2000; Megirian et al., 2010), giving a similar age.
The Awe LF of Papua New Guinea is younger, with a K/Ar radiometric date of 3.3-2.4 Ma
(Hoch & Holm, 1986).

Remarks: There are a small number of isolated specimens that have been referred to
Thylacinus sp. or the modern Thylacinus cynocephalus and are purportedly recovered from
Pliocene sediments of Australia and New Guinea. The New Guinea specimen consists of a
partial dental fragment and is thus otherwise uninformative (UCMP 107737 partial P,;
Awe LF, Papua New Guinea; Plane, 1976). Thylacinus sp. has also been recovered from the
Big Sink LF of NSW (Dawson, Muirhead ¢ Wroe, 1999). This specimen (AM F69875;
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partial left dentary with M, preserved) is dentally similar in size to both the modern species
and Thylacinus potens UCMP 66206, and unfortunately too incomplete for an assessment
of the mandibular corpus regarding relative size/robusticity. Furthermore, the size of the
M, of Thylacinus yorkellus is unknown, and only a highly incomplete M, of Thylacinus
megiriani is currently known, both of which also may temporally overlap with AM F69875
(Yates, 2015).

The specimens from the Chinchilla LF have had a rather more interesting history. The
attribution both of the taxa and the locality of these specimens has been contentious, as
many of the specimens have been noted to have poor collection data (Mackness et al.,
2002). The fragmentary nature of the specimens further precludes easy comparison, and
therefore it has been difficult to confidently ascribe the specimens to a specific taxon. In a
review of the 4.2-3.6 Ma Chinchilla Downs LF specimens, Mackness et al. (2002) note
that the Chinchilla Downs locality attribution of several specimens were due to curatorial
errors, and the Thylacinus cynocephalus specimens were likely recovered from the
middle Pleistocene (144-73 ka; Price et al., 2011) Darling Downs. Furthermore, they note
that the Thylacinus specimen that does actually originate from the Chinchilla LF (WPC
4506) lack specific diagnosable characters, which is especially noteworthy as the
similar-sized Thylacinus yorkellus has been described from late Miocene/early Pliocene
deposits in South Australia (Pledge, 1992; Yates, 2015). Louys ¢ Price (2015) offer a
dissenting view and note that at least two specimens (QM F3741 and F9476) definitively
originate from the Chinchilla LF and are directly attributable to Thylacinus cynocephalus.
However, Louys ¢ Price (2015) do not offer any justification for ascribing the specimens
to the modern taxon, and the single figure presented (QM F9476 dentary fragment) is
ambiguous regarding attributes that would enable a specific designation, especially
considering that the poorly temporally-constrained Thylacinus yorkellus, Thylacinus
megiriani and potentially Thylacinus potens may also have been present within this
general time period. Additionally, while certainly not impossible, it is perhaps unlikely
that the modern species had persisted over a ~4 million year span. Without specific
evidence to align the specimens in question to Thylacinus cynocephalus, we feel it is
most conservative to defer specific attribution of the Pliocene material until an in
depth analysis can be made of these specimens, their provenance, and their curatorial
history.

Genus Tyarrpecinus Murray & Megirian, 2000
Tyarrpecinus rothi Murray & Megirian, 2000

Holotype: NTM P98211, partial left maxilla (Fig. 5E).
Type Locality: Alcoota LF, Alcoota Station, Northern Territory, Australia.
Referred Specimens: none

Distribution and Age: The Alcoota LF is likely to have spanned from 8.5 to 5.5 Ma; see the
above discussion regarding Thylacinus potens for details.
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Diagnosis: After Murray ¢ Megirian (2000): M' narrow and elongate, with centrocrista
relatively straight in relation to similar sized thylacinids excepting W. ridei Muirhead,
1997; strong ectoflexus and relatively elongate metastylar wing on M?; paracone closer to
and smaller than metacone than in similar sized thylacinids; retention of stylar cusp B and D,
with stylar cusp B relatively reduced on M’; conules reduced in size and number.

Remarks: Tyarrpecinus rothi is known only from a highly fragmented partial maxilla and
associated dental fragments; nevertheless, it has been noted from the reconstructed
fragments that the taxon seems to exhibit greater expression of dental characteristics
related to hypercarnivory than in more basal forms (Murray ¢» Megirian, 2000). The
maxillary molars are more elongate, with a slight reduction in the complexity and size of
cusps and increase in the elongation of shearing crests. That said, the poor preservation
and extremely fragmentary nature precludes confidence in any firm comparisons.
Interestingly, it has been suggested that the specimen derives from a crocodile coprolite
due to its fragmented condition, coating of calcite, and evidence of potential acid etching
(Murray & Megirian, 2000).

Genus Wabulacinus Muirhead, 1997
Wabulacinus ridei Muirhead, 1997

Holotype: QM F16851, partial right maxilla (Fig. 5G)

Type Locality: Camel Sputum Site, Godthelp Hill, Riversleigh World Heritage Area,
Queensland, Australia

Referred Specimens: see Table S1

Distribution and Age: Riversleigh World Heritage Area, northwestern Queensland,
Australia. The Camel Sputum Site has a radiometric date of ~18.5-17.0 Ma (Woodhead
et al., 2016).

Diagnosis: From Muirhead (1997): small thylacinid; infraorbital foramen wholly enclosed
by the maxilla and positioned anterior to M'; preparacrista and centrocrista of M
subparallel; entoconid absent and hypoconulid enlarged. Further differs from similar-sized
thylacinids by: lack of stylar cusps B, D, and extreme reduction of talon and protocone on
M'; M" lacks sulcus for preceding premolar; lack of stylar cusp B and reduced stylar cusp D
on M% M; metaconid reduced, lack of diastemata between mandibular dentition.

Remarks: The taxon is represented by a right maxillary fragment containing M'™ and a
partial left dentary preserving the alveoli for P;-M, but containing only a broken Mj;
(Muirhead, 1997). The teeth show a marked reduction in the robusticity or the presence
of many cusps and styles, a reduced protocone, especially on M', and a reorientation of
the major maxillary cristae of both preserved molars closer to parallel to the long axis
of the tooth row. The dentary is relatively short, lacking diastemata between the
premolars. While the mandibular dentition is unfortunately only represented by a partially
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preserved M3, the relatively reduced talonid basin and conids suggest the lower dentition is
similarly reduced.

Thylacinidae incertae sedis Muirhead & Archer, 1990

Syn. Nimbacinus dicksoni
Specimen: QM F16809 partial right M,.
Type Locality: D-Site, Riversleigh World Heritage Area, Queensland, Australia.

Distribution and Age: D-site at Riversleigh is currently undated, but has been suggested to
be late Oligocene via biostratigraphic correlation (Travouillon et al., 2006; Arena et al.,
2015).

Remarks: Nimbacinus dicksoni has purportedly been recovered from the late Oligocene
D-Site, Riversleigh (Muirhead ¢ Archer, 1990). The attribution of this specimen to
Nimbacinus dicksoni has been contentious, as both the late Oligocene age of the deposit
and the state of metaconid reduction differs from that of the holotype, and the fragmentary
nature of the specimen precludes further comparison (see discussion in Murray &
Megirian, 2000; Wroe ¢ Musser, 2001). We agree with the arguments presented by
Murray & Megirian (2000) and Wroe & Musser (2001) and the conservative placement
of the specimen QM F16809 as a thylacinid of uncertain position.

Thylacinidae incertae sedis Murray & Megirian, 2006b
Specimen: NTM P2815-10, fragmentary right M>.
Type Locality: Pwerte Marnte Marnte LF, Northern Territory, Australia.

Distribution and Age: The Pwerte Marnte Marnte LF is currently undated, but
biostratigraphic correlation with the Etadunna Formation B & C suggests a late Oligocene
age of ~25 Ma or older (Woodburne et al., 1994; Murray ¢ Megirian, 2006b).

Diagnosis: Murray ¢ Megirian (2006b) note that the fragmentary tooth is likely to be
thylacinid due to the low stylar cusp D, relatively reduced stylar shelf, elongated metastylar
wing, and narrow talon. It is comparable in size and gross morphology to the smallest
known thylacinid, Muribacinus, differing, however in possessing a broader metastylar
wing and larger protoconule.

Remarks: The fragmentary nature of the tooth prohibits any pointed discussion regarding
the attribution or implications of the specimen.

DISCUSSION
Phylogeny of the Thylacinidae

Although the fossil data set is comprised of 54% missing morphological characters, it
recovers topologies across analyses that are consistent with those of prior studies (Fig. 7).
The lack of resolution in the Bayesian morphological analysis along with the low support
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for the placements of the thylacinids in the tip-dated analysis does warrant caution.

The current dataset is relatively small (less than 100 morphological characters) and
there is no overlap across many taxa, even less so when taking the molecular data into
consideration. The small size of the dataset potentially fails to offset this lack of overlap and
missing data, which will tend to increase displacement of wildcard taxa (Wiens ¢

Moen, 2008; Guillerme ¢ Cooper, 2016). Additionally, the morphological dataset was
compiled from previous studies that included only parsimony-informative characters,
avoiding apomorphic characters. This can cause the loss of information regarding branch
lengths and divergence times in Bayesian dating analyses (Lee ¢ Palci, 2015; Dos Reis,
Donoghue ¢ Yang, 2016). Therefore, while these current results should be taken cautiously
due to the current deficiencies of the analyses and the limitations of the published

fossil thylacinid record, it is still encouraging to note that a consensus phylogenetic
hypothesis is emerging.

Feeding ecology

When character state changes relating to the development of hypercarnivory are mapped
to the timescale calibrated tree, a clear evolutionary trend is evident (Fig. 8). The family
basally expresses a straightening of the centrocrista and reduction of metaconids,
though with an apparent reversal seen in the retention of the M; metaconid in the
plesiomorphic Muribacinus gadiyuli. The clade inclusive of W. ridei + Thylacinus
cynocephalus displays a marked shift towards the simplification of the molar dentition, as
well as an elongation of the carnassial blade culminating in the hypercarnivorous
condition seen in the terminal taxon.

During the initial period of thylacinid evolution (Oligocene through early Miocene) the
group were thought to have occupied a niche broadly similar to that of the largest extant
quoll (Dasyurus maculatus) or that of smaller extant canids, i.e., Vulpini (foxes) and
Cerdocyonina (South American canids). Direct reconstruction of the feeding behaviour of
the vast majority of the fossil thylacinids is hampered by the paucity of informative fossils,
with most represented solely by cranial fragments and scattered dentition. There are,
however, a small number with sufficiently informative remains to offer some degree of
interpretation.

The plesiomorphic taxa Badjcinus, Ngamalacinus, and Muribacinus seem to have been
rather unspecialised faunivores, lacking either the characteristics of more insectivorous
dasyurids (e.g., unreduced stylar cusps, protocones, talonid basins, and metaconids) or
characteristics of the more hypercarnivorous Dasyurus maculatus (e.g., robust
protoconids, reduced metaconids, brachycephalisation). As Wroe (1996) suggested, this
may have restricted the feeding niche of these members to invertebrate and smaller
vertebrate prey. In contrast, biomechanical modelling of Nimbacinus dicksoni suggests that
this taxon possessed a relatively robust cranial architecture, and was capable of taking prey
items approaching or even exceeding its own mass (Attard et al., 2014), much like
Dasyurus maculatus (Belcher, 1995).

Likewise, the craniodental characters of W. ridei suggest a similarly powerful
hypercarnivore with the potential to take prey at or beyond its body size. The reduction of
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tooth complexity, the expansion in shearing crests, and the orientation of the cristae
subparallel to the tooth row point to a high percentage of vertebrate flesh in the diet. The
shorter dentary of the specimen suggests a relatively broad, stout rostrum, increasing
masticatory efficiency and producing a more powerful bite, as well as increasing stress-
handling ability when obtaining and processing prey items (e.g., see Radinsky, 1981;
Greaves, 1983; Christiansen & Adolfssen, 2005; Tseng ¢ Flynn, 2015).
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The genus Thylacinus is marked by a strongly elongate postmetacrista, reduction or
complete absence of metaconids, and increasing elongation of the rostrum (Fig. 8). Within
the genus, Thylacinus macknessi retains a relatively short M, and a small metaconid on
all mandibular molars, in contrast to the lengthened carnassial and absent metaconids
of later Thylacinus. This plesiomorphic condition suggests less specialisation towards
hypercarnivory than seen in later members of the genus. Thylacinus megiriani is
superficially similar in morphology to Thylacinus cynocephalus, albeit much larger and
more robust, with slightly less elongate and simplified dentition. The dentition of the
mid-sized Thylacinus yorkellus is also broadly similar to that of Thylacinus cynocephalus,
though interestingly with relatively and absolutely larger premolars and slightly more
robust molars.

The craniodental suite of Thylacinus potens is marked by more robust and less bladelike
M'7, an enlarged P' 2, greatly reduced (both relatively and absolutely) diastemata between
P!, a greatly enlarged P,, no diastema between P, _,, and greatly reduced palatal
fenestrae compared to Thylacinus cynocephalus (Woodburne, 1967; Murray, 1997; Yates,
2014). The result of this is a relatively shortened and reinforced rostrum with heavy,
robust teeth. Additionally, the dentition of both the initial specimen and the subsequent
discoveries of Thylacinus potens were noted to have heavily worn crowns (Woodburne,
1967; Yates, 2014). Yates (2014) has suggested that this combination of characters indicate
what may be a degree of incipient durophagy—potentially carcass or bone processing.
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While this remains untested, it must be noted that Thylacinus potens does seem
distinct within its radiation with respect to a combination of size, tooth attrition, and
morphological characters that imply an increase in the handling ability of hard foodstufts.

Body mass and niche competition

Mass estimates for the larger-bodied Thylacinus megiriani and Thylacinus potens are
potentially problematic, as they metrically sit outside the range of values used by Myers
(2001) in the creation of mass estimation regression equations. As discussed by both Wroe
(2001) and Yates (2014), these larger taxa also vary proportionally from the modern
species, which may make the mass estimation via the equations of Myers (2001) inaccurate.
To counter this, both Wroe (2001) and Yates (2014) employ the concept of geometric
similitude with Thylacinus cynocephalus to estimate the mass of these larger taxa. It is
unclear if this is necessarily a stronger approach, as if the taxa are too proportionally
differentiated for an accurate estimation from the regression equations, it follows that they
would be too proportionally differentiated for an accurate estimation from geometric
similitude. Unfortunately, postcrania is virtually unknown for pre-Pleistocene thylacinids,
with only a small handful of distal limb fragments described from Thylacinus potens
(Woodburne, 1967) and a near-complete but as yet undescribed skeleton of Nimbacinus
dicksoni (see Long et al., 2002; p.61). This leaves dental regression and geometric similitude
as the best options for body mass estimation. Wroe (2001) found Thylacinus megiriani to
weight approx. 57.3 kg and Thylacinus potens 38.7 kg, both by geometric similitude.
Thylacinus potens was found by Yates (2014) to be an estimated 40.9-120.6 kg by a
combination of geometric similitude and dental regression, with the noted caveat that the
upper value is clearly an outlier potentially caused by the robust M?, leaving a far more
plausible range of 40.9-56.0 kg. The mass estimates presented here in Table S2 for
Thylacinus megiriani and Thylacinus potens (49.1 and 28.3-55.0 kg, respectively) generally
agree with those found by both prior studies, and it can be expected that both taxa
commonly approached >40 kg.

Thylacinids were relatively small-bodied throughout the Oligocene and most of the
Miocene. With the exception of Maximucinus muirheadae (known only from a single
molar) every non-Thylacinus member of the clade has been estimated at well under 10.0 kg
in mass (Table S2; Fig. 9). The dramatic shift in mass within Thylacinus coincides with the
~15-14 Ma middle Miocene climatic transition (MMCT), a period of dramatic global
cooling and aridification, and the subsequent radiation of the Dasyuridae (Flower ¢
Kennett, 1994; Crowther & Blacket, 2003; Wroe, 2003; Beck, 2008; Kealy ¢ Beck, 2017;
Eldridge et al., 2019). The MMCT therefore marks a point of both significant expansion in
thylacinid body mass as well as a possible reduction in generic diversity, during a time of
drastic shifts toward the aridification and cooling of the Australian environment and
potentially rapid expansion of competitors.

A potential cause for this shift in the carnivorous marsupial guild structure during the
MMCT has been suggested to be related to the differing morphology of the auditory
systems of the taxa. The morphology of the thylacinid middle ear is very plesiomorphic,
with a small petrosal contribution to the tympanic wing. This is in direct contrast with the
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dasyurid condition, in which the hypotympanic and epitympanic regions are fully enclosed
by bony expansions of the tympanic processes (Wroe, 1997). Under this scenario, this
has been suggested to have conferred a distinct advantage to the dasyurids over the
thylacinids, improving their low-frequency hearing and perhaps facilitating the competitive
exclusion of the latter taxa as aridification of the environment after the MMCT opened up
what was previously forest (Wroe, 1996, 1997; Kealy ¢ Beck, 2017). It has additionally
been suggested that early peramelemorphians such as Bulungu palara and Galadi speciosus
may have occupied the smaller-bodied (i.e., <1 kg) carnivore niche during the early Miocene
and were, similarly to the thylacinids, replaced during the major faunal turnover event
following the MMCT (Travouillon et al., 2010; Gurovich et al., 2014). Notably, both the
thylacinids and the Oligo—Miocene peramelemorphians retained a relatively plesiomorphic
middle ear condition without a full bony enclosure; this ostensibly would limit their
low-frequency auditory sensitivity and place them at a competitive disadvantage with the
dasyurids. The potential for ecologic displacement of two carnivorous lineages, a <1 kg
peramelemorphian group and a <10 kg thylacinid group by the rapidly diversifying
dasyurids, is intriguing. However, it is ultimately unknown whether it was competitive
replacement by the dasyurids or their radiation into recently vacated niches emptied by the
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Figure 10 Pliocene and older (>2.58 Ma) thylacinid-bearing fossil sites. Site icons coded by minimal
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extinction of the peramelemorphian and small-bodied thylacinids that drove the change in
guild structure.

Biogeography

Fossils of thylacinids have been recovered from the Riversleigh World Heritage Fossil Site,
Queensland, and the Bullock Creek and Alcoota/Ongeva localities, Northern Territory,
with scattered specimens from additional localities along the eastern interior of the
continent (Fig. 10). The well-sampled nature of the Riversleigh sites allows for a relatively
secure interpretation of the palaeoenvironment during the early evolution of the family.
The late Oligocene of the Australian interior seems to have been one of cool, wet, seasonal
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open forests, with a trend of increasing humidity, warmth, and widespread closed forest
during the early Miocene through to the ~16 Ma middle Miocene climatic optimum
(Flower & Kennett, 1994). These environmental conditions changed dramatically after the
~15-14 Ma MMCT. This led to a pronounced constriction and fragmentation of the wet
forest environments and the dramatic expansion of sclerophyll vegetation communities.
The late Miocene of Australia saw the transition to a subhumid-semiarid, highly seasonal
environment, with the widespread overall replacement of the early and mid-Miocene wet
rainforest with open-canopy sclerophyll forest and increasingly seasonal rainfall patterns
(Black et al., 2012). This climatic shift continued through the Pliocene, with the first
indication of widespread open grasslands along with the rapid diversification of grazing
taxa appearing after 4 Ma (Dawson ¢ Dawson, 2006; Stromberg, 2011).

It is tempting to speculate about what effect this environmental shift from wet forests to
a dry, open sclerophyll community had on the basal ecology and evolutionary trends of the
thylacinids. Comparison with the craniodental skeleton of dasyurids suggests a broadly
similar dietary ecology, but the lack of thylacinid postcranial specimens leaves doubt as to
their locomotor habits. It has been suggested that the modern thylacine expressed more
derived cursorial morphology than other metatherians, though not as derived as their
eutherian counterparts (Smith, 1982; Jones & Stoddart, 1998; Argot, 2004; Figueirido &
Janis, 2011; Janis ¢ Figueirido, 2014). This raises the question as to whether these earlier
thylacinids were similarly cursorial-adapted like the modern species, or if they were
scansorial like the dasyurids that replaced them. If early thylacinids were plesiomorphically
scansorial, it is feasible that the dasyurid radiation pushed them out of the trees and onto
the ground, favouring increasingly terrestrial adaptations (e.g., larger body size, cursorial
locomotion).

Alternatively, this apparent ecological shift could simply be an artefact due to the very
limited geographic sampling presented by the fossil localities. Except for Nimbacinus
dicksoni and the indeterminate Pwerte Marnte Marnte specimen (NTM P2815-10), every
middle-Miocene and older thylacinid is recovered from the Riversleigh deposits. All these
thylacinids with the exception of the ~18.4 kg Maximucinus muirheadae are estimated
at <10 kg. It is possible that larger-bodied terrestrial thylacinids were present and
penecontemporaneous with the smaller forms outside the rainforests of Riversleigh.

The Oligocene through early Miocene deposits of central and Western Australia differed
notably from the concurrent Riversleigh deposits. The central Australian environment
was marked by alkaline lakes, ephemeral swamps, and sclerophyll communities, and
Western Australia by Eucalyptus and Casuarinaceae communities (Martin, 2006). This
suggests a stronger seasonality and a more arid, open environment than the Riversleigh
deposits, though both environments were significantly wetter than in the modern day.
We do find the large Mio-Pliocene Thylacinus potens and Thylacinus megiriani in the
Northern Territory Alcoota and Ongeva LFs, both thought to have been seasonal
fluvio-lacustrine or waterhole deposits in a relatively semi-arid, more open environment
than the ‘classic’ forested Riversleigh deposits (Murray ¢ Megirian, 1992; Megirian,
Murray & Wells, 1996). However, these sites likely post-date the MMCT by at least 5
million years, prohibiting any conclusion regarding the life habits of the early thylacinids.
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CONCLUSIONS

The fossil history of the Thylacinidae can be seen as a series of steps toward
hypercarnivory, coupled with a marked shift in body mass after the Middle Miocene
Climate Transition. As has been suggested in prior studies (Crowther ¢ Blacket, 2003;
Wroe, 2003; Kealy & Beck, 2017), it is possible that these shifts, particularly the dramatic
shift in body mass, may have occurred in response to the selective pressure created by
the emergence of the dasyurids. The radiation of dasyurids appears to have replaced both
the thylacinids and the peramelemorphians in the >10 kg carnivore niche following the
MMCT. Whether this was due to competitive replacement or simply filling the niches
left vacant by the extinction of these small-bodied thylacinid and peramelemorphian
carnivores is uncertain. As the Australian Cenozoic fossil record expands through
excavation, description, and analysis these gaps in thylacinid evolutionary history may be
more confidently addressed.

The pre-Pleistocene fossil thylacinids provide an evolutionary framework for
understanding the modern taxon. Integration of data regarding the timing and trends in
increasing body mass, hypercarnivory, and cursoriality may allow future studies to build a
clearer understanding of the niche ecology of the thylacine. This would help to avoid
spurious conclusions regarding convergence, or conversely, to help identify and quantify
degree of convergence through time.

Comparing the evolution of hypercarnivory and large body size of the non-marsupial
metatherian South American borhyaenids and other sparassodonts (e.g., Hathliacynidae)
with the thylacinids would be an intriguing future study. Incorporating both of these
carnivorous metatherian groups, the thylacinids and sparassodonts, with potential
eutherian analogues within Canidae would also be highly informative. These comparisons
may help researchers understand the extent of morphological and ecological convergence
across carnivorous mammals through evolutionary time, and may ground further
research into the disparate groups. Furthermore, as Bayesian analyses become more
prevalent, the scoring of apomorphic characters for both fossil and extant animals will
greatly facilitate phylogenetic analyses and our understanding of the evolution of these
groups. These future studies will ultimately depend upon further, more complete fossil
thylacinid specimens and the discoveries of new sites filling critical gaps in the Australian
fossil record.
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