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Abstract

Evaluation of the passenger departure efficiency of a comprehensive transport hub is

essential for traffic managers. Through the evaluation, security risks in the hub can be found

in time to ensure the safe departure of passengers. The attention of existing studies has

focused on the analysis of the overall situation of the hub, and the quantitative description of

departure status in different connection areas inside the hub is insufficient. In this study, a

multilayer hybrid model based on an analytic hierarchy process and entropy weight method

was established. The data collected using Wi-Fi probe technology were clustered by a K-

means algorithm. The first level of the model was divided according to the connection areas

of the passenger hub, and the second level was based on the number of stranded people,

wait time and departure time in each connection area. It was found that the SP index has the

greatest impact on departure efficiency. In addition, the impact of passenger flow aggrega-

tion on each connection area is different, and the management department should treat it

accordingly. The applicability of the proposed multilayer hybrid model was verified in the

example of the Chongqing north railway station.

Introduction

With the urbanization and population concentration stemming from social development, the

passenger volume of transportation hubs is increasing, as is passengers’ demand for travel

comfort and convenience. One of the important functions of a hub is passenger departure. In

multitransport hubs, during holiday hours and other peak periods, a significant passenger flow

aggregation phenomenon appears. For example, in Chongqing, China, in 2017, the average

daily passenger flow through the Chongqing north railway station was 82,000 people, while the

peak passenger flow during the Spring Festival on January 26 was 178,000 people, more than

twice the average daily passenger flow. Especially when the passenger flow reaches the hub

capacity and the departure performance is poor, the large passenger flow phenomenon [1]

may lead to serious passenger casualties. Such as the stampede accident due to subway failure

at Xidan station in Beijing in 2011. In these cases, hubs face severe challenges in the process of

passenger departure. Before taking measures to deal with the passenger flow aggregation
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phenomena, how to quantify the evacuation of each connecting transportation mode of the

hub and comprehensively evaluate the passenger departure efficiency of the overall hub has

become an urgent problem to be solved by management departments.

A comprehensive passenger transport hub is a passenger transport site integrated with

urban transportation that centrally arranges two or more external transport modes and pas-

senger flow conversion places of urban transportation in the same area [2]. It aims to realize

the effective connection of facilities and equipment, transportation organizations, public infor-

mation and so on. Common connection modes in a passenger hub include rail transit, buses,

taxis, coaches and social vehicles. We define the departure efficiency of the hub as the speed at

which passengers leave the hub through the connection modes in the hub. Departure efficiency

is the most intuitive measure to reflect departure performance and is also the most convenient

measure for managers to collect data. It can quantitatively evaluate the passenger flow in hubs

of different transport organizations within a given period of time and provide clear guidance

for the adjustment of transport capacity under different situations. Therefore, in view of the

challenges and safety problems brought by the departure of hub passengers, some studies

choose some indicators representing the departure efficiency to establish the index system,

including waiting time, processing time, walking time, etc. [3–5]. Analytic hierarchy process

[6] (AHP) and fuzzy evaluation [7] are common algorithms used to establish an evaluation

index system, which can be verified later in an actual situation. These studies provide basic

methods for the evaluation of the flow departure capacity; they help to decompose, compare

and integrate the weighted complex passenger flow environment parameters and gradually

simplify the mathematical process. Research on evaluation indexes is gradually developing in

the direction of systematization. However, at present, the research mainly focuses on the com-

prehensive evaluation of the overall departure efficiency of the hub [8], and the specific depar-

ture conditions in different connection areas still depend on the qualitative analysis of the

departure passenger flow. Due to the incorporation of a large number of artificial evaluation

processes, the evaluation brings some subjective deviations to the results, which cannot accu-

rately reflect the departure situation. Other studies use computer simulation models to obtain

relevant data and simplify the modeling process [9–11], but a certain number of repeated sim-

ulations to reduce the deviation is needed [12]. It is also difficult to combine the passenger

flow distribution and operation management, which is divorced from reality to a certain

extent. That is, there is not enough quantitative research on the departure status of each con-

nection mode, thus making the evacuation measures proposed in the hub less targeted. In con-

trast, a more quantitative mathematical evaluation model can give more accurate and data-

based results, and has a higher reference value for the systematic departure evaluation of the

hub.

The main contribution of this study is to solve the above problem of insufficient quantifica-

tion in hub passenger departure evaluation. A departure efficiency evaluation index system of

passenger flow was established through data analysis, and a hybrid quantitative evaluation

model was constructed based on an AHP and entropy method to quantitatively evaluate the

safety of passenger flow in the departure process.

The remainder of the paper is organized as follows. Section 2 reviews the related research

on passenger flow and the evaluation models. From the perspective of passenger flow, in sec-

tion 3, the connection areas were divided according to different departure modes. Addition-

ally, the method of data collection, Wi-Fi probe technology, is introduced, and the data source

of the study is analyzed. In section 4, the clustering results and the weight calculation results of

the model are displayed, and the departure efficiency of the Chongqing north railway station is

also analyzed. Section 5 concludes the study.
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Research review

In this section, we summarize the relevant studies on the analysis of passenger departure effi-

ciency, select the appropriate detection technology to collect data, use the representative indi-

cators to characterize passenger departure efficiency, and quantitatively evaluate the departure

efficiency of hubs.

Jia et al. [13] studied the waiting time of passengers through queuing theory and evaluated

hub service efficiency with the goal of minimizing the total cost; Lu et al. [14] constructed a

"time-space" network to guide passengers’ outbound behavior. These mainly study the overall

departure effect in the hub, but they cannot give targeted evacuation opinions according to dif-

ferent departure modes of passengers. Yao et al. [15] evaluated transfer schemes in the hub

from the aspects of passenger satisfaction and comfort; Tao et al. [16] used the same or differ-

ent expert opinions to reduce the uncertainty of evaluation results; Lai et al. [17] evaluated the

hub recovery capacity according to passengers’ travel demand and service quality perception.

Although these studies consider passenger transfer in the hub to a certain extent, the analysis

is biased toward subjective evaluation and does not give a quantitative rating of the overall

departure efficiency of the hub. Therefore, we need a more quantitative model to systemati-

cally evaluate the departure performance of passenger flow from the perspective of the overall

hub and each connection mode.

In fact, the evaluation accuracy of hub departure efficiency largely depends on the accuracy

of the index data. As passenger transport hubs have the characteristics of wide land occupation

and large and complex passenger flows, traditional detection technology has difficulty meeting

the requirements in terms of detection ability, cost and so on. Automatic fare collection tech-

nology (AFC) [18,19], for example, can be utilized only after passengers swipe their card out of

the station, resulting in poor real-time performance. Video active detection technology [20,21]

is also impractical due to the high cost of cameras and the complex installation of equipment.

Infrared sensor technology [22] can accurately calculate the time a passenger passes, but it is

difficult to follow passenger movement; thus, detailed space-time dimension data are missing.

Additionally, the low recognition rate in dense crowds also limits the use of infrared sensor

technology as a detection means in a hub. With the popularity of smartphones [23], Bluetooth

technology and Wi-Fi probe technology have increased. However, the limited detection range

of Bluetooth technology [24,25] makes it difficult to achieve high-precision positioning. In

comparison, Wi-Fi probe technology [26] is superior in its accurate positioning, low cost, lack

of additional hardware support and limited effects due to line-of-sight distance and has wide

application prospects. It can collect the data of passenger flow in and out of a hub, passenger

transfer and the flow density. The collected data can be used for the analysis of passenger evac-

uation, transfer and other behaviors [27–29].

When selecting the characterization indicators required by the model, the passenger depar-

ture efficiency of a passenger station can be reflected by the number of passengers and the

time spent from the perspective of passengers [30–33]. First, the number of stranded passen-

gers in a station affects the circulation of the whole hub. Alawad et al. [34] classified the con-

gestion risk of a station into stranded passengers, waiting passengers and train capacity.

Sipetas et al. [35] used image processing and video recognition technology to count the passen-

gers stranded at the platform and fused the train operation data to correct the number of pas-

sengers in peak hours. Second, the departure time of passenger flow is determined by several

factors, including the characteristics of vehicles, passenger boarding and alighting time, vehicle

timetables, signals and driver behavior [36]. Models have been established to plan the dwell

time of vehicles at a station [37,38]. In addition, for large passenger transport hubs, the passen-

ger wait time in each connection area reflects the collaborative evacuation capacity within the
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hub. Tesoriere et al. conducted a case study on the movement of users in the departure port of

the Fontana Rosa Catania Airport to explore the factors affecting the distribution of airport

passenger flow [39]. A passenger itinerary inference model (PIIM) was developed to infer the

passenger journey of urban rail transit with high resolution, and the average wait and transfer

times of passengers could be estimated as well [40].

To rate the overall departure efficiency of a hub from the situation in different connection

areas, several common analytical methods were compared. Factor analysis [41,42], which was

first proposed by psychologist C.E. Spearman, was used to calculate the weight through the

variance interpretation rate of common factors. However, this kind of calculation method

tends to delete redundant evaluation indicators. It can only obtain the weight of each factor

but cannot form the weight of the whole system. The AHP [43,44] was proposed by Professor

Saaty. It divides various factors in complex problems into interrelated and orderly levels and

quantitatively describes the importance of elements at the same level in combination with

expert opinions and analysts’ judgment. For instance, Eshtaiwi et al. [45] measured airport

performance with 17 key performance indicators. An AHP was applied to calculate the weights

selected from three international airports, and suggestions were put forward for the operation

management of Libyan airports. Considering the uncertainty of passenger flow in passenger

stations, relevant scholars integrate AHP and other evaluation methods. For example, a proba-

bility density model [46,47] is more suitable for emergency evacuation than normal passenger

flow departures. The combination of an AHP and fuzzy analysis method [48,49] has the disad-

vantage of strong subjectivity. An entropy weight method [50–52] can measure the uncertainty

and use the amount of information carried by the data to calculate the weight, which is biased

toward objective calculation and complements the AHP to a certain extent.

For the above analysis, this study constructed a hybrid quantitative evaluation model based

on an AHP and entropy method. The hybrid model not only compensates for the disadvantage

of the AHP being too subjective but also does not ignore the importance of the index itself, as

in the case of using the entropy method alone. The correctness of the method is later tested by

application to the Chongqing north railway station.

Data resources

When a passenger’s Wi-Fi-enabled device enters the effective detection range of the probe and

Wi-Fi is turned on, the probe will capture and record the MAC address of the device and gen-

erate sequence data with a timestamp (Table 1). At this time, we need to preprocess the data.

For example, sometimes a passenger will carry multiple mobile devices, such as standby mobile

phones, laptops and tablets, at the same time. To avoid repeated data collection, the collected

mobile phone’s MAC address corresponds to the passenger in the station rather than the

mobile phone manufacturer. Therefore, we compared the MAC addresses of common mobile

phone manufacturers to eliminate terminal devices. In addition, we found that in the original

data set collected by a Wi-Fi probe, some MAC addresses appear regularly and frequently over

a continuous and long time span but cannot be found in the data set collected by other Wi-Fi

probes. In fact, these repeated MAC addresses are those of fixed terminal equipment within

the signal coverage or those carried by staff in the station, which need to be identified and

eliminated. The identification principles are as follows:

Table 1. Data format of the Wi-Fi probe acquisition data.

MAC Address SN Code DIS(m) MAC Attribution ID Acquisition time RSSI

D4:6A:6A:96:B3:9C MQ1BB83510000020 5.01 Hon Hai Precision Ind. Co., Ltd. Chongqing Telecom, China 2018/12/30 20:56 -68

https://doi.org/10.1371/journal.pone.0264473.t001
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• A MAC address is only detected by one Wi-Fi probe within the hub, and the detection dura-

tion exceeds an hour.

• In a week or a month, a MAC address is detected more than 3 times by a Wi-Fi probe at the

same detection point, and each detection lasts more than one hour.

• Some MAC addresses match the MAC segment of some fixed terminal equipment

manufacturers.

In places with dense probes, the MAC address of a terminal device will be detected by dif-

ferent probes at the same time, resulting in the travel position oscillation of the MAC address

during detection. Therefore, when the same terminal device is detected by three or more Wi-

Fi probes at the same time, the three-point positioning method [47] is used to determine the

position of the terminal device.

After data preprocessing, if data loss or abnormal data records occur during the process of

data transmission to the cloud, based on a median filter smoothing method, historical data are

used to correct the data. Finally, to protect passengers’ privacy, the MAC address data

uploaded to the cloud server are desensitized (Table 2). The desensitized data will not be asso-

ciated with the real information of passengers.

The data collection indicators include the number of arriving passengers (AP), the number

of stranded passengers (SP), wait time (WT) and departure time (DT). The data collection pro-

cess is shown in Fig 1.

• The AP reflects the number of new passengers at the station (including pick-up persons).

Whether the passenger is an arriving passenger or a receiving passenger is judged according

Table 2. Data format after desensitization.

MAC Address SN Code RSSI Acquisition time

AC:CF:23:##:##:## MQ2BB85150000169 -88 2019/2/3 0:02

https://doi.org/10.1371/journal.pone.0264473.t002

Fig 1. Wi-Fi probe data collection process.

https://doi.org/10.1371/journal.pone.0264473.g001
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to the retention time of the passenger’s MAC address within the arrival area. An AP is recorded

and the sample is expanded. Sample expansion coefficient = total arrivals/detected arrivals.

• The SP is the number of passengers waiting for departure in each connection area. It can be

used to reflect the ability to evacuate passengers in different connection areas. The lower or

more stable the number is, the better the ability of the connection area to evacuate passen-

gers. According to the stay time of passengers’ MAC address in the connection area, the SP

can be counted. The SP in each connection area is recorded and the sample is expanded.

Sample expansion coefficient = total stranded/detected stranded.

• The WT is the wait time of passengers in a connection area. This indicates the matching

degree of departure demand and capacity level under different connection areas. When the

WT is at a relatively stable level, the evacuation capacity of the connection area is at a high

match with the station demand in this time period. The WT of passengers within each con-

nection area is recorded.

• Based on the DT, we can analyze the evacuation efficiency of passenger flow leaving the sta-

tion by selecting different departure modes. If the number is at a relatively stable level for a

certain time, the departure path of station passenger flow has good accessibility during the

period of time. The DT of passengers within each evacuation function area is recorded.

The processed raw data are output in CSV or TXT format. The output format is shown in

Table 3.

The data used in this research were collected at the Chongqing north railway station, which

is a passenger transport hub dominated by railway transportation and integrates a variety of

urban road transportation modes. The Chongqing north railway station is the largest railway

station in Southwest China. It applies a passenger information automation system, and the

passenger throughput ranks among the top in the country. The station is equipped with a

coach connection area, rail transit connection area (lines 4 and 10), bus connection area and

taxi connection area. We applied the data to the Chongqing Traffic Planning, Survey, and

Design Institute (CSD) because they evenly deployed Wi-Fi probes at this station. The specific

points (Table 4) and the time period of the required data were submitted to CSD along with

the research purpose. Each collection point contains the information of some pick-up people.

Since they leave with passengers, these data were retained for the evaluation of departure effi-

ciency. Before the formal trial, we randomly selected data from one working day and one non-

working day for pre-investigation. Comparing the number of arrivals provided by the station

Table 3. Data output format.

Date Time Hub Name Arriving Passengers

2019-1-2 09:10 Chongqing north railway station 125

Date Time Hub Name Stranded Passengers

Bus Coach Rail Taxi Social Vehicle

2019-1-2 09:00 Chongqing north railway station 76 30 106 10 50

Date Time Hub Name Wait Time/min

Bus Coach Rail Taxi Social Vehicle

2019-3-20 09:00 Chongqing north railway station 5.8 27.7 7.0 11.9 15.0

Date Time Hub Name Wait Time/min

Bus Coach Rail Taxi Social Vehicle

2019-3-20 09:00 Chongqing north railway station 18.7 76.8 8.1 12.4 16.0

https://doi.org/10.1371/journal.pone.0264473.t003
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and that measured at point 1, it was found that more than 85% of passengers keep their mobile

WI-FI on, which ensured the reliability of WI-FI probe technology in this study.

The formal trial collected 30 days of data collected from September 1, 2019, to September 30,

2019. After data processing, experimental analysis was carried out at an interval of 30 minutes.

Considering the daily operation period of the hub, data from 8:00 to 22:00 for each connection

area were selected. There were 3 × 4 × 840 groups of data for analysis, with 10,080 groups in total.

In addition, we found obvious dynamics while analyzing the temporal distribution charac-

teristics of passenger arrivals. Significant daily fluctuations appeared in September (Fig 2),

reaching a maximum of 115,000 on September 30 (the day before the National Day) and a

minimum of 59,000 on September 24 (Tuesday). For the rest of the time period, since Fridays

and Sundays are the end of the work week and rest days, respectively, the proportions of arriv-

ing passenger flows on Fridays and Sundays are 14.9% and 15.3%, respectively, which are

larger than those at other times of the week.

Model

Multilayer evaluation index system

As mentioned in section 1, we intend to establish an evaluation index system for passenger depar-

ture efficiency. To ensure the integrity and reliability of the system, the selection of evaluation

indexes is necessary [53,54]. Analysis shows that the flow of passenger departures in the station is

a complex and continuous process, and there is a certain correlation between its operation effi-

ciency, the connection area classification and the feelings of individual passengers. First, as passen-

gers are the main service objects of transportation hubs, their perception and evaluation in the

departure process can directly reflect the passenger departure efficiency. Meanwhile, the feelings

of passengers in different connection areas are independent of each other. Therefore, the

Table 4. Layout of data collection points.

Layout Areas Waiting Collection Point Departure Collection Point

Arrival Area point 1 –

Rail Transit Connection Area (Line 4) point 5 point 6, 13

Rail Transit Connection Area (Line 10) point 2 point 3, 4

Taxi Connection Area point 7 point 12

Coach Connection Area point 8 point 9

Bus Connection Area point 10 point 11

https://doi.org/10.1371/journal.pone.0264473.t004

Fig 2. Distribution of the daily arrival passenger flow in the arrival area.

https://doi.org/10.1371/journal.pone.0264473.g002
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passenger departure evaluation index system can be intuitively divided into two levels. The depar-

ture efficiency of the five connection areas is selected as the primary index layer. The SP, WT and

DT, as the indicators we collected for passenger comfort [55,56], are selected as the secondary

index layer. The passenger departure evaluation index system is shown in Table 5.

The division and basic characteristics of the evaluation index corresponding to the passen-

ger departure state are described in Table 6.

Additionally, in Fig 2 of section 2, we can clearly see that the characteristics of passenger

flow are dynamic over time. The requirements for the efficiency of passenger departure sta-

tions are different in different periods. If a traditional clustering method based on division is

used to process passenger flow data, the error is large, and the amount of calculation is consid-

erable. Therefore, a K-means algorithm is used to cluster the secondary index layer. According

Table 5. Passenger departure efficiency evaluation index system.

Target layer Primary Index Layer Secondary Index Layer Departure Status

Departure Efficiency Evaluation of Passenger Flow in Stations Rail Transit Connection Area

Departure Efficiency (A1)

SP (B1) Level 1—Level 5

WT (B2) Level 1—Level 5

DT (B3) Level 1—Level 5

Conventional Bus Connection Area

Departure Efficiency (A2)

SP (B4) Level 1—Level 5

WT (B5) Level 1—Level 5

DT (B6) Level 1—Level 5

Taxi Connection Area

Departure Efficiency (A3)

SP (B7) Level 1—Level 5

WT (B8) Level 1—Level 5

DT (B9) Level 1—Level 5

Coach Connection Area

Departure Efficiency (A4)

SP (B10) Level 1—Level 5

WT (B11) Level 1—Level 5

DT (B12) Level 1—Level 5

Social vehicle Connection Area

Departure Efficiency (A5)

SP (B13) Level 1—Level 5

WT (B14) Level 1—Level 5

DT (B15) Level 1—Level 5

https://doi.org/10.1371/journal.pone.0264473.t005

Table 6. Description of departure state levels corresponding to each evaluation index.

Evaluation Index Departure Status Basic Feature

SP Level 1 Almost none, passengers come and go immediately

Level 2 Very few, passengers basically go as they arrive

Level 3 Few, difficult for passengers to flow

Level 4 Much, few passengers gather

Level 5 Many, mass passenger gathering

WT Level 1 Almost none, passengers come and go immediately

Level 2 Very short, passengers basically go as they arrive

Level 3 Relatively short, difficult for passengers to flow

Level 4 Long, few passengers gather

Level 5 Very long, mass passenger gathering

DT Level 1 Almost none, passengers can leave the station in a short time

Level 2 Relatively short, passengers can leave the station in a relatively short time

Level 3 Relatively long, sporadic passenger gathering at the station

Level 4 Long, a general passenger gathering at the station

Level 5 Very long, mass passenger gathering at the station

https://doi.org/10.1371/journal.pone.0264473.t006
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to the evaluation indexes in Table 3, the cluster center CðtÞ ¼ ðc1
ðtÞ; c2

ðtÞ; c3
ðtÞ; c4

ðtÞ; c5
ðtÞÞ is

obtained, which determines the interval range of passenger flow under different departure

states. This realizes the specific quantification of the passenger flow departure states. We define

c1
ðtÞ; c2

ðtÞ; c3
ðtÞ; c4

ðtÞ; c5
ðtÞ as cluster centers at all levels and cmax as the maximum value in histori-

cal data. The calculation of the departure state interval division is shown in Eq (1).

Level 1 departure status interval : 0;
c1
ðtÞ þ c2

ðtÞ

2

� �

Level 2 departure status interval :
c1
ðtÞ þ c2

ðtÞ

2
;
c2
ðtÞ þ c3

ðtÞ

2

� �

Level 3 departure status interval :
c2
ðtÞ þ c3

ðtÞ

2
;
c3
ðtÞ þ c4

ðtÞ

2

� �

Level 4 departure status interval :
c3
ðtÞ þ c4

ðtÞ

2
;
c4
ðtÞ þ c5

ðtÞ

2

� �

Level 5 departure status interval :
c4
ðtÞ þ c5

ðtÞ

2
; cmax

� �

ð1Þ

Multilayer hybrid evaluation model

From section 4.1, we can determine the interval range ½xLij; x
U
ij � of the departure efficiency evalu-

ation index data under different departure states. The range of passenger flow departure states

corresponding to the evaluation index is transformed into intuitionistic fuzzy numbers. Intui-

tionistic fuzzy entropy theory is used to calculate the weight of each index in the secondary

layer. Generally, the higher the departure status level of a certain connection mode at the cur-

rent time, the lower the weight value of the secondary index, indicating that the departure effi-

ciency of this mode under this index is worse. The weight value of the primary indicators is

determined by expert scoring and calculated by an AHP to reduce the influence of human fac-

tors. The higher the weight value is, the more important the mode. After comprehensive calcu-

lation, the evaluation model of the departure efficiency at the station is constructed.

We define xij as the ith value under the jth evaluation index in the passenger flow data sam-

ple, m as the number of samples in the evaluation index data set, and n as the number of evalu-

ation indicators in a single data sample. The evaluation index data set of passenger departures

is defined in Eq (2).

X ¼ fxijgm�n ¼

x11 � � � x1j � � � x1n

..

. . .
. ..

. . .
. ..

.

xi1 � � � xij � � � xin

..

. . .
. ..

. . .
. ..

.

xm1 � � � xmj � � � xmn

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

T

ð2Þ

Fuzzy entropy is based on information entropy and was proposed through fuzzy theory to

measure the fuzziness of fuzzy sets. The weight value of each secondary index can be calculated

based on information entropy. The lower the information entropy is, the smaller the disper-

sion of the index data, the more information can be provided, and the smaller the weight value

of the index is, the greater the impact of the index on the comprehensive evaluation.
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Defining yij as the standardized indicator data, the information entropy Sj of each evalua-

tion index is calculated using Eq (3). The weight wj of each index in the secondary index layer

is calculated using Eq (4).

Sj ¼ �
1

lnm

Xm

i¼1

yijlnyij ð3Þ

wj ¼
1 � Sj

n �
Xn

j¼1

Sj

ð4Þ

The evaluation of the departure efficiency based on the connection area was carried out

according to the following steps.

1. Establish a factor set for evaluating the efficiency of passenger departure

The evaluation factor set contains all the evaluation indexes in the evaluation index system,

which has the characteristics of stratification. The primary evaluation index X = {x1,x2,� � �,

xn} represents each connection area, and the secondary evaluation index contains three fac-

tor indexes: SP, WT and DT.

2. Determine the departure status grade of the secondary layer index

According to the historical passenger flow data collected by the passenger flow data collec-

tion system, the historical passenger flow data are clustered by the K-means algorithm (Eq

(1)), and the interval range of the passenger flow departure status grade of the secondary

evaluation index is divided.

3. Determine the weight vector of the comprehensive evaluation of the passenger departure

efficiency

For the primary evaluation index based on the connection mode, the AHP is adopted to

determine the weight of each mode in the departure efficiency evaluation, considering their

impact on the passenger flow departure efficiency. The weight vector of the first level index

layer Wi = [w1,w2,� � �,wi,� � �,wn]T is calculated. For the secondary evaluation index, the

entropy weight method is used to calculate its information entropy, and then the weight

vector of the secondary index Wij = [wi1,wi2,� � �,wij,� � �,win]T is determined.

4. Calculate the evaluation index value of passenger flow data

a. Standardized processing of index data

Passenger flow is divided into revenue type and cost type according to the departure state

interval in Eq (1), and the index data are standardized. Define kij as the passenger departure

status level of the ith passenger flow data under the jth evaluation index in the data. When the

evaluation index is a revenue type index, it is defined by Eq (5).

zij ¼
xij � xL

ij

xU
ij
� xL

ij

þ ðkij � 1Þ ð5Þ

When the evaluation index is a cost index, it is defined by Eq (6).

zij ¼
xU
ij
� xij

xU
ij
� xL

ij

þ ðkij � 1Þ ð6Þ
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b. Calculate the weighted average value of the secondary index layer

Define Zi as the weighted average value of the evaluation indexes of the secondary index

layer by Eq (7), zij is the standardized evaluation index data.

Zi ¼
Xn

j¼1
wijzij ð7Þ

(5) Calculate the evaluation results of the evacuation efficiency level

The decision comment set contains various possible evaluation results of the evaluation

index object, recorded as V = {v1,v2,� � �,vi,� � �,vn}. The evaluation results of departure efficiency

vi can be defined using Eq (8). It is obtained from the determined weight vector of the primary

index layer, the weighted average of the secondary index layer evaluation indexes and the

grade evaluation set of the passenger flow departure efficiency.

vi ¼
Xn

i¼1
wiZi ð8Þ

The evaluation level of the departure efficiency is divided into five levels through standard-

ized methods, as shown in Table 7.

The standardized process of evaluating the efficiency of hub passenger departure stations is

shown in Fig 3.

Results

Clustering results

Before clustering, we take data on September 30, 2019, as an example to preanalyze the single-

day data of each connection area (Figs 4 and 5). The detailed data are described in the support-

ing information (S1 Table). Compared with other modes, the number of stranded people in

the coach connection area is at a medium level, while the wait time and departure time are

much longer than those in other areas. The rail transit connection area has the largest passen-

ger flow, but data show that the time spent by passengers transferring in this area is not long.

The three values of the taxi area are all relatively small.

Using Python as the platform, the k-means clustering of passenger flow data was realized

through programming. Since the social vehicle connection area on the second floor had not been

fully put into use during the research, its temporary parking lot spaces were not yet within the

connection area. Therefore, we only consider the four connection modes in this study. The histor-

ical data set in September is clustered as shown in Figs 6–8, and the fuzzy interval ranges of depar-

ture state ½xLij; x
U
ij � corresponding to the SP, WT and DT are determined as shown in Table 8.

In combination with Figs 6–8 and Table 8, the comparison of cluster centers in each con-

nection area is as follows. SP: rail>bus>coach>taxi; WT: rail<bus<taxi<coach; DT: rail-

<bus<taxi<coach. From the overall clustering results, the passenger flow remains relatively

unblocked in the Chongqing north railway station since data within level 5 are less scattered.

From the perspective of each connection area, the clustering of the three indicators of the taxi

connection area is relatively consistent and basically concentrated in level 1, level 2 and level 3;

Table 7. Passenger flow departure efficiency evaluation classification criteria.

Level 1 Level 2 Level 3 Level 4 Level 5

Departure Efficiency Excellent Good Commonly Poor Bad

Index Range (0,1] (1,2] (2,3] (3,4] (4,5]

https://doi.org/10.1371/journal.pone.0264473.t007
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The number of stranded passengers in the coach area is concentrated in level 1, level 2 and

level 3, while the departure time in the area is concentrated in level 2, level 3 and level 4. The

grades of the three indicators in the track area are relatively high. The clustering results are

consistent with the actual passenger flow.

Weight calculation results

As the dynamism of data refers to in section 2, the study evaluates the departure efficiency of

the hub on a daily basis. Taking the real-time passenger flow data collected on September 30 as

Fig 3. Standardized flow chart for evaluating the efficiency of passenger departure.

https://doi.org/10.1371/journal.pone.0264473.g003
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an example, 28 sample data representing the departure efficiency of each connection area from

8:00 to 22:00 were selected to form the original evaluation index data set X(t). Through an

expert questionnaire survey, according to the 1~9 scale method of the AHP, the importance

degree of the departure efficiency targeted at the selection of connection mode is scored, and

the weight of each mode is calculated. The consistency of the judgment matrix was tested, and

the calculation results of the AHP are shown in Table 9.

After the transfer mode weight of the primary index Wi was calculated, the weights of the

secondary indicators Wij were also calculated. The taxi connection area evaluation index data

set and the corresponding interval were input. The entropy weight ranges of the SP, WT and

DT were defined using the entropy weight method. According to the optimization theory of

linear programming, the weight of the secondary indicators in the four connection areas is

shown in Table 10.

Fig 4. Time-varying chart of the index data of each connection area on September 30 (SP).

https://doi.org/10.1371/journal.pone.0264473.g004

Fig 5. Time-varying chart of the index data of each connection area on September 30 (WT, DT).

https://doi.org/10.1371/journal.pone.0264473.g005
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Fig 6. SP cluster analysis results.

https://doi.org/10.1371/journal.pone.0264473.g006

Fig 8. DT cluster analysis results.

https://doi.org/10.1371/journal.pone.0264473.g008

Fig 7. WT cluster analysis results.

https://doi.org/10.1371/journal.pone.0264473.g007
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According to Table 9, the importance degree of the four modes decreases as follows: rail,

taxi, bus and coach. Among them, the weight of rail transit is the highest, with a value of more

than 0.5, while the weight of coach is the lowest. This result is consistent with the functional

division of the Chongqing north railway station and the actual operation of the station

reflected in Fig 4.

However, in the comparison of the four evaluation indexes in Table 10, the proportion of

the SP index is the largest, followed by the DT and finally the WT. Combined with the inter-

pretation of each index in the third section, the main index affecting the departure efficiency

of each connection area is the SP. In addition, the weight value of the bus index SP reaches

0.935, which shows that the evacuation capacity of the bus station is almost completely deter-

mined by the number of stranded people at the platform. This phenomenon is mainly caused

by the fixed departure interval and seating rate of buses and the characteristics of arriving and

leaving immediately. In this regard, although rail transit is similar, due to the large single traffic

volume, the impact of stranded people on rail transit is much smaller. Since the departure

interval of the coach area is longer than that of the other modes, when passengers choose

coaches for connection, the matching degree between the departure time and the arrival time

of the main passenger flow is more important; thus, the WT indicator of the coach area also

accounts for a larger proportion. In contrast, there is no fixed departure interval for taxis, the

accessibility requirements are much higher than other methods, and the corresponding DT

weight becomes larger.

Table 8. Range of passenger departure states.

Index Layer Departure State Level

Primary Secondary Level 1 Level 2 Level 3 Level 4 Level 5

A1 (Rail) B1 (0,113] (113,185] (185,250] (250,334] (334,600]

B2 (0,5.75] (5.75,5.81] (5.81,5.88] (5.88,6.1] (6.1,8]

B3 (0,9.5] (9.5,11] (11,12] (12,13] (13,15]

A2 (Bus) B4 (0,41] (41,76] (76,109] (109,174] (174,350]

B5 (0,7] (7,8] (8,9] (9,11] (11,16]

B6 (0,13] (13,15] (15,17] (17,19] (19,25]

A3 (Tax) B7 (0,18] (18,33] (33,47] (47,72] (72,140]

B8 (0,6.5] (6.5,8.3] (8.3,10.5] (10.5,14.5] (14.5,20]

B9 (0,11.5] (11.5,14] (14,17.5] (17.5,22.5] (22.5,30]

A4 (Coach) B10 (0,35] (35,58] (58,81] (81,110] (110,240]

B11 (0,30] (30,35] (35,39] (39,46] (46,50]

B12 (0,30] (30,46] (46,58] (58,71] (71,80]

Notes: We use people/30 minutes as the unit of SP, and minutes as the unit of WT and DT.

https://doi.org/10.1371/journal.pone.0264473.t008

Table 9. Judgment matrix and weight calculation results of the primary index.

Indicator Judgment Matrix Wi Consistency Test

Rail 1 5 3 9 0.562 CR = 0.074<0.1, Pass

Bus 1/5 1 1/3 5 0.129

Taxi 1/3 3 1 6 0.266

Coach 1/9 1/5 1/6 1 0.043

https://doi.org/10.1371/journal.pone.0264473.t009
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Results of the departure efficiency evaluation

After the departure evaluation results vi of the station on September 30 were calculated, the

data of September 4 (working day) and September 7 (nonworking day) were selected for com-

parison. The index diagram is shown in Fig 9.

It can be seen from the above figure that the departure efficiency at the Chongqing north

railway station has an obvious time distribution, and the overall departure level of passenger

flow is concentrated at level 2 and level 3. In other words, the passenger evacuation capacity of

the Chongqing north railway station is above the medium level, which is consistent with our

investigation. On September 4 (working day), the evaluation grade index basically fluctuated

up and down at 2.0 and the range did not exceed two grades. On September 30 (the day before

the National Day), the peak of the index once exceeded 4.0, reaching the level of poor depar-

ture efficiency, but then decreased. That is, although there is a large instantaneous increase in

passenger flow to the station before holidays, the overall departure capacity of the station is

good. In contrast, the change trend of the evaluation grade index on nonworking days is

roughly the same as that before holidays in the daytime, and the fluctuation range did not

exceed one grade. The difference was reflected after 17:30. We find that the variance of the

evaluation grade index during holidays is 1.03, the variance of the evaluation grade index dur-

ing nonworking days is 0.62, and the variance of the evaluation grade index during working

days is 0.23, indicating that the evaluation grade index fluctuates more during holidays, which

is closely related to the sudden increase of passenger flow to the station in the station when hol-

idays are approaching.

At present, the large passenger flow phenomenon is a hot issue in the field of public trans-

port. It usually occurs in the comprehensive transportation hub in the case of holidays or sud-

den accidents. There is an upper limit on the capacity of a station to accommodate passengers.

Once the passenger flow reaches saturation, passengers will experience psychological

Table 10. Weight calculation results of the secondary indicators.

wij SP WT DT

Rail 0.496 0.140 0.364

Bus 0.935 0.004 0.061

Taxi 0.547 0.045 0.408

Coach 0.695 0.243 0.062

https://doi.org/10.1371/journal.pone.0264473.t010

Fig 9. Evaluation grade index diagram of the passenger flow departure efficiency in the north square.

https://doi.org/10.1371/journal.pone.0264473.g009
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discomfort, and the whole passenger flow group will walk slowly and crowd [57]. We use the

passenger flow data on September 30, 2019 (the day before the National Day), to evaluate the

passenger flow departure efficiency under the condition of large passenger flow. The number

of stranded people in the rail, bus, taxi and coach connection areas in the evaluation index was

increased by 50% to simulate the arrival of a sudden large passenger flow. The evaluation

index data were brought into the evaluation model, and the impact on the overall departure

efficiency under the condition of large passenger flow in different connection areas was

obtained through calculation. The calculation results of the passenger departure efficiency

evaluation grade index under the condition of large passenger flow are shown in Fig 10.

When large passenger flow gatherings occur in different connection areas of the North

Square, the impact on the overall departure efficiency is different, in the order of rail> bus >

taxi > coach. When the number of stranded passengers in the rail transit connection area

increases by 50%, it has the greatest impact on the overall passenger flow departure efficiency.

In the case of a large passenger flow, the evaluation grade index of the departure efficiency

increases by 14% on average. When the stranded passenger flow in the conventional bus con-

nection area increases by 50%, the evaluation grade index of the departure efficiency increases

by 4% on average. When the stranded passenger flow in the taxi connection area increases by

50%, the evaluation grade index of the departure efficiency increases by 2% on average. When

the stranded passenger flow in the coach connection area increases by 50%, it has the least

impact on the overall departure efficiency of passenger flow, and the evaluation grade index of

the departure efficiency increases by only 1% on average.

Discussion and conclusions

In this study, a hybrid model based on an AHP and entropy weight method is proposed, to

evaluate the evacuation capacity of the overall hubs and of each connection mode inside the

hub.

For the hubs with dense passenger flow, the data can be collected by Wi-Fi probes. After

preprocessing, the evaluation indexes affecting the passenger flow departure efficiency can be

extracted, including the number of arriving passengers (AP), the number of stranded passen-

gers (SP), the wait time (WT) and the departure time (DT). When evaluating the departure

efficiency of a hub and designing solutions, traffic managers should comprehensively consider

both the capacity supply of the hub and the demand of passengers. For example, Alawad’s

model mentioned in section 2, that selects indicators related to the number of passengers such

as stranded passengers, is more suitable for objectively assessing the risk of stations.

Fig 10. Comparison chart of the passenger flow efficiency evaluation in each connection area.

https://doi.org/10.1371/journal.pone.0264473.g010
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The following conclusions can be obtained from the case study of the Chongqing north rail-

way station: (1) A K-means algorithm can be used to cluster the stranded passengers, wait time

and departure time of each connection area in the hub. A total of 10,080 groups of data,

including working days and holidays in a month, were selected to cluster the passenger depar-

ture status into five levels. The clustering results showed that the passenger flow of the Chong-

qing north railway station is relatively smooth, and the passenger flow evacuation capacity of

each connection area is different. (2) The SP of each connection area has the greatest impact

on its departure efficiency when calculating the weight of each index. When the departure effi-

ciency is divided into five levels, the model results showed that the departure efficiency of the

Chongqing north railway station is at levels 2 to 4 as a whole on the research days. Among

them, the evaluation level on working days fluctuated up and down at level 2, and the weekend

days rose slightly. During holidays, the passenger flow increased significantly, and the depar-

ture efficiency worsened. (3) We increased the SP index of each connection area by 50% and

further explored the passenger flow evacuation efficiency under the influence of a large passen-

ger flow. Large passenger flow aggregation had the least impact on the bus connection area

and the greatest impact on the rail connection area. (4) From the result data, the phenomenon

of large passenger flow has a greater effect on the departure of passengers who change to rail-

way transportation. Corresponding measures can be taken on this basis, such as adjusting the

train schedule around holidays. Further research can focus on how to adjust the transportation

capacity of each connection mode.

The theory provides theoretical guidance for the evaluation of the departure efficiency of

the off-station passenger flow of a comprehensive passenger transport hub, and is suitable for

a comprehensive hub integrating multiple connection modes. It is noteworthy that the con-

struction of our model is independent of the location and layout of various regions in the hub,

which makes the model widely applicable. In contrast, as mentioned in section 2, although

Tao et al. have fused the opinions of different experts, when the opinions of different experts

are very different, the credibility of the results will be affected. In addition, Eshtaiwi’s model

selects a large number of indicators to make up for the strong subjectivity, but the model is

more suitable for the comparison of passenger flow between stations. Therefore, the hybrid

model proposed in this paper has obvious advantages, which is convenient for managers to

master the real-time passenger departure efficiency level of each connecting area, so as to find

potential safety hazards and evacuate the large passenger flow in special periods in a timely

manner and ensure the departure efficiency of the overall passenger flow of the hub. The

research provides technical support and quantitative support for the management department

to carry out real-time multimode capacity dispatching.

At present, the departure efficiency grade evaluated by the model has not been linked to the

actual evacuation measures. Further research can focus on the large passenger flow under the

background of different holidays, and predict the occurrence time of the large passenger flow

phenomenon. At the same time, the corresponding capacity adjustment should be carried out

according to the real-time departure efficiency of each transportation mode to put forward

more constructive suggestions for the flow control of a hub. Furthermore, exploration can be

taken on the departure impact during daily peak hours to make the research findings more

applicable.
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