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Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) represent an attractive

resource for cardiac regeneration. However, survival and functional integration of

transplanted iPS-CM is poor and remains a major challenge for the development

of effective therapies. We hypothesized that paracrine effects of co-transplanted

mesenchymal stromal cells (MSCs) augment the retention and therapeutic efficacy of

iPS-CM in a mouse model of myocardial infarction (MI). To test this, either iPS-CM, MSC,

or both cell types were transplanted into the cryoinfarction border zone of syngeneic

mice immediately after injury. Bioluminescence imaging (BLI) of iPS-CM did not confirm

enhanced retention by co-application of MSC during the 28-day follow-up period.

However, histological analyses of hearts 28 days after cell transplantation showed that

MSC increased the fraction of animals with detectable iPS-CM by 2-fold. Cardiac MRI

analyses showed that from day 14 after transplantation on, the animals that have received

cells had a significantly higher left ventricular ejection fraction (LVEF) compared to the

placebo group. There was no statistically significant difference in LVEF between animals

transplanted only with iPS-CM or only with MSC. However, combined iPS-CM and

MSC transplantation resulted in higher LVEF compared to transplantation of single-cell

populations during the whole observation period. Histological analyses revealed that

MSC increased the capillarization in the myocardium when transplanted alone or with

iPS-CM and decreased the infarct scar area only when transplanted in combination with

iPS-CM. These results indicate that co-transplantation of iPS-CM and MSC improves

cardiac regeneration after cardiac damage, demonstrating the potential of combining

multiple cell types for increasing the efficacy of future cardiac cell therapies.
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INTRODUCTION

Ischemic cardiomyopathy is currently the most frequent
global cause of death (1). One of the main underlying
pathophysiological issues in this disease is the limited intrinsic
capacity of the human myocardium to regenerate after injury
(2). The heart function is further diminished after the acute
damage by unspecific inflammatory processes and adverse
ventricular remodeling resulting in terminal heart failure (3).
The recent progress in stem cell research has accelerated the
field of regenerative medicine, often involving transplantation
of cells to compensate for cell loss, rebuilding damaged tissue,
and restoring the organ function (4–6). Different cell types
have been investigated as treatment options for ischemic heart
disease leading to variable results with respect to the therapeutic
benefit (7).

Mechanistically, two groups of cell types with potential
for regeneration can be distinguished. Firstly, the cells that
indirectly support the endogenous regenerative capacities after
transplantation and, secondly, the cells that functionally integrate
into the damaged myocardium and directly contribute to the
restoration of its pump function. The cells in the first group often
belong to the category of adult stem cells, such as mesenchymal
stromal cells (MSCs), which have been shown to act via
paracrine factors reducing inflammation (8, 9), apoptosis (10),
and adverse remodeling (11, 12) while enhancing vascularization
and cell survival (13). MSCs have demonstrated safety and
efficacy in preclinical and clinical trials of cardiac repair (12,
14–19), however, functional improvements have been limited
and not sustained. A likely reason is the inability of MSC to
restore lost contractility necessary for proper electromechanical
heart function.

The cells in the second group are represented by
electromechanically competent cardiomyocytes (CM) at various
developmental stages. In pre-clinical studies, initially, the most
promising results with respect to integration, electromechanical
maturation, and functional improvement have been shown
after intramyocardial transplantation of fetal and neonatal CM
(20). However, ethical concerns and limited availability limit
the prospects of clinical application of these cells. A promising
alternative source of CM is pluripotent stem cells (PSCs), such
as embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs), which have the potential for essentially unlimited
proliferation and capability to differentiate into the desired cell
type. While the clinical translation of human ESC derivatives has
been hindered by safety issues (21) and ethical concerns (22), the
establishment of iPSC has opened new possibilities for research
and regenerative medicine because iPSCs have the advantage
of being autologous and able to generate derivatives with only
limited immunological issues and ethical concerns (23).

Many studies have demonstrated that PSC-derived CMs
have the potential to engraft and improve the performance
of infarcted myocardium (24–29). However, these cells have
only poor retention and very limited long-term survival after
transplantation (30, 31), which represents one of the most
formidable obstacles to clinical translation of stem cell-based
cardiac regenerative therapies.

Previous studies have demonstrated that MSCs secrete anti-
apoptotic factors that reduce apoptosis of isolated CM (32). We
have shown that MSCs support the adhesion of iPSC-derived
CM (iPS-CM) to non-contractile ventricular tissue slices and
that factors secreted by MSCs improve electrical integration of
iPS-CM into vital myocardial tissue in vitro (33) and counteract
the effects of hypoxia on cultured iPS-CM (34). Therefore, we
sought in this study to investigate whether MSCs are capable
of augmenting the engraftment and reparative capacities of co-
transplanted iPS-CM in vivo using a murine model of myocardial
infarction (MI).

MATERIALS AND METHODS

Generation of CM From Murine iPSC
Cardiomyocytes were generated from transgenic murine iPSC
line pUbC-FLuc-αPIG (clone C3) that expresses luciferase under
the control of a constitutive ubiquitin C promoter (pUbC) and
puromycin resistance and enhanced green fluorescent protein
(eGFP) genes under the control of a cardio-specific α-myosin-
heavy-chain promoter. The generation, characterization, and
cardiac differentiation of this cell line have been described
elsewhere (35). The differentiation of iPSC is induced by
embryoid body (EB) formation as illustrated in Figure 1A using
Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented
with 20% fetal bovine serum (FBS), 1× non-essential amino
acids, 0.1mM β-mercaptoethanol (all from Life Technologies,
Carlsbad, CA, USA), and 50µg/ml ascorbic acid (Wako
Chemicals USA Inc., Richmond, VA, USA) in non-adherent
cell culture dishes on a shaker. After 2 days, 3 ×104 EB
were transferred to spinner flasks (Integra, Hudson, NH, USA)
containing 200ml of differentiation medium. On day 9 of
differentiation, 8µg/ml puromycin (Invivogen, San Diego, CA,
USA) was added to the media for CM selection. On day 12, the
CM clusters were transferred to a 10 cm cell culture dish and
cultured on a shaker until day 16 when they were dissociated
with 0.25 g/l trypsin and 0.2 g/l ethylenediaminetetraacetic
acid (EDTA, both Life Technologies) containing 5 U/ml
DNAse (Sigma-Aldrich, St. Louis, MO, USA) and used for
transplantation experiments.

Isolation and Expansion of Bone
Marrow-Derived MSC
Mesenchymal stromal cells were isolated and expanded as
previously described (36). Briefly, the bone marrow cells
were flushed from long bones of 8-week old C57BL/6 mice
with phosphate-buffered saline (PBS, Life Technologies) and
cultured in mMSC media (PAN Biotech, Aidenach, Germany),
supplemented with 2.5 ng/ml human basic fibroblast growth
factor (bFGF, R&D Systems, Wiesbaden, Germany), 100 U/ml
penicillin, and 100µg/ml streptomycin (both Life Technologies).
A proliferative, morphologically homogenous MSC population
was established after continuous culture and passaged at 80%
confluence using trypsin/EDTA for 6–8 weeks. The adipogenic,
osteogenic, and hondrogenic differentiation potential of isolated
MSCs was assessed as described previously (36).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 January 2022 | Volume 8 | Article 794690

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Neef et al. Co-transplantation of iPS-CM and MSC

FIGURE 1 | iPS-CM characterization. (A) Schematic diagram of cardiac iPSC differentiation and experimental plan. (B) Flow cytometric analysis of eGFP-positive

puromycin selected FLuc-αPIG-iPS-CM at day 16 of differentiation (2 x 104 events). PI-propidium iodide. (C) Immunofluorescence detection of eGFP (green) and

α-actinin (red) in purified iPS-CM plated on fibronectin-coated dishes. Nuclei were stained with Hoechst. (D) Optical signal intensity of serial dilutions of 5.0 x 104

iPS-CM expressing FLuc was measured in IVIS. The image in the upper panel shows a representative result of one serial dilution in triplicates. The lower panel

demonstrates the linearity between cell dose and BLI of iPS-CM shown in the upper panel. The data are given as mean ± SD. (E) Determination of the BLI signal of

104/well FLuc-αPIG-iPS-CM alone or mixed with the same number of MSC in IVIS. Data in the bar graph are shown as mean ± SD of two different batches of iPS-CM

and MSC each measured in triplicates as shown in the representative IVIS image in the upper panel. The statistical significance of differences in groups was checked

by the unpaired student’s t-test. IPSC, induced pluripotent stem cells; eGFP, enhanced green fluorescent protein; CM, cardiomyocytes.

Magnetic Labeling of MSC
The MSCs were labeled with paramagnetic microspheres
(diameter: 0.9µm; composition: polystyrene with 62% (w/w)
iron oxide; fluorescent label: Flash Red; Bangs Laboratories,
Fishers, IN, USA), serving as MRI contrast agent and histological

marker as described before (36). Briefly, the cells were incubated
overnight with 11.2 × 106 microspheres/cm2 cell culture
surface in MSC cell culture media. The MSCs were co-
labeled with the fluorescent vital dye Vybrant DiI-CM (Life
Technologies) following the instructions of the manufacturer to
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identify the transplanted MSC-containing microspheres in the
histological analyses.

Immunocytochemistry
Single iPS-CMs from trypsinized cardiac clusters were plated
on fibronectin-coated (Tebu-Bio, Offenbach, Germany) culture
dishes (µ-Dish 35mm, high; Ibidi, Martinsried, Germany).
Adherent iPS-CMs were fixed with 4% paraformaldehyde (PFA;
Polysciences, Eppelheim, Germany) and permeabilized with
0.5M ammonium chloride (Roth, Karlsruhe, Germany) and
0.25% Triton X-100 (Sigma-Aldrich). The cells were then
incubated overnight with α-actinin antibodies (1:800, Sigma-
Aldrich) and visualized with species-matched secondary Alexa
Fluor 555-conjugated antibodies (Life Technologies). The nuclei
were counterstained with Hoechst 33342 (Life Technologies).

Flow Cytometry
Induced pluripotent stem cell-derived-CMs were analyzed using
a FACScan instrument (BD, Franklin Lakes, NJ, USA). The
dead cells were identified with propidium iodide (PI, BD).
Cell debris and dead cells were gated out, and the remaining
cells were quantified for expression of eGFP using CellQuest
v2.0 software (BD). The MSC surface markers were analyzed
using the following fluorescently labeled antibodies: anti-CD29
(phycoerythrin, PE), anti-CD44 (biotin, anti-biotin-PE-Vio770),
anti-CD90.2 (VioBlue), anti CD105 (allophycocyanin, APC),
anti-Sca-1 (fluorescein isothiocyanate), and anti-CD11b (APC-
Vio770) and fluorophore-matched isotype controls (all Miltenyi
Biotec, Bergisch Gladbach, Germany). Cells were analyzed using
a MACSquant flow cytometer and MACSquantify software
(version: 2.4, both Miltenyi Biotec) with a 3% threshold (isotype
control vs. specific antibody).

Animal Care
All animal experiments described in this study were approved by
the Landesamt für Natur, Umwelt und Verbraucherschutz NRW
(LANUV, Recklinghausen, Germany; Permit Number: 8.87-
50.10.37.09.161) and conformed to the Directive 2010/63/EU of
the European Parliament. Efforts were made to minimize the
suffering of animals.

Animal Model/Intramyocardial
Transplantation
A myocardial injury was induced by cryo-infarction in 8–10
weeks old male C57BL/6 mice as described previously (36).
Briefly, mice were anesthetized with 3% isoflurane (Baxter,
Unterschleißheim, Germany) in the absence of muscle relaxants,
placed onto a heating plate warmed to 38◦C, intubated and
ventilated with a mixture of nitrous oxide and oxygen (1:1)
and 1.25% isoflurane at a rate of 130 heaves per minute with
a volume of 0.5–0.8ml. After performing a skin incision, the
muscles were loosened, and the thoracic cavity was opened
by inserting a retractor into the intercostal space between the
third and fourth rib. The heart was exposed, the left ventricular
myocardium was cryoinjured, and 5 µl of cell suspension
was injected into the single periinfarct region using a 25 µl
Hamilton syringe (Model 702 RN SYR, Hamilton, Bonaduz,

CH) and a 27G needle. Postoperative analgesia was provided by
subcutaneous administration of Tramadol at 15 mg/kg after the
extubation and at 1 mg/ml in the drinking water for 4 additional
days (Gruenenthal, Aachen, Germany). Immediately after infarct
induction, the mice were randomly assigned to the following four
experimental groups to receive 1) iPS-CM, 2) MSC, 3) iPS-CM+

MSC, and 4) vehicle (PBS) injection (placebo group). For each
cell type, 5× 105 cells in a total volume of 5 µl PBS were injected
into a single site of the peri-infarct region with a 25 µl syringe
(Hamilton, Bonaduz, Switzerland) and a 27G cannula (BD). The
mortality rate of animals was in the range between 10 and 20%
and did not significantly differ between experimental groups. The
great majority of mice died shortly after surgical intervention,
most likely due to detrimental effects resulting from infarction.

Bioluminescence Imaging
D-luciferin (Caliper, Hopkinton, MA, USA) was administered
i.p. at a concentration of 300 mg/kg body weight per mice,
which were then anesthetized with 2.5% isoflurane (Baxter,
Unterschleissheim, Germany) for image acquisition (IVIS200
system, Caliper) as described by us earlier (35). The BLI
acquisition time was 60 seconds with binning set to maximum.
The image acquisition was performed on the day of cell
transplantation, days 1 and 3, and weekly up to 28 days after
transplantation. The BLI signal was quantified with the Living
Image 3D software (version: 2.5.1., Caliper).

Magnetic Resonance Imaging
Transplanted magnetically labeled MSCs were identified, and
cardiac function was assessed as described previously (36).
Serial MRI scans were performed weekly for 28 days after
infarct induction and cell transplantation. ECG-gated sagittal
scans of six slices covering six cardiac phases were used to
localize microsphere labeled MSC in long-axis images of the
left ventricle. For cardiac function assessment, the ECG-gated
transversal images of 6 slices with 12 cardiac phases of the
left ventricle were acquired between the end-systolic and end-
diastolic states. Themice were anesthetized duringMRI scanning
with 1.25% isoflurane (1 l/min O2), and normothermia was
maintained with a heating system in the solenoid coil. The
location of MSC was determined by analyzing the long-axis
images for signal voids caused by the paramagnetic microspheres
within the left ventricular wall and were saved as image files
using the visualization software DICOM viewer R2.5 v1.1
(Philips Amsterdam, The Netherlands). As a parameter of
cardiac function, the left ventricular ejection fraction (LVEF)
was calculated from end-systolic and end-diastolic volumes
calculated from semi-automatically assessed endocardial and
epicardial contours using image analysis software Segment v1.8
(Medviso, Lund, Sweden).

Immunohistochemistry and Histology
Mice were euthanized after the final MRI scan, the hearts
were excised, flushed with PBS, and cryo-preserved using
Tissue-Tek O.C.T. (Sakura Finetek, Staufen, Germany). The
hearts were cryo-sectioned (10µm), and the presence of iPS-
CM was determined by screening for eGFP fluorescence, and
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MSCs were detected by screening for Vybrant DiI-CM and
flash red fluorescence of microspheres. Cryo-sections were
fixed with 4% PFA and incubated with anti-α-actinin (1:800,
Sigma-Aldrich), anti-connexin-43 (1:750, Sigma-Aldrich), anti-
eGFP (1:200, Life Technologies), or anti-caveolin-1 (1:800,
Acris, Herford, Germany). Species-specific fluorescent secondary
antibodies (Alexa Flour 488, 594, or 647, Life Technologies)
were used for the detection of primary antibodies. Fibrotic areas
were identified by Masson’s Trichrome staining (Roth) following
the instructions of the manufacturer. Images were acquired
using an Eclipse Ti-U microscope and NIS Elements v3.22
software (Nikon, Düsseldorf, Germany). Entire mouse hearts
were transversally cryo-sectioned. For quantitative analysis of
fibrotic scar, every tenth section was stained with Masson’s
Trichrome. The size of the fibrotic scar was assessed bymeasuring
the outside (epicradial) length of the fibrotic area (blue staining)
per transversal histological section. These lengths weremultiplied
with the long-axis distance between sections (100µm) and added
up as per heart, as a representation of the size of the cryo-injury
induced fibrotic scar area.

Statistical Analyses
Data are presented as means with SE for continuous variables.
Differences in continuous variables in two groups were examined
using student’s t-test. The one-way ANOVA test was used to
compare values between more than two groups. When the
one-way ANOVA test was significant, group differences were
compared using the post-hoc Tukey-Kramer test. Statistical
analyses were performed using InStat (GraphPad Software, San
Diego, CA, USA). The statistical significance was defined as
P < 0.05.

RESULTS

Generation of Reporter iPS-CM
The differentiation of murine iPSC line pUbC-FLuc-αPIG and
puromycin selection generated a homogeneous population
of spontaneously beating clusters, which contained more
than 95% viable and eGFP expressing iPS-CM and yielded
an average of 2.5 CM per iPSC initially used (Figures 1A,B).
Immunocytochemical analysis with α-actinin antibodies
confirmed iPS-CM purity and showed that these cells exhibit
intra-cellular sarcomeric organization typical for heart cells
(Figure 1C). The BLI signal of purified iPS-CM was detectable
in vitro with high sensitivity, correlated in a linear fashion with
cell dose (Figure 1D), and was not affected by the addition of
MSC (Figure 1E). The minimal amount of cells that can be
reliably detected by BLI in vivo was 5× 104 transplanted iPS-CM
[(35) and our unpublished data]. These data demonstrate that
iPS-CMs generated in this protocol are suitable for quantitative
monitoring of their retention in vivo using BLI.

Isolation and Labeling of MSC
After 6–8 weeks in culture and expansion for additional 3–4
passages, MSC freshly isolated from the bonemarrow of C57BL/6
mice exhibited a morphologically homogeneous, proliferative
population of spindle-shaped cells. Overnight incubation of

MSC with microspheres resulted in almost complete labeling
of the MSC population (Figure 2A) without interfering with
MSC defining features, as reported previously (36). The analysis
of cell-type defining surface markers confirmed the expression
of CD29 (99.95 ± 0.02%), CD44 (74.91 ± 24.11%), and Sca-
1 (90.88 ± 13.60%), whereas CD11b, CD90, and CD105 were
not expressed (Figure 2B). Cultivation of MSCs in selective
media confirmed that they possess adipogenic, osteogenic, and
chondrogenic differentiation potential (Figure 2C).

BLI Does Not Show Enhanced Retention of
iPS-CM by Co-transplanted MSC
To determine if the retention and survival of transplanted
iPS-CM in cryoinjured heart can be enhanced by combined
application with MSC, we compared the BLI signal intensity
in animals transplanted with 5 × 105 iPS-CM alone or in
combination with 5 × 105 magnetically labeled MSC in a total
volume of 5 µl PBS during the follow-up period of 28 days after
transplantation (Figures 3A,B). BLI signals were only detected
in the heart region and were not disseminated to other areas of
the body of transplanted animals. On day 3, after transplantation,
the BLI signal in animals that received only iPS-CM significantly
decreased to 50.2 ± 26.3% (p < 0.001) compared to the signal
measured immediately after transplantation, while the intensity
of the BLI signal in the iPS-CM+MSC group decreased to a
lesser extent (62.4 ± 26.5%; p > 0.05 compared to day 0) but
this difference did not reach statistical significance (Figure 3B).
On day 7, the BLI signal dropped from basal value on day 0 to
23.8 ± 17.9% and 33.1 ± 21.8% (both p < 0.001 compared to
day 0) in iPS-CM+MSC and iPS-CM groups, respectively and
continued to decrease steadily to values below 7% on day 28 (iPS-
CM: 6.2± 5.1%; iPS-CM+MSC: 2.7± 3.1%). These data indicate
that co-administration of MSC did not significantly affect the
retention of viable luciferase-expressing iPS-CM in the infarcted
hearts during the 28-day observation period.

MSCs Increase the Number of Animals in
Which iPS-CMs Are Histologically
Detectable
Proper intramyocardial localization of magnetically labeled MSC
in both experimental groups was assessed by weekly ECG-
triggered cardiac MRI measurements. The scans of placebo or
iPS-CM-transplanted animals did not show any signal voids
in the myocardium (Figure 3C). However, analyses of animals
transplanted with MSC and iPS-CM+MSC revealed signal
voids over the course of 28 days, which did not change their
location or intensity during this time period (Figure 3C). Since
the signal voids detected by MRI may not originate from
viable MSC but also from microparticles released from dead
MSC and deposited within the tissue or macrophages, the
presence of cells in myocardial tissue sections was assessed
by fluorescence microscopy on day 28 after transplantation.
These analyses confirmed the survival of at least a fraction
of transplanted MSC in the peri-infarction region in all
animals of MSC (100%; 20/20) and iPS-CM+MSC (100%;
22/22) groups (Figures 4A–D,I–L). Transplanted MSC could
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FIGURE 2 | Labeling and characterization of MSC. (A) Labeling of MSC with paramagnetic and fluorescent microspheres (red). Nuclei were counterstained with DAPI

(blue). Scale bar: 50µm. (B) Flow cytometric analysis of MSC. Representative histograms for indicated surface markers used for validation of MSC identity are shown

in gray. Black histograms show control measurements with isotype-matched unspecific antibodies. (C) Multi-lineage differentiation potential of MSC into adipogenic,

osteogenic, and chondrogenic derivatives (from left). Cells were stained for lipid vesicles (red, left panel), intracellular calcium deposits (black, middle panel), and

hyaluronic acid in extracellular matrix (blue, right panel), indicative of respective cell types. Scale bars: 100µm. MSC, mesenchymal stromal cells.

be identified by fluorescence signals emitted by the membrane
stain Vybrant-DiI-CM, which co-localized in the same areas
that contained microspheres (Figures 4M–O). Engrafted iPS-
CMs were identified in tissue sections as isolated patches of
eGFP-positive cells (Figures 4E–H,I–L), which expressed cardiac
α-actinin organized in sarcomeric structures (Figures 4G,K)
and connexin 43 in few defined areas (Figures 4H,L, white
arrows). Interestingly, small areas of eGFP-positive iPS-CM were
detected histologically in 86.4% (19/22) of animals that were co-
transplanted with iPS-CM and MSC, while only 47.4% (9/19)
of animals contained GFP-positive cells in myocardial tissue
sections in the iPS-CM only group. These findings indicate that
co-administration of MSC did not significantly affect the BLI
signal of viable luciferase-expressing iPS-CM in the infarcted
heart during the 28-day observation period but increased the
number of animals in which iPS-CM could be microscopically
detected, which was most likely due to the inability of the
BLI method to detect small enhancement of CM survival in
individual animals.

Co-transplantation of iPS-CM and MSC
Improves Recovery of Heart Function
To assess the changes in heart function after MI and cell
transplantation, the LVEF in all experimental groups was
determined by weekly MRI measurements over the course of

28 days (Table 1). On day 7, after the induction of MI, a
significant decrease in LVEF from 69.2 ± 2.6% (n = 5) in
healthy animals to 44.1 ± 2.3% (n = 9) in vehicle-transplanted
animals was observed, and LVEF in the latter group did not
change significantly during the entire follow-up period of 28
days (Figure 5). However, co-delivery of iPS-CM and MSC
resulted in a significant increase in LVEF in 8 mice assessed
by MRI compared to vehicle-injected controls and single cell-
type recipients at all time-points measured (Figure 5, Table 1).
Animals that receivedMSC alone or iPS-CM alone demonstrated
better function than animals in the placebo group on days
14, 21, and 28 after transplantation, but the difference in
LVEF between these single cell-type recipients was significant
only on postoperative day 28 with iPS-CM exerting a stronger
therapeutic effect (MSC: 47.6 ± 1.9, n = 9; iPS-CM: 51.8 ±

2.8%, n = 8; p < 0.01). Interestingly, intragroup comparisons
revealed that only the animals that received iPS-CM alone or iPS-
CM combined with MSC showed significant improvement of the
LVEF during the 28 day follow-up period (iPS-CM: 46.3 ± 4.0%
on day 7 vs. 51.8± 2.8% on day 28, p< 0.01; iPS-CM+MSC: 50.9
± 3.0% on day 7 vs. 55.4± 2.3% on day 28, p < 0.001; Figure 5).
Taken together, dual cell therapy with iPS-CM and MSC resulted
in earlier, more efficient, and more sustained functional recovery
of acutely injured myocardium than treatment with either cell
type alone.
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FIGURE 3 | Cell tracking and assessment of cardiac function after induction of

MI and application of different cell therapy approaches. (A) BLI measurements

showing representative animals from the group having received iPS-CM and

iPS-CM+MSC over the course of 28 days. (B) Quantitative analysis of BLI in

animals transplanted with iPS-CM (n = 9) or iPS-CM+MSC (n = 9). Data are

given as mean ± SD of percentages of values relative to BLI on day 0 of cell

transplantation. (C) MRI reveals the static location of the microsphere labeled

MSC at the injection site over the course of 28 days in representative animals

from the MSC and iPS-CM+MSC groups. Animals from the iPS-CM group

showed no signal from injected cells. White arrows indicate signal voids

caused by labeled MSC. BLI, Bioluminescence imaging; CM, cardiomyocytes;

MSC, mesenchymal stromal cells; iPS, induced pluripotent stem cell.

Co-transplantation of iPS-CM and MSC
Improves Myocardial Capillarization and
Reduces Scar Size
Further histological and immunohistochemical analyses of
myocardial tissue sections obtained 28 days after operations
revealed significantly increased myocardial capillary density in
the MSC group (2,051.2 ± 108.1 capillaries/mm2; p < 0.001)
and the iPS-CM+MSC group (2,050.9 ± 109.2/mm2; p < 0.001)

FIGURE 4 | Immunohistochemical detection of transplanted cells in host

myocardium. Representative photomicrographs from three experimental

groups 4 weeks after intramyocardial injections of either MSC (A–D), iPS-CM

(E–H), or iPS-CM+MSC (I–L). (A,E,I) Masson’s Trichrome stainings of

transverse sections of hearts 4 weeks after operations with fibrotic scar tissue

stained blue. The injection site in the peri-infarct region is marked with an

asterisk. Scale bars: 500µm. (B,F,J) Immunohistological stainings of sections

containing transplanted cells 4 weeks after operations. eGFP (green), α-actinin

(red), microspheres (white), nuclei (blue). Scale bars: 20µm. (C,G,K) Magnified

view of areas in white boxes in images at left. Scale bars: 20µm. (D,H,L)

Immunohistological stainings of the same area in neighboring sections of

sections shown in images at left. eGFP (green), connexin 43 (red),

microspheres (white), nuclei (blue). Scale bars: 20µm. (M,N,O)

Immunohistological stainings of sections from the MSC group with grafted

MSC showing co-localization of internalized microspheres (white) with

membrane stain Vybrant DiI-CM (red). α-actinin (green), nuclei (blue). Scale

bars: 20µm. eGFP, enhanced green fluorescent protein; CM, cardiomyocytes;

MSC, mesenchymal stromal cells.

compared to the placebo group (1,704.4 ± 173.0/mm2;
Figures 6A,B). Additionally, the analysis of the fibrotic area
in left-ventricular wall infarction scars revealed a significant
reduction of scar size only in the iPS-CM+MSC group (11.5 ±

2.1 mm2 vs. placebo: 17.5 ± 3.0 mm2; p < 0.001; Figures 6C,D).
There was no statistically significant difference in scar size
in other inter-group comparisons. These data suggest that
enhancement of capillarization in the infracted myocardium
mostly depends on MSC-specific factors, whereas reducing scar
size requires co-transplantation of both cell types.

DISCUSSION

Many studies demonstrated that PSC-derived CMs have the
capacity to engraft and build functional myocardium and
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TABLE 1 | Statistical analysis of LVEF results from cardiac MRI measurements by ANOVA and post hoc Tukey-Kramer multi-group comparison tests.

Placebo

(n = 9)

MSC

(n = 9)

iPS-CM

(n = 8)

MSC +

iPS-CM

(n = 8)

day 7 Placebo 44.1 ± 2.3* ns ns p < 0.01

MSC ns 46.2 ± 3.9 ns p < 0.05

iPS-CM ns ns 46.3 ± 4.0 p < 0.05

iPS-CM+MSC p < 0.01 p < 0.05 p < 0.05 50.9 ± 3.0

day 14 Placebo 43.1 ± 1.2 p < 0.05 p < 0.001 p < 0.001

MSC p < 0.05 46.8 ± 2.3 ns p < 0.001

iPS-CM p < 0.001 ns 50.0 ± 3.3 p < 0.01

iPS-CM+MSC p < 0.001 p < 0.001 p < 0.01 54.9 ± 3.0

day 21 Placebo 44.0 ± 2.5 p < 0.05 p < 0.01 p < 0.001

MSC p < 0.05 47.9 ± 3.8 ns p < 0.001

iPS-CM p < 0.01 ns 49.5 ± 1.2 p < 0.05

iPS-CM+MSC p < 0.001 p < 0.001 p < 0.05 53.8 ± 2.8

day 28 Placebo 44.2 ± 2.6 p < 0.05 p < 0.001 p < 0.001

MSC p < 0.05 47.6 ± 1.9 p < 0.01 p < 0.001

iPS-CM p < 0.001 p < 0.01 51.8 ± 2.8 p < 0.05

iPS-CM+MSC p < 0.001 p < 0.001 p < 0.05 55.4 ± 2.3

*Values in bold at intersections of each experimental group represent LVEF for this group and the corresponding time point expressed as mean ± SD. ns, non-significant (p > 0.05).

FIGURE 5 | Assessment of cardiac function from weekly cardiac MRI scans

after induction of MI. LVEF was determined in healthy animals pre-operatively

and at weekly intervals after MI and cell transplantation in groups that received

PBS (n = 9), MSC (n = 9), iPS-CM (n = 8), or iPS-CM+MSC (n = 8).

Statistically significant results for iPS-CM+MSC group: ***p < 0.001 vs.

placebo, xxxp < 0.001 vs. MSC, +/++p < 0.05/0.01 vs. iPS-CM; §p < 0.05:

iPS-CM+MSC on day 1 vs. iPS-CM+MSC on day 7; #p < 0.05: for iPS-CM

on day 1 vs. iPS-CM on day 7 (all one-way ANOVA with the Tukey-Kramer

post-hoc test). CM, cardiomyocytes; MSC, mesenchymal stromal cells; iPS,

Induced pluripotent stem cell; LVEF, left ventricular ejection fraction.

improve cardiac performance in different animal models of MI
(24, 37, 38). However, the maximal therapeutic potential of this
cell population has not yet been fully exploited, because of the
poor engraftment and survival of exogenous CM at the site
of injection (30, 35). Therefore, improving these parameters is
crucial for achieving the best possible myocardial regeneration
after MI. The present study was designed to investigate if

MSC can augment the retention of co-transplanted iPS-CM
in damaged myocardium and if combined cell therapy can
improve the ventricular pump function. Our in vivo analyses
showed that MSC could not significantly increase the retention
of iPS-CM in the peri-infarct the region of myocardium.
Therefore, the observed improvement of LVEF in animals that
received combination therapy compared to placebo and single-
cell populations most likely resulted from isolated or partially
overlapping but additive effects of each single cell type. Although
the exact mechanism responsible for therapeutic effects observed
in our study remains to be elucidated, MSCs most likely
conferred their beneficial effects by paracrine factors acting on
vascularization and tissue remodeling (39, 40) and iPS-CMs
contributed to improved heart function both by secreted factors
(41, 42) and their electromechanical properties (24, 26).

Our study quantitatively assesses the effect of co-transplanted
MSC on survival and therapeutic effect of iPS-CM by serially
and non-invasively monitoring the retention kinetics of viable
luciferase-expressing CM using BLI and cardiac function via
MRI. Among previous studies comparing the effects of single
and combined cell therapies in animal models of MI (41, 43–
49), only Kearns-Jonker et al. investigated the added benefits of
MSCs and ESC-derived CMs in a rat model ofMI but they did not
quantify cell retention (45). Ye and coworkers used quantitative
PCR (qPCR) to assess cell retention in their study comparing
therapeutic effects of human iPS-CM alone or in combination
with iPSC-derived endothelial cells and smooth muscle cells in
a pig model of ischemia/reperfusion injury (41). They showed
that significantly more cells survived in the co-transplantation
group after 4 weeks, however to a still generally low extent
(4.1 vs. 3.2%). Although the qPCR analysis did not account for
viability and type of the detected cells, these data emphasize the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 January 2022 | Volume 8 | Article 794690

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Neef et al. Co-transplantation of iPS-CM and MSC

FIGURE 6 | Assessment of scar area and capillary density in hearts 4 weeks after MI and cell transplantation. (A) Immunohistological staining of transversal heart

sections for the endothelial-specific marker caveolin-1 (white in the top panel; violet in middle and lower panels). Capillary density was determined by image analysis

software (Nikon Elements NIS) according to the size and circularity of fluorescents objects (marked in green in middle and lower panel) within defined regions of the

myocardium (outlined in red in the middle and lower panel). Scale bar: 500µm. (B) Quantitative analysis of capillary density 4 weeks after cell transplantation in each

experimental group. ***p < 0.001 vs. placebo. (C) Serial Masson’s Trichrome stained sections (blue: fibrotic area) of hearts 4 weeks after induction of MI from basal to

apical infarction border. Gaps between displayed sections are 100µm. (D) Quantitative analysis of infarction scar expansion based on Masson’s Trichrome stained

sections in indicated experimental groups. ***p < 0.001 vs. placebo (all one-way ANOVA with the Tukey-Kramer post-hoc test).

effects of combining multiple cell types to modulate and at best
improve cardiac cell therapy approaches. This is in agreement
with our observation that MSC did not increase the survival of
iPS-CM to an extent detectable by BLI. There are many factors
influencing the efficacy of cell retention after transplantation, in
particular, mechanical washout immediately after injection (30).
Additionally, functional iPS-CM engraftment could be limited or
prevented by suboptimal cell dose and cell formulation, improper
timing of transplantations, or inability of the engrafted dose of
MSC to mitigate the adverse effects of the acutely infarcted tissue
microenvironment. Furthermore, iPS-CM might lack structural
features necessary for stable attachment in the host tissue, as
previously shown for murine ESC-derived CM (50).

Therefore, to increase the efficacy of cardiac cell-based
therapies significant effort must be directed toward improving
the survival and functional integration of transplanted cells into
the host tissue. To this end, more efficient cell delivery tools
and methodologies and optimized therapeutic formulations

of defined cell types combined with biomaterials and
cardioprotective factors should be developed and tested (51). The
importance of this approach was demonstrated by Ye et al. who
showed that a two-fold improvement of cell survival at 4 weeks
after transplantation can be achieved by transplanting iPS-CM,
EC, and SMC through an insulin-like growth factor 1 (IGF-1)-
secreting epicardial fibrin patch, suggesting that prevention of
mechanical cell loss and cardioprotective factors play a more
important role in enhancing cell retention than simultaneous co-
delivery of different cell populations (41). Further improvements
of cell retention could be achieved with pharmacological
(small molecules) or genetic agents (exosomes, microRNA)
employed locally or systemically to stimulate endogenous repair
mechanisms and act beneficially via immuno-modulation,
anti-inflammation, and neovascularization.

Despite very poor cell retention, we found that from week
2 after transplantation and onwards the animals in all groups
that received cells had a significantly higher LVEF compared
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to the placebo group, regardless of only MSC, only iPS-CM,
or both cell types combined were transplanted. There was
no statistically significant difference in LVEF between animals
transplanted with iPS-CM alone or MSC alone. However, co-
transplantation of both cell types led to a higher LVEF compared
to transplantation of single-cell populations at each time point
analyzed. These findings are in agreement with previous studies
demonstrating in general the higher efficacy of cell combinations
compared to single-cell treatments, independently of which cell
combinations were examined (41, 43–48, 52, 53). However, the
therapeutic effects of cell combinations in individual studies
were rather heterogeneous. Kearns-Jonker et al. showed that
co-transplantation of human MSC and ESC-derived CM was
more beneficial than transplantation of CM alone in inducing
the expression of genes in host cells that encode for factors
that promote cardiac repairs, such as hepatocyte growth factor
or IGF-1 (45). Notably, in contrast to our findings, synergistic
effects from co-transplantation with respect to cardiac function
(LVEF) have not been observed.Williams et al. found that cardiac
performance was preferentially improved after MI in animals
receiving a combination of MSC and CSC but the LVEF was
restored to baseline level in all cell therapy groups irrespective of
cell type injected (47). Interestingly, Ye and co-workers reported
no improvement of LVEF after transplantation of human iPS-
CM alone or in combination with iPSC-derived EC and SMC
compared to the vehicle control group (41). This parameter
was increased at 4 weeks after co-transplantation only when a
fibrin patch containing IGF-1 was applied together with all three
cell populations.

In a study comparing the therapeutic effect of fetal CM and
MSC administered alone into ischemic myocardium of mice
with MI, fetal CM led to significantly smaller infarcts, less
adverse remodeling, better cardiac function, and longer survival
compared to transplantation of MSC, indicating that CM might
be required to restore myocardial function, in contrast to non-
contractile MSC (20). Recent studies underline the hypothesis
of synergistic effects of co-transplantation of iPS-CM and MSC
for post-MI repair (52). Interestingly, Yoshida et al. showed
elegantly that co-administered MSCs reduce immune rejection
of allogeneic iPS-CM, however, not performing intramyocardial
injections, but using a subcutaneous setting to increase control,
emphasizing MSC-mediated immunomodulatory effects leading
to enhanced survival of transplanted iPS-CM (54). These
promising findings are reflected and emphasized by pre-
clinical studies showing synergistic effects of allogenic cardiac
progenitor cells and MSC for reduction of infarct scar sizes
and functional parameters in large animal models (53) and,
very recently, clinical studies showing positive effects from
transplantation of c-kit+ cardiac cells together with MSC in
patients with heart failure from ischemic heart disease (55,
56). In our study, the infarct scar area was not significantly
decreased by either iPS-CM or MSC but only when both
cell types were co-administered. Furthermore, capillary density
was increased only when MSCs were transplanted alone or
together with iPS-CM. Discrepant results obtained in our and in
different studies discussed above may be explained by differences
in animal species, cell types, infarction models, and other

disparate variables, which need to be standardized for more
meaningful comparisons.

Taken together, our data demonstrate that iPS-CMs are
essential for the recovery of cardiac function after MI and
that MSCs further improve their therapeutic effect without
enhancing CM retention. While both cell types were required
for attenuating the fibrotic infarction area, MSCs alone were
sufficient for stimulating angiogenesis in the myocardium. These
results provide support for the concept that application of
complimentary cell populations has higher regenerative potential
than a single cell population, and that enhancement of cell
retention required for the enhanced therapeutic outcome may
not be achieved by transplanting different mixtures of cells but
rather by pursuing other strategies, such as those that prevent
immediate cell loss after injection and counteract the death of
transplanted cells later after transplantation. Since the beneficial
effects do not correlate with the number of functionally engrafted
cells, the underlying mechanisms still remain to be elucidated.
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