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Anaphylaxis has rapidly spread around the world in the last several decades. Environmental factors seem to play a major role, and
epigenetic marks, especially DNA methylation, get more attention. We discussed several GEO opening data classifications with
TOP 100 specific methylation region values (normalized M-values on line) by machine learning, which are remarkable to classify
specific anaphylaxis after monoallergen exposure. Then, we sequenced the whole-genome DNA methylation of six people (3
wormwood monoallergen atopic rhinitis patients and 3 normal-immune people) during the pollen season and analyzed the
difference of the single nucleotide and DNA region. The results’ divergences were obvious (the differential single nucleotides were
mostly distributed in nongene regions but the differential DNA regions of GWAS, on the other hand), which may have caused
most single nucleotides to be concealed in the regions’ sequences. Therefore, we suggest that we should conduct more “pragmatic”
and directly find special single-nucleotide changes after exposure to atopic allergens instead of complex correlativity. It is possible
to try to use DNA methylation marks to accurately diagnose anaphylaxis and form a machine learning classification based on the
single methylated CpGs.

1. Introduction

In the past few decades, the allergic disease incidence rate
has increased yearly at a rapid rate, and these changes are
much faster than the genome. The incidence of anaphylaxis
ranges from 1 to 761 per 100000 person-years for total
anaphylaxis and 1 to 77 per 100 000 person-years for food-
induced anaphylaxis worldwide [1]. In Taiwan, the incidence
rate of anaphylaxis has increased at an average rate of 5%
annually since 2001 [2]. Allergic rhinitis is the most common
chronic allergic disease, and its incidence is rising in parallel
with other IgE-mediated diseases, affecting 10 to 30% of
adults and up to 40% of children [3, 4]. In some Western
developed countries, food-induced anaphylaxis already

seems to be an epidemic (and highest in children) [5, 6].
However, among the Asian population, the incidence of
drug-induced anaphylaxis increased faster compared with
other types. Also, in some developing countries, such as
Brazil, anaphylactic shock has high incidence rate [7].
Different age groups focused on distinct allergic incentives,
and the incidence of allergies increased over time [8]. The
large-scale intervention trials for food allergy support that
the decrease in early exposure to allergens will increase the
risk of food allergy [6]. The distinguishable type of allergy
incidence varies significantly in different countries, even
within countries, suggesting environmental factors play a
major role compared with genetic factors in these changes
[9]. The rapid development of the global economy, upturn
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living standards, and lifestyle changes are accelerating the
increased number of allergic cases and new allergens, which
is a challenge for accurate diagnosis in forensic medicine and
the medical domain.

1.1. The Relation of Epigenetics and Allergy. The rapid global
outbreak of anaphylaxis is inevitable. To date, genome-wide
linkage and association studies have identified many allergy-
associated genes or loci [10-12]. However, the pattern of
genetic susceptibility cannot explain all the risks of ana-
phylactic raise. There is evidence that the risk of allergy is
higher in mothers than in fathers, and it is hereditable [13].
Because epigenetic marks are also heritable and capture
responses to environmental factors [14, 15], it is logical that
epigenetics plays an important role in the event of allergy.
Furthermore, epigenome changes can be altered by many
environmental exposures and often lead to rapid and per-
sistent changes in gene expression [16]. Though monozy-
gotic twins with the same genetic background are discordant
for allergic rhinitis, they differ in peripheral blood mono-
nuclear cell (PBMC) gene expression levels, and the sensi-
tization of familiar allergens differs because of
environmental contributions [17, 18]. In some studies, it has
been determined that the influences can modify allergic
patients’ gene expression through DNA methylation
[14, 19-21]. Thus, DNA methylation as an epigenetic mark
represents a logical way to reflect allergy disease conditions.

1.2. 'The Association between DNA Methylation and Gene.
DNA methylation refers to the covalent bonding of a methyl
group to the 5th carbon position of the cytosine of the
genomic CpG dinucleotide under the action of DNA
methyltransferase. DNA methylation is observed in different
sequences; however, it is almost exclusively found in CpG
dinucleotides in humans. There are CpG-rich sequences
termed CpG islands (CGI), which are generally unmethy-
lated [22] and associated with histone modifications such as
H3K4me [23, 24], but dissociative CpGs are methylated in
general. There are around 50,000 CGIs in the human ge-
nome and more dissociative CpGs [25]. High CpG meth-
ylation in genomes increases the frequency of spontaneous
mutations because methylated C residues spontaneously
deaminate to form T and CpG steadily to TpG, which evi-
denced that the actually observed numbers of CpG are less
than the expected (only around 21%) [25, 26]. It is the
potential cement of evolution, which maybe one of the
methods by which biological phenotypes by change from
environmental factors are inherited.

As a DNA molecule’s cytosine is methylated, there is a
positional correlation between genes and DNA methyla-
tions. DNA methylations occur during or outside annotated
genes in the genome (Figure 1). It is associated with gene
silence that changes the biological phenotype and gene
expression to determine the cellular types and functions with
CpG methylation. In general, the conserved CGIs on
transcription start sites (TSSs) are highly methylated and can
influence transcription of genes by impeding the binding of
transcriptional proteins. However, CGIs located between
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genes or transcriptions are observed to be highly tissue
specific [27, 28], which are highly methylated and control
gene expression patterns to determine the cellular types and
tunctions in the process of cell differentiation by H3K4me3
or some potential methods [29]. The great mass of regions in
the whole genome’s functions is unclear. In other diseases,
the region of DNA methylation change plays a role in the
expression of disease-related genes and may become a new
TSS. It reminds us that we should pay attention to all DNA
methylation sites, not only TSS, when exploring the relation
with allergy.

Machine learning is a field of computer science, which
gives computer systems the ability to “lean” with data
[30, 31]. Machine learning analyses data to study the con-
struction of algorithms, which can make predictions on data,
produce reliable, repeatable decisions and results, and un-
cover some “hidden insights” [32] and handle more com-
plicated and bulky data. Decision tree learning is a method
commonly used in data mining that includes classification
tree analysis where the predicted outcome is the class to
which the data belongs [33].

1.3. Idea. Whether DNA methylation such as epigenetics
mark can be used to diagnose allergy and how should it be
applied? It has been proposed, based on a few specific DNA
methylation marks’ joint detection, considering that se-
quencing and microarray at the whole genome are time
consuming, costly, and difficult to popularize, to classify
anaphylaxis types by randomForest (one of the decision tree
learning) of the R programming language (R). Also, it in-
spires us that some researchers have presented an approach
for the DNA methylation-based classification of 100 known
central nervous system tumours that is based on machine
learning, which can obtain accurate diagnosis and avoid
observer errors by using Infinium HumanMethylation450K
BeadChip arrays data recently [34]. Then, we plan to use
these methods to prove the idea and find the mark types
from some selected opening GEO data and the sequencing
data.

2. Results

2.1. GEO Data Analysis Results. We analyzed allergy-asso-
ciated hematic DNA regions’ methylation from several GEO
datasets by our methods. Some of the results of GSE73745
[35], GSE104471 [36], and GSE59999 [37] are shown in
Figure 2. GSE73745 and GSE104471 both shared DNA re-
gions methylation levels in monoallergen atopic asthmatic
and healthy people. We discovered that these two groups
obtained good classification either in t-SNE that can be seen
directly (Figures 2(a) and 2(b)) or in the randomForest (the
error rate: 0%) method. Then, a dataset on food allergies was
found to test DNA regions’ methylation levels among egg
allergy patients, peanut allergy patients, and healthy people.
We still observed a good classification at t-SNE (Figure 2(c))
and randomForest (Figure 2(d), the error rate: 0%).
Therefore, we got a preliminary conclusion that there can be
a perfect distinction between monoallergen atopic
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FIGURE 1: The ubiety between DNA methylation and gene. These include “TSS,” “Intragenic,” “Intergenic,” and CpG alone.
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FIGURE 2: (a) The result of GSE73745 by t-SNE. “a” represents respiratory allergy patients, and “c” represents healthy controls. (b) The result
of GSE104471 by t-SNE. “a” represents allergic asthma patients, and “c” represents healthy controls. (c) The result of GSE59999 by t-SNE.
“Egg” represents egg-allergic patients, “pea” represents peanut-allergic patients, and “c” represents healthy controls. (d) The result of

GSE59999 by randomForest.

asthmatics with health and those with different allergen
allergies after using machine learning analysis for a few
specific DNA methylation regions.

The GSE37853 [38] data described the DNA methylation
levels differently in atopic allergy patients, nonatopic allergy

patients, and healthy people. The GSE50222 [39] data de-
scribed how the DNA methylation level changes in allergic
patients correlate with symptom severity, which followed
DNA methylation levels outside and during the pollen
season in healthy people and allergic patients. There are



defective classifications exposed with a low error rate.
Uncertain allergens and small samples available for
“learning” may cause the GSE37852 data classification error
(Figure 3(a)). In the GSE50222 data, allergy groups and
healthy groups both recorded the same DNA methylation
information at different seasons, which caused intragroup
samples to become similar even if they were different and
made a low error rate; however, allergic patients and healthy
controls were still classified accurately (Figure 3(b)).

GSE40736 [40] data recorded allergy patients with
several symptoms, and we tried to make classifications with
the “Subtype” items (“non,” “lung_function,” “PC20,” and
“reversible”) of this dataset. However, we failed to obtain
slightly different DNA regions and had awful results
(Figure 4).

2.2. Whole-Genome DNA Sequencing Results. The genome
DNA sequencing data are viable after quality control (Ta-
ble 1). Then, we analyzed the DNA regions (200bp)
methylation levels difference by Genome-Wide Association
Studies (GWAS) and the single-nucleotide site methylation
difference. The results were surprising. The GWAS result
provided abundant different regions (p < 0.05) of annotated
genes (n=945), but the single-nucleotide methylation dif-
ferent sites had only few annotated genes (n =466 of 2239),
and these sites of annotated genes are always distant from
the TSS. The far-TSS single-nucleotide methylation changes
are always observed on dissociative single CpGs nearby some
tandem repeats or intervening sequences. Also, these dif-
ferent single nucleotides are not detected in the different
regions by GWAS.

3. Discussion

Though only few data were provided for computer-based
“learning” and were not integrated (the data type: atypism;
the primary data are not available), the preliminary con-
clusion obtained was that the specific allergen-related DNA
methylation can be used to perform atopic allergen-allergy
classification. However, the same method cannot discrim-
inate the different anaphylactic symptoms. Moreover, the
same method can determine whether allergic patients or
healthy people or both were classified at different seasons.
Therefore, we deduced that DNA methylation changed after
exposure to atopic allergens, which was associated with
specific allergens. These changes and anaphylactic symptoms
both occurred after exposure to allergens, which may have
caused the symptoms to not be classified.

In the whole process of GEO data analysis, we observed
that there was a significant difference, but not high enough,
and intragroup stability was low. It may be because the
observed entities are DNA regions’ methylation levels, which
include more sequence information. In general, sequencing
the genome nucleotide information, finding the difference
DNA region, annotating genes or gene sites, analyzing the
associated gene expression, exploring the possible regulatory
mechanism, and obtaining a complete theory are a simple
total process of the mechanisms associated with genetics of a
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disease [12, 41-44]. However, this pattern is less helpful for
allergy diagnosis. But, allergen exposure can cause DNA
methylation levels change, as observed in the GSE50222 data
(Figure 3), and are classable. We intend to use cutting-off
pilot processes by Occam’s Razor, “Entities should not be
multiplied unnecessarily (Non sunt multiplicanda entia sine
necessitate),” which is the philosophy of idiographic ma-
chine learning formula selection, to find DNA nucleotides
associated with methylation after allergen exposure.

Therefore, we devised and performed experiments on
peripheral blood DNA methylation sequencing to compare
single-nucleotide with DNA region methylated levels, which
could help to find more suitable marks. We obtained almost
the opposite result for the different typological methylated
levels.

The sequencing results prompt that there are some
single-nucleotide methylation changes and the most changes
maybe concealed from the found different DNA regions, in
the nonannotated gene regions between healthy people and
allergy patients after allergen exposure, in spite of the fact
that the simple numbers are too low. We conjectured that
DNA methylation has timely changes that should exist when
allergic constitution patients are exposed to atopic allergens,
and DNA methylation could be distinguished from healthy
people.

Therefore, we suggest conducting more “pragmatic”
research to directly find special single-nucleotide changes
after exposure to an atopic allergen instead of doing complex
correlativity and trying to accurately diagnose anaphylaxis
using DNA methylation marks to form a single CpG
methylation-based classification by machine learning. The
DNA methylation potential in the field of forensic medicine
is great as an epigenetic mark in spite of too little research
and application. DNA methylation also captures responses
to environmental factors and changes with it [14, 39], so care
is needed when applying this information to personal
identification. Meanwhile, our analysis results of sequencing
also remind us to pay more attention to single-nucleotide
methylation.

4. Methods

4.1. Data Acquisition and Processing. Searching in the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) with “allergy,” “DNA methylation,” and “Homo sa-
piens” as the key words and selecting the cell type as pe-
ripheral blood mononuclear cells (PBMCs), we got 6
valuable results (GSE59999 [37], GSE73745 [35], GSE104471
[36], GSE37853 [38], GSE50222 [39], and GSE40736 [40]).
In these 6 studies, the other covariates such as gender, age,
and ethnicity were controlled by every independent dataset
as an independent study. We have developed the same
criteria for analysis to evaluate feasibility: (a) the datasets
were analyzed with GEO2R [45] with p<0.05 as cutoff
values and extracted the f3 value of TOP100 probes of each
sample to one document (did not include censored data); (b)
we used R package Rtsne (0.15) [46] to carry out t-dis-
tributed stochastic neighbor embedding (t-SNE), which is a
nonlinear dimensionality reduction technique well suited
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FIGURE 3: (a) The result of GSE37853 by t-SNE and randomForest. “a-a” represents atopic asthmatic patients, “n-a” represents nonatopic
asthmatic patients, and “hea” represents healthy controls. (b) The result of GSE50222 by t-SNE and randomForest. “a-d” represents allergic
patients during the pollen season, “a-0” represents allergic patients outside of the pollen season, “h-d” represents healthy people during the
pollen season, and “h-0” represents healthy people outside of the pollen season.

for embedding high-dimensional data for visualization in a
low-dimensional space of two or three dimensions by setting
the parameters as dims=2, perplexity =30(the perplexity
should less than [nrow(X)—1]/3), and max_iter =500, to
estimate the samples data visualization; (c) the data were
preprocessed using R package randomForest (4.6-14) [47]
by setting the parameters as tree = 500 and the training set:
test set=7:3 randomization to find simple classification
model; and (d) R package heat-map was used to perform
heat-maps, and the clustering results were added in the plots.

4.2. Study Population. We recruited participants (n=30)
aged between 25 and 35 who had lived in Taiyuan, Shanxi
Province, for a long time and had allergic symptoms and a
positive skin prick test (SPT) from September to October
(wormwood pollen season). Total IgE and sIgE were assayed
by the AllergyScreen® test (Mediwiss Analytic GmbH,
Moers, Germany) according to the manufacturer’s in-
structions. All the participants (n=30) were tested for 19
allergens, composed of 10 types of common aeroallergens
and 9 types of food allergens. Among these allergens, the
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FIGURE 4: The result of GSE40736 by t-SNE and randomForest. “1-f” represents lung_function, “pc20” represents PC20, “rever” represents

reversible, and “c” represents healthy control.

TasLE 1: The sequencing quality evaluation.

Sample Reads num. Total bases (bp) GC (%) Error <1 (%) Error <0.1 (%)
a9 305,727,176 45,859,076,400 21.34 95.31 90.30
all 333,038,672 49,955,800,800 21.37 95.28 90.36
al2 300,768,056 45,115,208,400 21.24 95.49 90.64
cl 297,128,974 44,569,346,100 21.19 95.35 90.34
c2 301,946,840 45,292,026,000 21.23 95.23 90.25
c3 337,787,768 50,668,165,200 21.28 95.48 90.63

Error: single-nucleotide distinguished error. The quality scores all bases of per sample in the attachment document.

aeroallergens included house dust, pteronyssinus, short
ragweed, estragon, mulberry, cat epithelium, dog epithe-
lium, cockroach, mould mixture (Penicillium notatum,
branch spore mildew, Aspergillus fumigates, and Alternaria),
trees (mixture of cypress, elm, phoenix tree, Betula, Fraxinus
chinensis Roxb, willow, and cottonwood), and grass (rag-
weed and wormwood). The food allergens included cow
milk, beef, cashew-peanut-soybean, egg white/yolk, prawn,
crab, cowry, mango-peach-apple-cherry, and pineapple. The
sIgE level >0.351U/ml was considered positive, and the
significant reference range of serum total IgE was defined as
>1001U/ml. Finally, only 3 participants were defined as
wormwood monoallergen atopic rhinitis patients (the
wormwood-specific IgE (sIgE) >17.51U/ml and total IgE
>200IU/ml but other common allergens sIgE all <0.35IU/
ml in peripheral blood serum). Thus, we selected the 3
wormwood monoallergen atopic rhinitis patients and 3
healthy people for methylation analysis.

4.3. Whole-Genome DNA Sequencing. Genomic DNA from
peripheral blood mononuclear cell samples of wormwood
monoallergen atopic rhinitis patients (n=3) and healthy

people (n=3) during the pollen season was isolated using
the DNA extraction kit (Omega, USA). We structured DNA
libraries using the TruSeq Nano DNA LT Sample Prep Kit
(Illumina, San Diego, CA, USA) and used bisulfite to convert
all unmethylated cytosine (C) in genomic DNA into uracil
(U) using EpiTect® Fast Bisulfite (Qiagen, Germany) (the
bisulfite conversion rate: 99%). The DNA library quality
control was performed by using the Agilent 2100 Bio-
analyzer (Agilent Technologies, California). The whole-ge-
nome DNA methylation was sequenced by using a Whole-
Genome Shotgun (WGS) [48] with Illumina HiSeq (Illu-
mina, San Diego, CA, USA). After clearing the linker se-
quence and low-quality reads, Bismark (0.19.0) [49] was
used to align the reads to the genome (GRCh38/gh38)
through Bowtie2(2.2.3) [50]; then, we identified base
transversion events, classified, and counted them.

4.4. Differential Methylation Analysis. RSeQC [51] (version
2.5; https://rseqc.sourceforge.net/) was used to count the
distribution of methylation in different regions of genes.
Differential DNA methylation regions (DMR) analysis be-
tween samples was performed on the R bioconductor
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package methylKit (1.19.0) [52]. Then, we annotated location
information, the chromosome segment, and upstream and
downstream information by contrasting with Ensembl 89
(https://asia.ensembl.org/index.html).  Following, Gene
Ontology (GO, https://geneontology.org/) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG, https://www.
genome.jp/kegg/) enrichment analysis of genes was con-
ducted to get the DMR in the promoter regions. Finally, we
obtained associated different annotated genes and DNA
regions. In addition, we also used the methylKit to analyze
the difference between the methylation of single-nucleotide
sites and annotated location information but no GO and
KEGG enrichment analysis.

The analysis of the data was performed in RStudio
(Version 1.2.1335; https://www.rstudio.com/) using an R
environment (version 3.6.0; https://www.R-project.org). All
experiments were permitted by the Ethics Committee of
Shanxi Medical University (2017LL073), and all methods
were performed in accordance with the relevant guidelines
and regulations.
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