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Abstract: Nanoparticles have displayed considerable promise for safely delivering therapeutic 

agents with miscellaneous therapeutic properties. Current progress in nanotechnology has put 

forward, in the last few years, several therapeutic strategies that could be integrated into clinical 

use by using constructs for molecular diagnosis, disease detection, cytostatic drug delivery, and 

nanoscale immunotherapy. In the hope of bringing the concept of nanopharmacology toward 

a viable and feasible clinical reality in a cancer center, the present report attempts to present 

the grounds for the use of cell-free nanoscale structures for molecular therapy in experimental 

hematology and oncology.
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Introduction
Nanopharmacology is an interdisciplinary research field, which was developed as an inter-

action between chemistry, engineering, biology, and medicine, and it is currently receiving 

growing interest in the clinic.1 Progress in nanotechnology has gained attention in recent 

years by developing novel nanoparticle-based drugs or by discovering novel applications 

in early diagnostic or prognostic assays in cancer.2 Multiple preclinical studies aim to 

improve the therapeutic index of a patient diagnosed with cancer using a wide range 

of nanostructures including carbon nanotubes, peptides, nanodiamonds, cyclodextrine, 

graphenes, liposomes, quantum dots, nanowires, and metal-based nanoparticles.3,4

The latest advances in nanotechnology have brought various options that could be 

used in the clinic by employing constructs for molecular diagnosis, disease detection, 

cytostatic drug delivery, and nanoscale immunotherapy.5–8 The United States Food 

and Drug Administration has approved the use of liposome-encapsulated doxorubicin 

(Doxil®; Janssen Products, LP, Johnson & Johnson, New Brunswick, NJ, USA) and 

paclitaxel attached to nanoparticles (Abraxane®; Celgene Corporation, Summit, NJ, 

USA)9,10 in cancer therapy.

In this review, we present the latest investigation on nanostructure systems with 

applications in hematology and oncology. The latest advancements in nanopharma-

cology lead to heightened expectations concerning their application in diagnostics, 

therapy and imaging.

Drug nanocarriers in cancer pharmacology
In the last few years, our team has shed a new light on the field11,12 by different con-

jugation procedures for these therapeutics. Overcoming this threshold bears major 

clinical significance in oncology and hematology, as developing nonviral gene 

delivery vehicles will bring new patient-tailored drugs within reach (Figure 1). The 

transport of therapeutic nucleic acids through the cell membrane is inefficient mainly 
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in experimental models and includes antisense or antigene 

oligonucleotides, short interference ribonucleic acid (siRNA) 

or micro ribonucleic acids (miRNA).13,14

Surgical resection in early tumor stages is the main 

therapeutic option for most solid malignancies, yet therapeu-

tic benefits are frequently modest because of the high rate 

of tumor recurrence.15 Chemotherapy and, more recently, 

molecular therapy, were proven to offer much more efficient 

therapeutic approaches for patients diagnosed with cancer.2 

Nevertheless, these options are most often accompanied by 

important systemic side effects associated with the active 

agent, making a direct delivery the most “elegant” and effi-

cient therapeutic option. The direct delivery of chemotherapy 

drugs aims to achieve high concentrations of the cytostatic 

agents at the target site with minimized risk of systemic 

toxicity (Figure 2).16

In cancer chemotherapy, the clinician aims to achieve a 

good therapeutic index, which is the ratio of the lethal dose for 

50% of the population to the minimum effective dose for 50% 

of the population.17 However, cancer is most often character-

ized by multidrug resistance (MDR) and thus scientists have 

developed new ways to target the MDR cells.18 MDR cells 

are known to be frequently located in hypoxic areas, distant 

from any blood supply, thus overcoming the natural barrier 

of drug efflux pump activity.18 Such smart molecules may 

increase the drug’s bioavailability and transform an active 

agent from a low therapeutic candidate into a highly efficient 

drug. A wide variety of both organic and inorganic substances 

are used for engineering nanostructures, such as liposomes, 

micelles, nanoemulsions, polymers, quantum dots, gold, iron 

oxide, and even dendrimers.19–22 All these structures were 

developed in order to have a large surface area, making these 
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Figure 1 Nanoparticles used in medicine.
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particles suitable for suspension storage, as well as high drug 

encapsulation and extensive surface absorption capacity, 

which are pharmacokinetic features that are found in any cur-

rent structure used in classical pharmacology.23 However, the 

most important aspect, especially for cancer, is that nanocar-

riers are able to bypass the extracellular efflux activity of the 

adenosine triphosphate-binding cassette transporters in order 

to be internalized via nonspecific endocytosis,24–26 such as the 

case of immunoliposomes27,28 and poly (butyl)-cyanoacrylate 

nanoparticles.29,30 At the same time, the nanocarriers use 

surface charge-switchable polymeric magnetic nanoparticles 

as a safe delivery system.31–33 In this way, the active agent 

is released near the nucleus, far away from the membrane-

bound P-glycoproteins, which is of paramount importance 

when trying to overcome the resistance to conventional 

chemotherapy of cancer stem-like cells.34–36 

Ozeki et al37,38 have experimented with a new drug delivery 

model in malignant gliomas. They managed to bypass the 

blood–brain barrier by using a unique thermo-reversible 

hydrogel, composed of drug/poly(lactic-co-glycolic acid) 

(PLGA) microspheres. This thermo-reversible polymer is 

a gel at body temperature and a sol at room temperature – 

conditions in which the drug/PLGA microspheres dispersed in 

the polymer are injected into the human body. Following the 

procedure, a gel forms around the injection site; this keeps a 

high concentration of the active substance in the tumor, pre-

venting its dispersion in adjacent healthy tissues.39 Devalapally 

et al40 used poly(epsilon caprolactone) nanostructures whose 

surface has been modified with poly(ethylene glycol) (PEG) 

before being loaded with tamoxifen and paclitaxel for the 

treatment of multidrug-resistant cancer cells. The results 

were encouraging, as this combination resulted in a lower 

therapeutic dose of the cytostatic agent, with important clinical 

applications regarding chemotherapy-related side effects.

The first groundbreaking drug was doxorubicin 

encapsulated in circulating liposomes (Doxil) for the treatment  
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Figure 2 miRNA-based approaches in cancer therapy.
Abbreviation: miRNA, micro ribonucleic acid.
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of Kaposi’s sarcoma in patients diagnosed with acquired 

immunodeficiency syndrome (AIDS).41 Recently, this thera-

peutic option has been applied for other cancers such as breast 

cancer, since doxorubicin encapsulated in liposomes induces 

a twofold increase in intracellular drug levels when compared 

to standard doxorubicin treatment.42 Doxil is a PEGylated 

liposomal drug that has a 100 nm diameter in order to prevent 

the interaction with plasma proteins such as opsonins and 

high-density lipoproteins (HDLs) and low-density lipoproteins 

(LDLs), or to avoid elimination by macrophages.43–45 After 

the conjugation of a liposome with PEG (a process called 

PEGylation), the new drug can stay in the systemic blood 

flow for longer periods of time due to the development of 

an aqueous layer on the surface of the liposome, leading to 

a lack of immune recognition and rejection.46,47 This results 

in the stabilization of the lipid bilayer and steric hindrance, 

with important consequences such as decreasing protein ab-

sorbance and recognition by the host’s macrophages.48 Many 

reports show the ability of various gold/silver nanoparticles 

or carbon nanostructures to enhance the antitumor effect of 

certain drugs.23 However, in hematology, HDL nanostructures 

target the scavenger receptors (B1) and promote cholesterol 

efflux in lymphoma cells.49 Indirectly, these exogenous lipo-

proteins inhibit lymphoma growth and invasion by starving 

the malignant cell,50,51 thereby aiding the classic chemotherapy 

regimen.

PEGylated liposomes loaded with docetaxel, and pre-

pared using the thin film hydration method, showed enhanced 

in vitro cytotoxicity against A549 and B16F10 cells when 

compared to Taxotere® (Sanofi-Aventis, Bridgewater, NJ, 

USA).52 The capacity of a self-nanoemulsifying drug delivery 

system was assessed in order to increase the bioavailability 

of docetaxel and, consequently, its therapeutic activity.53 

This study showed that a self-nanoemulsifying drug deliv-

ery system exhibited superior efficacy with low associated 

toxicity when compared to the commercialized formulation 

of this bioactive agent (Taxotere).53

In recent years, gold nanoparticles have also emerged 

as therapeutic options for the targeted delivery of antine-

oplastic active substances, due to their special chemical and 

physical properties such as functional versatility, biocompat-

ibility, and low toxicity.54–56 Apart from being of small size 

(30–50 nm in diameter),57 naked gold nanostructures have a 

plasmon absorption in the near-infrared region and display 

strong photothermal ability. These structures lack a silica 

core, have a spherical shape, and have a strong and tunable 

absorption band between 550 nm and ~820 nm.58–61 These 

properties make them highly efficient carriers of various 

drugs already used in the clinic. Their effect has already been 

shown by our team in malignant gliomas and hepatocellular 

carcinoma for temozolomide, cisplatin, doxorubicin, and 

capecitabine.62

Diamonds can provide a very efficient delivery system for 

some chemotherapy agents. In the last few months, nanodia-

monds have emerged as potential carriers in neuro-oncology 

or hemato-oncology. Xi et al63 have conjugated nanodiamonds 

with doxorubicin and used convection-enhanced delivery for 

supratentorial tumors in a murine model. Man et al64 have also 

used nanodiamonds to deliver another type of anthracycline to 

multidrug-resistant malignant cells. They showed that acute 

myelogenous leukemia, often leading to patient death in the 

clinic because of resistance to chemotherapy, might be man-

aged by a nanotechnology-based targeted delivery of dauno-

rubicin to the hematological malignancies. Camptothecin is a  

natural hydrophobic anticancer drug that could be potentially 

used for breast adenocarcinoma management if delivered 

correctly at the tumor site.65 Delivery can be achieved using 

nanotechnology, as is the case of the self-assembling peptide 

amphiphile nanofibers. Soukasene et al66 proved this concept 

in a mouse orthotopic model of breast carcinoma. Camp-

tothecin was also confirmed by Min et al67 to be efficient in 

breast chemotherapy when delivered to malignant cells, by 

encapsulating it in modified glycol chitosan nanoparticles, 

thereby achieving a high concentration with minimal side 

effects in healthy tissues, after having used subcutaneously 

implanted xenografts in immunocompromised mice. Since 

monoclonal antibodies are increasingly used in clinical 

oncology, some investigators have tried to add the targeted 

effect of antibody-based drugs to a nanocarrier in order 

to obtain maximum anticancer effects with minimal side 

effects.2,23 Thus, trastuzumab was conjugated with various 

nanostructures, including carbon nanotubes or nanospheres.68 

The desired effect was achieved and, in the near future, we 

may expect newly described cytostatic agents in Phase I or 

Phase II clinical trials.

Immunotherapy is a very important part of the multimodal 

approach in cancer management. The immune system may 

also influence the outcome of a certain regimen. Ni et al69 

have applied this concept by developing a local vaccine 

after conjugating graphene oxide targeting interleukine-10 

receptor. Thus, the anti-inflammatory action of interleukin-10 

is blocked and the suppressive tumor microenvironment 

becomes a target for the immune system.

Nanovectors can be used as carriers for drugs, but also for 

contrast substances, with a high applicability in diagnostic 

medicine.70 Iron oxide, gold, gadolinium, or even quantum 
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dots represent good alternatives for radiation oncology, 

photodynamic therapy, or hyperthermia.71,72 Iron oxide has 

important superparamagnetic characteristics and is one of the 

most investigated nanostructures in diagnostics, including in 

lymph node imaging, the inhibition of cancer cell dissemi-

nation and stem cell trafficking, visualization of ribonucleic 

acid (RNA), interference and T-cell-specific labeling.73–77 As 

a contrast agent, iron oxide is especially useful for magnetic 

resonance imaging (MRI), and it is very sensitive in detecting 

solid tumors, but it has little or no applicability in lymph node 

micrometastasis or hematological malignancies.78,79 While 

still in the early stages, the research in this field will more 

than likely improve in the near future. In prostate cancer, 

Harisinghani et al78 have already proven that the use of iron 

nanostructures as a contrast agent in MRIs detects over 90% 

of all lymph node disseminations, which is in comparison 

with the detection rate of 35% in classic MRIs. 

Even though chemotherapy remains the most widely used 

and effective treatment option for disseminated malignancies, 

acquired or intrinsic drug resistance accounts for almost 90% 

of treatment failure. MDR represents the simultaneous resis-

tance to various medications that are different both structur-

ally and functionally, most often as a result of the drug efflux 

pumps that reduce the intracellular levels and thus reduce the 

cytotoxic effect on the cancer cell.6 New nanotechnology-

based theranostics are evolving and are expected to confer 

new strategies in overcoming the drug efflux transporters, 

which are findings that are presented further in the next 

section. The multifunctional characteristics of the nanocar-

riers make them very suitable for treating a heterogeneous 

tumor mass in comparison to classic approaches.15 Nanocar-

riers have a preferential accumulation within the malignant 

cell due to the enhanced permeability and retention effect.23,80 

Thus, the drug concentration is increased in the malignancy 

and reduced in the surrounding, healthy tissue. This will 

result in an increased efficacy of systemic therapy, with 

decreased side effects.23,70

Nanotechnology can be applied not only in chemotherapy, 

but also in radiation oncology, by combining radiobiology 

with experimental pharmacology. Malignant cells are sen-

sitive to ionizing radiation emitted by various radioactive 

metals.81 By delivering such substances to the primary tumor 

site, we may improve current radiotherapy or brachytherapy 

protocols. Chanda et al82 have conjugated gum arabic glyco-

proteins to gold nanoparticles and tested this new assay on 

a murine model of prostate cancer. The administration of a 

single dose of beta-emitting irradiation increased the local 

administered dose up to 70 Gy and induced the regression 

of prostate adenocarcinoma in nude mice. Garrison et al83 

also used an in vivo murine model of prostate cancer and 

demonstrated that beta radiation emitting bombesin could 

be used to specifically target cancer cells.

Nanocarriers conjugated 
with miRNAs or anti-miRNA 
oligonucleotides
The human body has natural barriers for preventing a wide 

range of diseases, whether considering the organism/body 

level, the tissue–organ level, the cellular level, or even the 

molecular level. Thus, the simple aim of achieving highly 

localized drug delivery with maximal anticancer effects 

and minimal side effects is very troublesome, as it can be 

expensive, time consuming, and it does not offer any guar-

anteed success.2,23 This emphasizes the need to design highly 

specific carriers that can deliver highly specific active agents 

in order to achieve maximum efficacy with minimal toxic-

ity. In vivo, various miRs can be delivered either by viral 

or nonviral carriers, depending on transfection efficiency, 

the safety of the receiving host, immunogenicity, or side 

effects.84,85 Nonviral carriers are nonetheless considered to 

be more suitable in the clinic, especially cationic transporters 

such as PEG. This is because it has a strong buffering ability 

and it can release functional genetic material into the cytosol 

after having induced osmotic endosome breakage.86–88 The 

main disadvantage is that PEG is not cell-specific, and one 

would need very high doses in order to achieve the desired 

concentration, leading to potentially serious side effects.89,90 

Thus, the need to improve current knowledge in the field and 

to produce other ligand molecules for aptamers functionaliza-

tion. Aptamers are short, single-stranded oligonucleotides 

formed by 30–50 bases and they express minimal or even no 

antigenicity and immunogenicity, making them more suitable 

for in vivo use in clinical hematology and oncology.91–93

Other nonviral vector systems may also include carbon 

nanomaterials, such as nanotubes or fullerenes. Our studies 

used nanotubes because of their unique intrinsic physical 

and chemical properties in an attempt to deliver siRNA in 

hepatocellular carcinoma cells.12 The molecular analysis of 

the experiments has proven that p53, TNF-a, and VEGF 

levels were altered after siRNA transfection. This proves that 

carboxylated carbon nanotubes may provide an alternative to 

the lipid transfection system-based therapy for liver malig-

nancies. The successful functioning of the endosomal siRNA 

system and followed by the release of the RNA molecules 

into the cytoplasm are very important for the efficient use 

of oncogene silencing.1,2,13 In order for this process to be 
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carried out with minimal side effects, tertiary complexes were 

developed out of nucleic acids, polycations, and a charge-

reversal polymer that can pH-dependently alter its electric 

charge either into the positive or negative state.94–96 When 

the vector arrives into an organelle such as an endosome or 

a lysosome, both are known to have a pH of 5–6, the charge 

conversion facilitates endosomal escape through a mem-

brane disruption process after having enhanced the so-called 

“proton sponge”.97–99 Apoptosomes represent other models 

of molecular self-assembly structures. In such wheel-like 

structures, an individual Apaf-1 protein will form a com-

plex with cytochrome-c100 before recruiting and activating 

procaspase-9.101 This will trigger a cascade of other events, 

which may lead to apoptosis. Polymeric micelles are artificial 

structures that resemble apoptosomes and act as either drug 

solubilizers or carriers of antisense oligonucleotides and 

drug molecules.102 A single-stranded oligonucleotide can 

recognize a target molecule on a cancer cell both through 

Watson–Crick base pairing with folic acid, and also through 

hydrophobic interactions and hydrogen bonding.103 Such an 

oligonucleotide ligand is also known as an aptamer, which 

has very important properties that include its small size, a 

lack of immunogenicity, and ease of synthesis.104,105

Exosomes are vesicles ranging from 30–90 nm in diam-

eter, and they are known to play a key role in intercellular 

communication.106,107 This communication is accomplished 

using various cytokines, interleukins, and a substantial 

amount of RNA.108 RNA carried by the exosomes is mostly 

a RNA and miRNA messenger, with very little 18S and 28S 

ribosomal RNA.109,110 Since exosomes are used in normal cell 

physiology in RNA transport, researchers have attempted 

to use these nanostructures in gene therapy as a vector to 

deliver therapeutic nucleic acids to target cancer cells.108,111 

Gene therapy aims to provide a therapeutic solution for the 

cause of the disease, rather than for its symptoms. Two types 

of vectors (either viral or nonviral) are currently available in 

the US, according to an online search of the National Insti-

tutes of Health database (http://clinicaltrials.gov/ct2/home). 

Most of the 262 ongoing trials use viral vectors, yet this 

approach is associated with a high toxicity and an important 

immunological response from the host organ. Exosomes are 

far more efficient because they can target cancer cells and 

trigger little or no immune response since they are isolated 

from the patient’s bodily fluids and are subsequently trans-

ferred back to the same patient after an insertion or deletion 

of the genetic material in vitro.112–114 Wahlgren et al115 used 

exosome-delivered siRNA in order to achieve posttranscrip-

tional gene silencing. They showed that the MAPK-1 protein 

was downregulated in both monocytes and lymphocytes 

that were cocultured with particles, which were genetically 

modified to carry an anti-MAPK-1 transcript. 

Exosomes represent an important delivery system,116,117 

which proved its efficacy in vitro for RNA and protein 

transport.118 A good therapeutic effect with low immuno-

genicity was observed for siRNA.1,2,13 In a study conducted 

by Alvarez-Erviti et al119 the capacity to downregulate the 

BACE1 protein and messenger RNA levels was demon-

strated using exosome-mediated siRNA delivery produced 

by dendritic cells. The same group119 has also engineered 

dendritic cells to express the exosome-specific protein, 

Lamp2b, fused with the peptide, rabies virus glycopro-

tein, which is specific for neuronal lineage cells. Thus, 

dendritic cells synthesized exosomes, which were loaded 

to exogenous siRNA. This resulted in the knockdown of 

BACE2. The clinical implications are of great potential in 

the management of Alzheimer’s disease.120 Gold is a noble 

metal used throughout the ages of human history in all 

aspects of civilization, including in medical science,121,122 

and nanotechnology-based new approaches make no 

exception. Polyvalent oligonucleotide-functionalized  

gold nanostructures have been designed to enter cancer cells 

without the use of a cationic cocarrier after having been 

functionalized with a synthetic miR sequence. The prototype 

of the miR mimic-gold nanoparticle construct consists of a 

1–15 nm gold nanoparticle, which was functionalized with 

a monolayer of a double-stranded alkylthiol-modified RNA 

molecule of around 30 duplexes.123 Hao et al further proved 

that a gold nanostructure could carry the mimics of miR-205, 

which are known to have a tumor suppressive effect, thus 

inhibiting cancer cell proliferation and migration.123

miRNA-based therapy
miRNAs are able to modulate different pathways,124,125 taking 

into account that a single miRNA is able to target multiple 

genes. Various approaches were applied to assess the signifi-

cance of a particular miRNA or distinct representatives from 

a miRNA family, while noting that miRNAs from the same 

family could have antagonistic biological effects.126,127 There 

is increasing evidence that attempts to explain the miRNA’s 

observed correlation with drug sensitivity.128–130

The practical implication of miRNAs in the initiation, 

development, and progression of cancer has led to the buildup 

of novel therapeutic schemes. Approaches include, among oth-

ers, the inhibition of upregulated miRNAs (oncogenic role), 

as well as using miRNA replacement therapy by restoring 

the normal levels of tumor supressors miRNA. Oncogenic 
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miRNAs are inhibited based on antisense oligonucleotides, 

antagomirs, sponges, or locked nucleic acid structures.118 

Additional approaches involve the restoration of tumor sup-

pressor miRNA expression using miRNA mimics, based on 

viral or nonviral delivery systems. Both approaches have 

showcased favorable outcomes in preclinical and clinical 

studies.118

Considering the significance of miRNAs in cancer and its 

capacity to modulate various biological pathways, miRNA 

mimics/inhibition asserted a new and effective therapeutic 

strategy in cancer.1,2,118 Specifically, miRNAs or anti-

miRNA may be used individually or in combination with 

chemotherapy, leading to an enhanced therapeutic response 

and to an improved survival rate.131 In order to apply the vast 

potential of miRNAs for therapy, the main obstacle for the 

successful translation of therapeutic strategies into the clinic 

remains the pathway of delivery.132

miRNA expression patterns can be altered by various 

mechanisms, including genetic and epigenetic alterations.133 

Correlations between miRNA expression and chromosomal 

abnormalities were shown to be involved in the pathogenesis 

of chronic lymphocytic leukemia, since miRNAs are involved 

in the initiation, prognosis, and chemoresistance of chronic 

lymphocytic leukemia.134–136 Concomitantly, the inhibition 

of the oncogenic miR-21 with antisense oligonucleotides 

generates a proapoptotic and antiproliferative response in 

vitro in different cell models, reducing tumor development 

and metastatic potential in vivo.118 Other examples are pre-

sented in Table 1.

Clinical implications in hematology 
and oncology
Nanotechnology is of major interest in clinical hematology 

and oncology for both therapy and diagnosis because of their 

Table 1 Examples of miRNA therapeutic implications in hematological malignancies

Hematological disease Study model Target miRNA Biological effect Reference

MCL MCL cell line; xenograft MCL 
mouse model

miR-17-92 cluster Protein phosphatase PHLPP2,  
a key negative regulator of the 
PI3K/AKT pathway, being a target 
of miR-17-92

118,137,138

AML OCI-AML3 and Molm13 let-7a CXCR4 regulates let-7a expression 
via YY1, leading to the activation  
of MYC and BCLXL in AML cells

139

AML versus healthy individuals miR-221/222 miR-221/222 can be considered  
a marker of disease progression 
and an important therapeutic target

140

AML cell lines, mouse models, 
and primary samples

Mir-29 Target apoptosis, cell cycle,  
and proliferation pathways; reduce 
tumorigenesis

141

AML versus healthy individuals miR-155 miR-155 upregulation identifies 
high-risk patients

142

ALL Reh cells, ALL primary cells MiR-125b, miR-100, 
and miR-99a

Coregulate vincristine resistance  
in childhood ALL

143

CLL MEG-01 cells; tumor xenografts 
of leukemic cells in nude mice 
and in primary CLL samples

miR-15 and miR-16 miR-15 and miR-16 induce 
apoptosis by targeting BCL2

144

CLL samples in animal models miR-29 and miR-181 miR-29 and miR-181 are inversely 
correlated with TCL1 expression

145

CML Imatinib-resistant versus 
imatinib-responsive patients

miR-181c miR-181c target genes like PBX3, 
HSP90B1, NMT2, and RAD21 were 
correlated with drug response

146

K562 cells, CML patients  
versus healthy individuals

miR-196b miR-196b downregulation increase 
the expression of BCR-ABL1  
and HOXA9 oncogenes

147

K562 cells, CML patients  
versus healthy individuals

mRNA-30a mRNA-30a downregulation  
leads to increased ABL1 and  
BCR-ABL1 expression

148

Abbreviations: miRNA, micro ribonucleic acid; MCL, mantle cell lymphoma; PI3K, phosphoinositide 3-kinase; AML, acute myeloid leukemia; CXCR4, chemokine receptor 
type 4; MYC, myelocytomatosis oncogene; BCLXL, B-cell lymphoma–extra large; ALL, acute lymphoblastic leukemia;  CLL, chronic lymphocytic leukemia; MEG-01, maternal-
effect germ; BCL2, B-cell lymphoma 2; CML, chronic myeloid leukemia.
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unique features. These include self-assembly or the ability to 

make use of the enhanced permeability and retention capac-

ity that most malignancies have as a consequence of leaky 

neoangiogenesis and the absence of a functional lymphatic 

system.149 Nanostructures (Table 2) can also be designed 

to carry useful payloads that include low molecular weight 

chemotherapy agents or contrast agents.150,151 Moreover, the 

newly formed structures are able to rapidly detect cancer 

cells, load multiple anticancer agents on their surface, and 

deliver the drugs rapidly at the target cell,152–154 while prevent-

ing their bioactive cargo degradation when the investigator 

chooses to use an RNA-based approach.

Non-Hodgkin’s lymphomas are the most common 

lymphohematopoietic malignancies both in the US and in 

Europe.166 One particular type is anaplastic lymphoma kinase 

(ALK)-positive anaplastic large cell lymphoma, which is a 

very aggressive T-cell lymphoma with an abnormal expres-

sion of both the ALK oncogene, as well as the surface protein, 

CD30.167–169 A nucleic acid-based knockdown of ALK gene 

expression has been proven to promote cell death of the 

malignant T-cell.170,171 Mori et al172 have developed an RNA 

aptamer that specifically binds to the CD30 epitope. Zhao 

et  al173 have subsequently hypothesized that a lymphoma 

cell-selective delivery of a tumor gene-specific siRNA could 

be achieved by assembling a functional RNA nanocomplex 

comprising the CD30-specific aptamer and the ALK-targeted 

siRNA, all within a nanosized PEG-based polymer carrier. 

PEG-based structures are considered to be rather safe, as 

toxicity assays done using BALB/c mice showed little or no 

side effects, except for 40% accumulation in the liver.174 This 

new approach proved that the nanocomplex could be cancer 

cell-selective and cancer gene-specific, with great potential 

in the clinic if hepatic damage can be avoided. 

Another non-Hodgkin’s lymphoma with a very aggressive 

behavior and short-term survival is mantle cell lymphoma. 

This particular type of malignancy is resistant to most thera-

peutic approaches, including immunochemotherapy and stem 

cell transplantation, leading investigators to look for different 

salvage treatment options.175–178 SYK is a new target for the 

management of B-lineage leukemias and lymphomas,179 as 

it regulates apoptosis by controlling activation of the phos-

phoinositide 3-kinase/AKT, nuclear factor-kappa B, and 

signal transducer and activator of transcription 3 pathways, 

which are all very important in the signaling of the stem cell 

lineage.180,181 Cely et al182 reported a different approach by 

developing a nanotechnology-based platform that can be used 

to target a very selective SYK inhibitor for the lymphoma 

cell. The designed liposomal nanoparticle was the penta-

peptide mimic, 1,4-bis(9-O-dihydroquinidinyl)phthalazine/

hydroquinidine 1,4-phathalazinediyl diether (C16). The 

liposomal nanoparticle of C16 was shown to induce apoptosis 

of the lymphoma cell after 24 hours, providing the scientific 

background for an alternative treatment for refractory mantle 

cell lymphoma.182 However, previous experience using lipo-

somes shows that this treatment strategy is accompanied by 

several side effects. For patients with AIDS-related Kaposi’s 

sarcoma, 30% of those treated with Doxil presented with low 

blood counts and palmar–plantar erythrodysethesia,183,184 yet 

the clinicians easily managed these symptoms.

Carbon nanotubes are tubes made out of graphic carbon 

that have very good mechanical strength, good flexibility, and 

excellent thermal and electrical conductivity,185–187 qualities 

that initially made them suitable candidates for novel drug 

design. These tubes have been conjugated with monoclonal 

antibodies and plasmid deoxyribonucleic acid (DNA) in order 

to achieve cancer cell inhibition,188–191 and conjugates have 

also been made with paclitaxel and other cytostatics.192 Liu 

et al inhibited the growth of breast cancer by conjugating 

carbon nanotubes with paclitaxel, and they showed that the 

intravenous administration of 10 mg/kg of the new com-

Table 2 Various nanostructures used in translational cancer research

Disease Nanostructure Active agent Biological effect Reference

Kaposi sarcoma Liposomes Doxorubicin Cytostatic 155
Colorectal cancer Carbon nanotubes Anti-EGFR antibody Cytostatic 156
Melanoma Carbon nanotubes Hematoporphyrin monomethyl ether Photodynamic therapy 157
Malignant gliomas Carbon nanotubes Tumor lysate Vaccination 158
Breast cancer Carbon nanotubes Paclitaxel Cytostatic 159
Pancreatic cancer Gold nanoparticles Bortezomib Cytostatic 160
Breast cancer Gold nanoparticles Gadolinium chelate Diagnostics 161
Neuroblastoma Gold nanoparticles Barium titanate Photothermal therapy 162
Hepatocellular carcinoma Silver nanoparticles Protein conjugate silver sulfide Cytostatic 163
Breast cancer Quantum dots Mortalin antibody Diagnostics 164
Lung cancer Quantum dots CdTE:Zn2+ Diagnostics 165

Abbreviation: EGFR, epidermal growth factor receptor.
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pound enhanced the therapeutic efficacy when compared 

with doxorubicin-free treated mice.104 Still, because of their 

fiber shape and size, carbon nanotubes cause cytotoxicity, 

inflammation, and DNA damage in vitro.193–196 The animal 

models used to study the toxic effects of carbon nanotubes 

demonstrated that the high concentrations needed to induce 

the regression of the tumor may cause chronic lung inflam-

mation, foreign-body granulomas, or interstitial fibrosis,197–200 

limiting their potential clinical use.

Other types of nanoparticles with biomedical application 

are metallic colloidal gold and silver.201–206 These structures 

are used for photothermal ablation therapy, as well as 

for contrast enhancers in computed tomography or X-ray 

diagnostics.207,208 Niidome et al202 have reported no toxicity in 

their studies in a mouse model of colon adenocarcinoma after 

having used intravenous PEG-coated nanorods, in spite of 

the fact that gold may interact with intracellular proteins and 

modify their structure, causing autoimmune-related toxicity. 

Silver nanostructures are commercially available for antimi-

crobial use,209,210 yet recent data show that silver oxide may 

also be used in cancer research, as the nanostructure cargo 

can induce the regression of cancer neoangiogenesis.211–214 

Still, toxicity limits their use because silver nanoparticles can 

cause destruction of the blood–brain barrier, brain degenera-

tion, and edema,215–217 as well as liver failure.218

Diagnostics can also be aided based on diffident nano-

structures types including quantum dots or metallic core-

shell nanoparticles that usually contain cadmium telluride, 

cadmium selenide, and either indium arsenide or indium 

phosphide.1,2 This structure is then covered by a shell of 

zinc sulfide and is subsequently coated with PEG in order 

to facilitate the attachment of various drugs, nucleic acids, 

or antibodies.219–221 These structures are very good fluoro-

phores because of their broad-spectrum fluorescence,222 

and they can be used to properly identify cancer cells, as 

well as signal events such as peroxisome activity or the 

presence of certain membrane receptors.223–226 Toxicity in 

clinical use is not known in great detail, but it seems that 

following the removal of the coating after their exposure to 

oxidative environments such as the endosome,227–229 quan-

tum dots may be very toxic, which may limit their clinical 

use (Figure 3).

Identify patient

Biomarkers
Diagnosis
Prognosis
Therapeutic strategy

Personalize treatment
miRNA combined therapy
(classical therapy + miRNA
therapy)

miRNA evaluation pattern
Hybridization methods
qRT-PCR
microarray
deep sequencing

Biological samples
Normal versus tumoral tissue
(fresh, frozen, FFPE)
Whole blood, serum, plasma
saliva, urine

Figure 3 Bench-to-bedside evolution in translational hematology and oncology.
Abbreviations: FFPE, formalin-fixed, paraffin-embedded; miRNA, micro ribonucleic acid; qRT-PCR, quantitative real-time polymerase chain reaction.
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Conclusion
In recent years, important progress has been made in nano-

technology, with its ever-increasing applicability in basic and 

translational medicine, leading to the appearance of a new 

field known as nanomedicine. This new science deals with 

the engineering of various structures of nanoscale dimensions 

that can be properly conjugated with various highly specific 

targeting agents in order to be used in the clinic, for either 

early diagnostic purposes or for disease treatment.1,2

These endeavors are possible because nanoparticles have 

unique properties, such as a preferential accumulation in the 

neoplastic tissue in comparison with healthy cells.1,2 These 

particles hold great potential for possibly replacing current 

active agents, which have been shown to be highly inef-

ficient, based on epigenetics and molecular pharmacology 

principles. This step in clinical oncology and hematology is, 

however, still far from being implemented in clinical practice. 

Nevertheless, with each experimental report, we come closer 

to a patient-tailored approach in order to achieve maximum 

anticancer effects with minimal side effects.
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