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Abstract

Sensory responses and behavior are strongly shaped by stimulus history. For example, per-

ceptual reports are sometimes biased toward previously viewed stimuli (serial dependence).

While behavioral studies have pointed to both perceptual and postperceptual origins of this

phenomenon, neural data that could elucidate where these biases emerge is limited. We

recorded functional magnetic resonance imaging (fMRI) responses while human partici-

pants (male and female) performed a delayed orientation discrimination task. While behav-

ioral reports were attracted to the previous stimulus, response patterns in visual cortex were

repelled. We reconciled these opposing neural and behavioral biases using a model where

both sensory encoding and readout are shaped by stimulus history. First, neural adaptation

reduces redundancy at encoding and leads to the repulsive biases that we observed in

visual cortex. Second, our modeling work suggest that serial dependence is induced by

readout mechanisms that account for adaptation in visual cortex. According to this account,

the visual system can simultaneously improve efficiency via adaptation while still optimizing

behavior based on the temporal structure of natural stimuli.

Introduction

Natural stimuli are known to have strong statistical dependencies across both space and time,

such as a prevalence of vertical and horizontal (cardinal) orientations and a higher probability

of small orientation changes in given spatial region over short time intervals [1–4]. These regu-

larities can be leveraged to improve the efficiency and accuracy of visual information process-

ing. For example, regularities can yield attenuated neural responses to frequently occurring

stimuli in early visual cortex (adaptation), reducing metabolic cost and redundancy in neural

codes [5–9]. At readout, regularities might support the formation of Bayesian priors that can

be used to bias decision-making in favor of higher probability stimuli [10–12]. While the

effects of stimulus history on sensory coding and behavior have been studied extensively, it is

unclear how changes in sensory coding shape behavior.

Adaptation increases coding efficiency by modulating sensory tuning properties as a func-

tion of the recent past. For example, reducing the gain of neurons tuned to a recently seen
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adapting stimulus reduces the temporal autocorrelation of activity when similar stimuli are

presented sequentially, improving the overall efficiency of sensory codes [7,13–16]. Impor-

tantly, adapted representations early in the processing stream (e.g. the Lateral Geniculate

Nucleus, LGN) are inherited by later visual areas, meaning the changes in coding properties

could, in turn, shape decision-making [8,17,18]. Although adaptation increases coding effi-

ciency, it comes at a cost to perceptual fidelity as adaptation can lead to repulsion away from

the adapting stimulus for features such as orientation and motion direction [19–21]. For exam-

ple, after continuously viewing and adapting to motion in one direction, stationary objects will

appear to be moving in the opposite direction (i.e., current perceptual representations are

repelled away from recent percepts). However, this potentially deleterious aftereffect is accom-

panied by better discriminability around the adapting stimulus, which may be more important

than absolute fidelity from a fitness perspective [16,22–24].

In contrast to the repulsive perceptual biases typically associated with neural adaptation,

perceptual reports are sometimes attracted to recently presented items—a phenomenon

termed “serial dependence.” Studies utilizing low contrast oriented stimuli suggest that serial

dependence can be perceptual in nature as it operates before a peripheral tilt illusion, impacts

the perception of simultaneously presented items, biases perceptual reports even when no

probe is presented, and does not require a working memory delay [25–29]. This perceptual

account could arise from activity changes in early visual cortex, consistent with a functional

magnetic resonance imaging (fMRI) study that measured early sensory biases that match

“attractive” behavioral reports [30]. This neural finding, however, is challenging to interpret as

consecutive trials were always the same or orthogonal orientations, which, by definition, can-

not distinguish attractive from repulsive biases. Related studies decoding past stimuli from

electroencephalography (EEG) activity do not measure how current stimulus representations

are biased, precluding a connection to behavioral biases [31–33].

Counter to studies reporting a perceptual locus of serial dependence that utilized brief or

low contrast stimuli, other behavioral studies utilizing high-contrast spatial stimuli have found

that serial dependence does not emerge immediately but instead emerges only, and increases

with, a working memory maintenance period [34–36]. This observation suggests that serial

dependence could be implemented by a later readout or memory maintenance circuit [34,37–

39]. There is evidence that such a readout mechanism is Bayesian, as the influence of the

“prior” (the previous stimulus) is larger when sensory representations are less precise due to

either external or internal noise [4,40]. Thus, the existing behavioral evidence suggests that

serial dependence can operate both on perceptual and working memory representations

[26,34,41]. It is open question how and where past trial information interacts with incoming

sensory and memory representations.

To determine what role visual cortex plays in driving serial dependence, we applied multi-

variate fMRI decoding techniques to data collected while participants performed a delayed ori-

entation discrimination task (Fig 1A). We replicated classic serial dependence findings where

behavioral reports were attracted to the orientation of the previous stimulus. However, this

attractive behavioral bias was not accompanied by attractive biases in visual cortex, as pre-

dicted by early sensory models of serial dependence. Rather, we observed repulsive biases in

early visual cortex that were consistent with adaptation. We then examined several possible

read-out mechanisms and found that only decoding schemes that account for adaptation can

reconcile the neural and behavioral biases found in our data. More generally, these results

explain a mechanism where the visual system can reduce energy usage without sacrificing pre-

cision by optimizing sensory coding and behavioral readout relative to the temporal structure

of natural environments.
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Results

Behavior

To probe the behavioral effects of serial dependence, we designed a delayed discrimination

task where participants judged whether a bar was tilted clockwise (CW) or counterclockwise

(CCW) relative to the orientation of a remembered grating (Fig 1A). We first report the results

from a behavior-only study (n = 47) followed by an analysis of neural activity for a cohort com-

pleting the same task in the fMRI scanner (n = 6). Task difficulty was adjusted for each partici-

pant by changing the magnitude of the probe offset (δθ) from the remembered grating and

was titrated to achieve a mean accuracy of approximately 70% (accuracy 69.8 ± 0.82%, δθ:

4.61 ± 0.27˚; all reported values mean ± 1 SEM unless otherwise noted). Fixing participants at

this intermediate accuracy level helped to avoid floor/ceiling effects and improved our sensitiv-

ity to detect perceptual biases while keeping participants motivated.

To quantify the pattern of behavioral responses, we modeled the data as the product of a

noisy encoding process described by a Gaussian distribution centered on the presented orien-

tation with standard deviation σ and bias μ. Optimal values for σ and μ were found by maxi-

mizing the likelihood of responses for probes of varying rotational offsets from the

remembered stimulus, thus converting pooled binary responses into variance and bias mea-

sured in degrees (see Response bias; S1 Fig). This allowed us to measure precision for individ-

ual participants and also allowed us to measure how responses were biased as a function of the

Fig 1. Caption behavior. (A) Task schematic. An orientated stimulus is followed by a probe bar that is rotated<15˚ from the stimulus. Participants judged

whether the bar was CW or CCW relative to the stimulus in a binary discrimination task. (B) Response bias: % of responses that were CCW as a function of Δθ
= θn − 1 − θn (± SEM across participants). (C) Behavioral bias, green: average model-estimated bias as a function of Δθ (± SEM across participants); gray:

average DoG fit to raw participant responses sorted by Δθ (± 1SEM across participants). (D) Response accuracy as a function of Δθ. (E) Responses are

significantly more accurate for |Δθ|<30˚. (F) Behavioral σ as a function of Δθ. (G) Behavioral variance is significantly less for |Δθ|<30˚. Note that in computing

variance, we “flip” the sign of errors following CCW inducing trials to avoid conflating bias with variance (see Methods). (H) Bias is positively correlated with

variance across participants. ���, p< 0.001. Data and code supporting this figure found here: https://osf.io/e5xw8/?view_only=

e7c1da85aa684cc8830aec8d74afdcb4. CCW, counterclockwise; CW, clockwise.

https://doi.org/10.1371/journal.pbio.3001711.g001
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orientation difference between the remembered gratings on consecutive trials Δθ = θn-1 − θn,

an assay of serial dependence.

Responses were robustly biased toward the previous stimulus (Fig 1C, green curve), which

we quantified by fitting a Derivative of Gaussian (DoG) function to the raw response data for

each participant (gray curve; amplitude: 4.53˚ ± 0.42˚, t(46) = 7.8, p = 5.9�10−10, 1-sample t
test; full width at half maximum (FWHM): 42.9˚ ± 1.8˚; see Serial dependence). The magni-

tude and shape of serial dependence are consistent with previous reports [25,42]. This bias is

not an artifact of our parameterization as the same pattern is observable in the raw proportion

of CCW responses (Fig 1B). Note that as participants are reporting the orientation of the

probe relative to the grating stimulus, a greater proportion of reports that the probe was CCW

corresponds to a CW shift in the perception of the grating.

We next examined how response precision (σ) varied as a function of Δθ and found that

responses were more precise around small trial-to-trial orientation changes (Fig 1F), again

consistent with previous reports [43]. We quantified this difference in precision by splitting

trials into “close” and “far” bins (greater than or less than 30˚ separation) and confirmed that

responses following “close” stimuli were more precise (t(46) = −3.72, p = 0.0003, paired

1-tailed t test, Fig 1G; see Response precision). Note that the choice of 30˚ was arbitrary, but all

threshold values between 20˚ and 40˚ yielded significant (p< 0.05) results. As with bias, this

variance result was not an artifact of our parameterization as raw accuracy showed a similar

pattern such that responses were more accurate following close stimuli (t(46) = 3.66,

p = 0.0003; Fig 1D and 1E). We additionally confirmed that our finding of reduced bias around

small changes in orientation is not driven by a higher proportion of “cardinal” orientations

(here defined as being ±22.5˚ of 0 or 90˚) as the proportion of cardinal orientations did not

differ between close and far bins of Δθ (mean % cardinal close: 50.6 ± 0.5%, far: 50.2 ± 0.3%,

t(46) = 0.9, p = 0.39, paired t test).

Previous work has shown that serial dependence is greater when stimulus contrast is lower

[28] and when internal representations of orientation are weaker due to stimulus independent

fluctuations in encoding fidelity [4]. We tested a Bayesian interpretation of these findings by

asking whether less precise individuals are more reliant on prior expectations and therefore

more biased. Consistent with this account, we found a positive correlation between DoG

amplitude and σ (Fig 1H, r(45) = 0.52, p = 0.0001, 1-tailed Pearson correlation). This relation-

ship was not dependent on our response parameterization as we report found similar relation-

ships between DoG amplitude and both accuracy (r = −0.41, Pearson correlation, p< 0.005)

and average task difficulty δθ (r = 0.44, p< 0.005).

A subset of participants completed a version of the experiment with inhomogeneities in

their stimulus sequences (such that consecutive orientations were more likely to be between

±22.5 and 67.5˚ from the previous stimulus). We repeated all of the above analyses excluding

these participants and found all of our findings were qualitatively unchanged (S2 Fig).

Stimulus history effects in visual cortex

To examine the influence of stimulus history on orientation-selective response patterns in

early visual cortex, 6 participants completed between 748 and 884 trials (mean 838.7) of the

task in the fMRI scanner over the course of four 2-hour sessions (average accuracy of 67.7% ±
0.4% with an average probe offset, δθ, of 3.65˚). As with the behavior-only cohort, behavioral

reports in these participants showed strong attractive serial dependence (Fig 2A, green) that

was significantly greater than 0 when parameterized with a DoG function (amplitude = 3.50˚ ±
0.27˚, t(5) = 11.93, p = 0.00004; FWHM = 35.9˚ ± 2.34˚, Fig 2A, black dotted line). This bias

was not significantly modulated by intertrial interval, delay period, or an interaction between
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Fig 2. Caption behavioral and neural bias. (A) Left axis, behavioral serial dependence. Shaded green: average model-estimated bias as a function of Δθ (±
SEM across participants); dotted black line: average DoG fit to raw participant responses sorted by Δθ. Right axis, variance. Purple shaded line: model-

estimated variance as a function of Δθ (± SEM across participants). (B) Behavioral σ is significantly less for |Δθ|<30˚. (C) Decoded orientation was significantly

greater than chance when indexed with circular correlation for all ROIs examined. Error bars indicate ±SEM across participants. Dots show data from

individual participants. (D) Decoding performance across time for a subset of ROIs. Vertical red line indicates time point used in most analysis. (E) Decoding

performance across time for a decoder trained on a separate sensory localization task. (F) Performance of task decoder trained and tested on identity of

previous stimulus across all ROIs. (G) Left axis, decoding bias. Shaded yellow line: decoded bias (μcirc of decoding errors) sorted by Δθ (± SEM across

participants); dotted black line: average DoG fit to raw decoding errors sorted by Δθ. Right axis, decoded σcirc. Shaded gray line: average decoding variance

(σcirc) as a function of Δθ (± SEM across participants). Note that σcirc can range from [0, inf] and has no units. (H) Decoded variance is significantly greater for

|Δθ|<30˚. (I) Decoded errors are significantly repulsive when parameterized with a DoG in all ROIs. �, p< 0.05; ��, p< 0.01; ���, p< 0.001. Data and code

supporting this figure found here: https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4. DoG, Derivative of Gaussian; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3001711.g002
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the 2 factors (all p-values > 0.5, mixed linear model grouping by participant). Similar to the

behavioral cohort, we found that variance was generally lower around small values of Δθ. We

quantified variance in the same manner as the behavioral cohort (flipping responses to match

biases and down-sampling the larger group) and found that responses were more precise fol-

lowing close (<30˚) relative to far stimuli (>30˚, t(5) = −9.96, p = 0.00009, 1-tailed paired t
test, Fig 2B). This pattern was significant (p< 0.05) for thresholds between 20˚ and 40˚. A sub-

set of these participants completed some sessions where consecutive stimuli were not strictly

independent as they were more likely to be between ±22.5 and 67.5˚ from the previous stimu-

lus (see Methods, Behavioral discrimination task, 4 out of 6 participants had between 357 and

408 trials that were nonindependent accounting for between 40% and 50% of their trials and

32% of all trials completed). However, we replicated all of our main analysis excluding these

sessions and found that our conclusion remained unchanged with the exception that our find-

ing of reduced variance trended in the same direction but no longer reached significance

(S3 Fig).

To characterize activity in early visual areas, independent retinotopic mapping runs were

completed by each participant to identify regions of interest (ROIs) consisting of V1, V2, V3,

V3AB, hV4, and intraparietal sulcus area IPS0. In addition, a separate localizer task was used

to subselect the voxels that were most selective for the spatial position and orientation of the

stimuli used in our task (see Voxel selection).

To examine how visual representations are affected by stimulus history, we trained a

decoder on the orientation of the sample stimulus on each trial based on BOLD activation pat-

terns in each ROI. We used the vector mean of the output of an inverted encoding model

(IEM) as a single trial measure of orientation using a leave-one-run-out cross-validation across

sets of 68 consecutive trials (4 blocks of 17 trials) that had orientations pseudo randomly dis-

tributed across all 180˚ of orientation space (see Orientation decoding for details). We first

quantified single-trial decoding performance using circular correlation (rcirc) between the

decoder-estimated orientations and the actual presented orientations and found that all ROIs

had significant orientation information (Fig 2C). Our ability to decode extended for the dura-

tion of the trial, peaking around 12 seconds after stimulus presentation (Fig 2D). This memory

signal seems to be largely in a “sensory code” as a decoder trained on a separate localizer task

where participants viewed stimuli without holding them in memory achieved similar perfor-

mance over a similar timescale (see fMRI localizer task; Fig 2E). Thus, visual ROIs showed

robust orientation information that could be decoded across the duration of the trial. For all

analyses not shown across time, we used the average of 4 TRs (repetition time, spanning 4.8 to

8.0 seconds) following stimulus presentation to minimize the influence of the probe stimulus

(which came up�6 seconds into the trial and thus should have a negligible influence on activ-

ity in the 4.8 to 8.0 seconds window after accounting for hemodynamic delay; see Fig 5A).

We are interested in the how the identity of the previous stimulus influences representa-

tions of the current stimulus, akin to previous EEG studies that have demonstrated the ability

to decode the previous stimulus during the current trial [32]. We performed a similar analysis

by training and testing our task decoder on the identity of the previous stimulus using the

same time points as the current trial decoder. This decoder was able to achieve above chance

decoding in all ROIs examined indicating trial history information is present in the activity

patterns (Fig 2F). As a control analysis, we attempted but were unable to decode the identity of

the next stimulus using the same procedure (S3F Fig). The performance of the memory

decoder for the previous stimulus peaked around 6 seconds after stimulus presentation but

remained above chance throughout the delay period (S4A Fig). Notably, we were generally

unable to decode the identity of the previous stimulus using our decoder trained on a localizer

task suggesting representations of past trial stimuli are not in a “sensory code” (S4B Fig).
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The high SNR (signal to noise ratio) of the BOLD decoder additionally allowed us to exam-

ine residual errors on individual trials. When measuring the bias (circular mean, μcirc; see Neu-

ral bias) of these decoding errors as a function of stimulus history (Δθ), we observed a strong

repulsive bias reflecting neural adaptation (V3, Fig 2G, yellow). This bias was significant when

quantified with a DoG (amplitude = −14.5˚ ± 2.9˚, t(5) = −3.56, p = 0.0029; FWHM = 52.2˚ ±
2.94˚, Fig 2G, black dotted line), and all ROIs had a significantly negative amplitude (p< 0.01,

Fig 2I). Critically, this bias was present across all TRs for both the task and localizer decoders

and was visible in the bias curve computed for each individual participant (S4 Fig). In addition

to the model-based analysis of responses in visual cortex, we also performed a model-free assess-

ment of the dimensionality of activation patterns conditioned on the prior stimulus. Consistent

with our main analysis, responses following close stimuli have a higher dimensionality than

responses following far stimuli. This suggests that changes due to neural adaptation should

assist pattern separation regardless of stimulus identity (see Dimensionality analysis; S5 Fig).

We also examined how the precision of neural representations changed as a function of

stimulus history. In sharp contrast to behavior, σcirc exhibited a monotonic trend such that

neural decoding was least precise when the previous stimulus was similar (Fig 2G, gray curve;

see Neural variance). We quantified this difference in sensory uncertainty in a similar manner

to the behavioral data and found that variance in the sensory representations was significantly

greater following a similar stimulus (<30˚, t(5) = 72.4, p = 4.8�10−9, paired 1-tailed t test, V3,

Fig 2H). This pattern was significant (p< 0.05) in all ROIs except IPS0 (S6A Fig). The results

did not change qualitatively when we utilized vector length as a proxy for decoding precision

derived directly from our channel estimates (S6C and S6D Fig) or when we used other thresh-

olds between 20˚ and 40˚. The repulsion of sensory representations and the corresponding

reduction in decoding precision around the previous orientation is consistent with neural

adaptation where recently active units are attenuated, thus leading to lower SNR responses in

visual cortex.

Accounting for the time course of the hemodynamic response function

We considered whether the repulsive adaptation we observed in visual cortex could be

explained by residual undershoot of the hemodynamic response function (HRF) from the pre-

vious stimulus. To address this concern, we directly modeled the evoked response in each

voxel to the stimulus and probe using a deconvolution approach and used a parameterization

of the resulting filter (double gamma function) to model the stimulus evoked response on each

trial (see Kernel-based decoding). Notably, the stimulus response has an undershoot that

extends up to 25 seconds following stimulus presentation (see Fig 3A for an example voxel and

parameterization). Estimating responses using this filter on individual trials and using the

resulting weights to train a decoder removes the linear contribution of previous stimulus/

probe presentations [44,45]. Any bias in the resulting decoder should thus be due to changes

in BOLD activity driven by neuronal activity rather than a hemodynamic artifact. We repeated

all analyses after correcting for the shape of the HRF, and while the resulting decoder was less

precise than one trained on the time course data (eg. V3 rcirc = 0.19 ± 0.07 versus 0.32 ± 0.08

with time course decoder), it was still significantly predictive across all visual ROIs (ps< 0.05)

except IPS0. Despite the noisier decoding, we still observed a significant repulsive bias in all

visual ROIs that matched the pattern found when decoding the raw BOLD time course

(Fig 3B).

To further understand whether the time course of our task could lead to artifacts, we also

simulated responses to our task using tuned voxels that were modeled after the task sequence

and estimated HRFs observed in our experiment (see supplementary modeling section,
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S7 Fig). These simulations show that repulsive biases like the ones we observed with both our

time course and deconvolution-based decoders are only possible when the underlying tuning

of voxels is adapted by past stimuli/responses.

We additionally examined the time-course of the bias. Significant repulsive biases were

observable through the duration of the trial, in all early visual ROIs (S4 Fig). As the undershoot

Fig 3. Influence of BOLD-specific biases on repulsive bias. (A) Average V1 HRF through deconvolution for stimulus and probe. Average best fit double

gamma function overlaid in dotted lines. (B) (Left) Bias curves from decoder trained on response patterns from deconvolved double-gamma functions (± SEM

across participants). Here excluding hV4 and IPS0 for clarity. (Right) Bias quantified with a DoG function across ROIs. (C) Bias across time including only

trials with an ISI of at least 17.5 seconds. x-Axis reflects minimum time from previous stimulus. Repulsion significant in all ROIs at 32 seconds. (D) Bias as a

function of various relative orientations for V1 and V3 (± SEM across participants). (E) Bias across early visual ROIs for N-1, N-2, and N-3. Color scheme same

as C. N+1 control analysis to ensure effects not driven by some unknown structure in stimulus sequence. (F) Behavioral bias for various relative orientations.

N-1 data same as data presented in Fig 2. �, p< 0.05, ��, p< 0.01, ���, p< 0.001. Data and code supporting this figure found here: https://osf.io/e5xw8/?view_

only=e7c1da85aa684cc8830aec8d74afdcb4. DoG, Derivative of Gaussian; HRF, hemodynamic response function; ROI, region of interest.

https://doi.org/10.1371/journal.pbio.3001711.g003
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portion of the HRF extended to approximately 25 seconds, we examined the bias relative to

the time of the presentation of the previous stimulus. We included only trials with an inter-

stimulus interval (ISI) greater than the median of 17.5 seconds and plotted bias as a function

of the minimum time from the previous stimulus (Fig 3C). Notably, bias was still significantly

repulsive for 30 seconds following the previous stimulus presentation in all early visual ROIs,

further shrinking the possibility that our biases are driven by the slow time course of the HRF

(Fig 3C, last time point). Finally, we examined how far back previous stimuli shape early visual

representations. We examined the influence of not just the N-1 stimulus, but N-2 and N-3 sti-

muli as well, corresponding to median ISIs of 35.1 and 52.5 seconds, respectively (Fig 3D and

3E). As any influence of these more distant stimuli should be diminished relative to N-1, we

maximized our sensitivity by taking the average decoded representation from 4 to 12 seconds.

While the control N+1 stimulus showed no impact on decoded orientation as expected, we

continued to see biases that are significantly repulsive through the N-3 stimulus in V1 and V2

(Fig 3E). These neural biases were surprisingly persistent and are in line with recent studies

that have found adaptation signatures extending 22 seconds in mouse visual cortex spiking

activity [9]. It is not clear why our effects persist even longer, but it is likely driven in part by

the long ISIs, resulting in fewer intervening stimuli compared to the paradigm utilized in [9].

We separately extended our analysis of behavioral biases and found no significant effect of tri-

als except for N-1, although biases were trending toward being repulsive for N-2 and N-3

reflecting the pattern reported in [46] (Fig 3F). Together, these analyses suggest that our

observed biases are driven by adaptation in the underlying neural population and provide

additional evidence that behavior is not directly linked to early visual representations.

Encoder–decoder model

We observed an attractive bias and low variability around the current stimulus feature in

behavior, and a repulsive bias and high variability around the current feature in the fMRI

decoding data. Thus, the patterns of bias and variability observed in the behavioral data are

opposite to the patterns of bias and variability observed in visual cortex. To better understand

these opposing effects, we reasoned that representations in early visual cortex do not directly

drive behavior but instead are read out by later cortical regions that determine the correct

response given the task [47–50]. In this construction, the decoded orientations from visual cor-

tex represent only the beginning of a complex information processing stream that, in our task,

culminates with the participant making a speeded button press response. Thus, we devised a

2-stage encoder–decoder model to describe observations in both early visual cortex and in

behavior (see Modeling).

The encoding stage consists of cells with uniformly spaced von Mises tuning curves whose

amplitude is adapted by the identity of the previous stimulus (θn−1, Fig 4A). The decoding

stage reads out this activity using 1 of 3 strategies (Fig 4B). The unaware decoder assumes no

adaptation has taken place and results in stimulus likelihoods p(m|θ) that are repelled from the

previous stimulus (Fig 4C, yellow, where m is the population activity at the encoding stage).

This adaptation-naive decoder is a previously hypothesized mechanism for behavioral adapta-

tion [51] and likely captures the process that gives rise to the repulsive bias we observe in visual

cortex using a fMRI decoder that is agnostic to stimulus history (Fig 2G). Alternatively, the

aware decoder (Fig 4C, green) has perfect knowledge of the current state of adaptation and

can thus account for and “undo” biases introduced during encoding. Finally, the overaware

decoder knows the identity of the previous stimulus but overestimates the amount of gain

modulation that takes place, resulting in a net attraction to the previous stimulus (Fig 4C, red).

We additionally built off of previous work showing stimuli are generally stable across time by
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Fig 4. Encoder–decoder model schematic. (A) Encoding. Units with von Mises tuning curves encodes incoming stimuli. The gain of individual units

undergoes adaptation such that their activity is reduced as a function of their distance from the previous stimulus. (B) Decoding. This activity is then read out

using a scheme that assumes 1 of 3 adaptation profiles. The unaware decoder assumes no adaptation has taken place, the aware decoder assumes the true

amount of adaptation while the overaware decoder overestimates the amount of adaptation (note center tuning curves dip lower than the minimum gain line

from encoding). (C) Example stimulus decoding. Top: The resulting likelihood function for the unaware readout (dotted yellow line) has its representation for

the current trial (θn = −30˚) biased away from the previous stimulus (θn-1 = 0˚). The aware readout (dotted green line) is not biased, while the overaware

readout is biased toward the previous stimulus. These likelihood functions can be multiplied by a prior of stimulus contiguity (solid black line) to get a Bayesian

posterior (bottom) where Bayes-unaware and Bayes-aware representations are shifted toward the previous stimulus. Tick marks indicate maximum likelihood

or decoded orientation. (D) Summary of models and free parameters being fit to both BOLD decoder errors and behavioral bias. Data and code supporting this

figure found here: https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4.

https://doi.org/10.1371/journal.pbio.3001711.g004
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implementing a prior of temporal contiguity [4]. In our implementation, a Bayesian prior cen-

tered on the previous stimulus (Fig 4C, black) is multiplied by the decoded likelihood to get a

Bayesian posterior (Fig 4C, bottom). We applied this prior of temporal contiguity to both the

aware decoder as well as the unaware decoder to test the importance of awareness at decoding.

We did not apply a prior to the overaware model to balance the number of free parameters

between the various decoders and to see if the overaware model could achieve attractive serial

dependence without a Bayesian prior (Fig 4 and S1 Table).

For each participant, we fit the encoder–decoder model in 2 steps (Fig 4D). All model fit-

ting was performed using the same cross-validation groups as our BOLD decoder and each

stage had 2 free parameters that were fit using grid-search and gradient descent techniques.

We first report results from the encoding stage of the model. The gain applied at encoding was

adjusted to minimize the residual sum of squared errors (RSS) between the output of the

unaware decoder and the residual errors of our BOLD decoder. The unaware readout of the

adapted encoding process (Fig 5A, yellow) provided a good fit to the average decoding errors

obtained with the BOLD decoder (Fig 5A, black outline, ρ = 0.99) and across individual partic-

ipants (S8A Fig, ranges: ρ = [0.84, 0.98]). The unaware readout provided a better fit to the out-

puts of our neural decoder than the null alternative of the presented orientation (t(5) = 3.41,

p = 0.01) because it captured a significant proportion of the variance in decoding errors as a

function of Δθ (t(5) = 7.5, p = 0.0007). This analysis demonstrates that our adaptation model

does a reasonable job of recovering our empirical decoding data (both of which use a decoder

unaware of sensory history).

We next considered 3 readout schemes of this adapted population to maximize the likeli-

hood of our behavioral responses (Fig 5B). The Bayes-aware decoder is consistent with previ-

ous Bayesian accounts of serial dependence [4], but additionally asserts that Bayesian

inference occurs after encoding and that readout must account for adaptation. Alternatively,

the Bayes-unaware decoder tests whether this awareness is necessary to achieve attractive serial

dependence. Both aware models achieved biases that were significantly more likely than the

unaware model (t(5) = 6.53, p = 0.001, Bayes-aware; t(5) = 6.6, p = 0.001, overaware, t test on

log-likelihood, Fig 5C) but were indistinguishable from each other (p = 0.36). Thus, both

aware models were able to explain the response biases while the unaware model did a relatively

poor job, suggesting that some awareness of the adapted state is necessary.

Finally, we examined the variance of our decoders to see if this mapped onto our empiri-

cally observed variance. As model coefficients were fit independent of observed variance, cor-

respondence between model performance and BOLD/behavioral data would provide

convergent support for the best model. While the models were trained using noiseless activity

at encoding, we simulated responses using Poisson rates to induce response variability. We

simulated 1,000 trials from each cross-validated fit and pooled the model outputs. We first

confirmed that the variance of the unaware decoder was highest following small changes of Δθ
(Fig 5A, gray; Fig 5G t(5) = 3.93, p = 0.005, paired 1-tailed t test <30˚ versus >30˚) matching

the output of our neural decoder (Fig 2G) and providing additional support for gain adapta-

tion causing the observed repulsion in the fMRI data. Next, we compared the different decod-

ers and found that, matching real behavioral responses, all 3 decoders were more precise

following small values of Δθ (Fig 5G, Bayes-unaware, t(5) = 2.25, p = 0.037; Bayes-aware t(5) =

1.90, p = 0.058; and overaware t(5) = 5.43, p = 0.001). While the pattern of the Bayes-unaware

variance matched behavior, its overall variance was much higher than our behavioral data

such that it diverged from the behavioral data significantly more than either of the aware mod-

els (Fig 5E–5G; ps< 0.005, paired t test comparing Jenson–Shannon divergence of error distri-

butions). Together, the variance data provide additional evidence in favor of adaptation

driving the repulsive biases that were observed in the BOLD data and awareness of the current
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state of adaptation being a requisite condition for the observed attractive serial dependence.

More generally, this model has notable advantages that can lead to enhanced discrimination,

reduced energy usage, and improved discrimination in naturalistic conditions over a static

labeled line representation.

Discussion

In this study, we sought to understand the neural underpinning of attractive serial dependence

and how changes in tuning properties at encoding shape behavior. Based on previous behav-

ioral and neural studies, we expected to observe attractive biases in line with observed behavior

and decoding from early visual areas [30]. Instead, we found that representations were

Fig 5. Model performance bias. (A–C) Neural/behavioral bias. (D–G) Neural/behavioral variance. (A) Unaware decoder (yellow) provides a good fit to neural

bias (black outline). Decoded variance decreases monotonically with distance from previous stimulus. (± SEM across participants). (B) Perceptual bias (black

outline) was well fit by the Bayes-aware and overaware models but not the Bayes-Unaware model (± SEM across participants). (C) Participant responses were

significantly more likely under aware models. (D) Behavioral variance had a similar shape and magnitude to Bayes-aware and overaware model fits. Bayes-

unaware model output was much less precise and had a different form. (E) Distribution of empirically predicted response errors (black line) and simulated

model fits for an example participant. (F) The unaware model’s error distribution had significantly higher Jenson–Shannon divergence from BOLD decoder

than either aware model. (G) Visualization of all uncertainties split as a function of close and far stimuli. Note that the Bayes-unaware model had an average

uncertainty that was on average 6x that of perception. �, p< 0.05; ��, p< 0.01; ���, p< 0.001. Data and code supporting this figure found here: https://osf.io/

e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4.

https://doi.org/10.1371/journal.pbio.3001711.g005
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significantly repelled from the previous stimulus starting in primary visual cortex and continu-

ing through IPS0 (Fig 2I). This repulsion is consistent with bottom up adaptation beginning

either at or before V1 and cascading up the visual hierarchy [8,9,18]. As repulsive biases are in

the opposite direction as behavioral biases, we built a model to link these conflicting patterns.

The critical new insight revealed by the model is that only readout schemes that account for

adaptation can explain the attractive behavioral bias observed in our paradigm. More gener-

ally, our BOLD data argue against an early sensory origin of serial dependence for orientation

and instead suggest that serial dependence is driven by postperceptual or mnemonic circuits

[38,39]. However, because we used a paradigm that required working memory, our results

may not generalize to other situations in which serial dependence is observed even in the

absence of a memory delay [25,26,29,52]. Thus, future work is needed to better understand the

role of sensory representations in paradigms with low contrast stimuli, that do not require a

memory delay period, and that utilize other features besides orientation.

There have been many prior studies arguing for either a perceptual or postperceptual origin

of serial dependence. Some behavioral studies have found that serial dependence emerges

almost immediately after the offset of a stimulus, pointing to an early perceptual origin of the

effect [25–27,40]. One study additionally demonstrated that attraction to the previous stimulus

seems to occur before the “tilt illusion” driven by concurrently presented flanking stimuli [27].

If history biases indeed operate before spatial context, this could point to a distinct assimilative

mechanism for serial dependence in early visual processing that may only emerge under low

stimulus drive. As our experiment always utilizes a working memory delay, it is unclear if the

bias toward past stimuli is driven by a change in their perception of the stimulus itself or

instead somehow biases their comparison with the probe stimulus only after the working

memory maintenance period.

Others have found that serial dependence is repulsive at very short delays and only becomes

attractive when items are held for an extended time in working memory [34,35]. This apparent

discrepancy was reconciled by [28], who showed that attractive biases disappear without a

working memory delay, unless the stimuli are rendered at a very low contrast. This observation

suggests that serial dependence may emerge immediately when high sensory uncertainty is

induced by low contrast stimuli, and it may emerge later if high sensory uncertainty is induced

by extended working memory delay periods. It is curious that unlike some spatial working

memory studies [34–36], we did not find that behavioral biases increased with delay time. One

possible explanation is that this phenomenon is actually unique to spatial working memory

due to either a more consistent increase in sensory uncertainty of spatial location due to eye

movements or a separate mechanism of memory maintenance that becomes more susceptible

to proactive interference relative to orientation memories. Separately, as our stimuli were pre-

sented at the fovea (unlike spatial paradigms) they are encoded by a larger population and thus

may be less susceptible to degradation across time.

Evidence for an early sensory origin of serial dependence comes from an fMRI study with

low contrast stimuli and a short (500 ms) delay period which reported that both behavioral

responses and V1 representations were more precise following a matching stimulus [30]. This

departure from our own finding could be driven by the stimuli that were rendered to have a

very high uncertainty. Past work studying adaptation in nonhuman primates found repulsive

patterns following long (4 seconds and 40 seconds) but attractive patterns following short (0.4

seconds) stimulus presentations, suggesting that stimulus duration may have a large influence

on how past stimuli shape future sensory processing [53]. That said, the stimuli used in the

fMRI study of [30] were always 1 of 2 orthogonal orientations, which, given a circular feature

space like orientation, precludes an assessment of attraction or repulsion. Furthermore, correct

motor responses were directly yoked to the stimulus so any behavioral tendency to report
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seeing the same stimulus on successive trials could be due to motor priming rather than stimu-

lus based serial dependence (e.g., a “stay” bias). Related work has shown the ability to decode

the previous stimulus from EEG activity patterns [31–33], but it is important to note that our

study also showed robust decoding of the previous stimulus that did not also correspond with

an attractive bias in the neural representation of the current stimulus (Figs 2F and 2G and S4).

This is because the representations of current and past stimuli are not necessarily stored using

the same code. Thus, while previous neural studies have argued that serial dependence

emerges in visual cortex, no study has demonstrated an attraction toward the previous stimu-

lus dependent on feature similarity consistent with behavioral biases. Further work examining

neural biases using low contrast stimuli will shed further light on a potential role of coding

changes in sensory cortex driving serial dependence.

In contrast to studies favoring an early sensory account—and more in line with the para-

digm and findings reported in this manuscript—a single unit recording study in nonhuman

primates used high-contrast stimuli and a longer working memory delay (1.4 to 5.6 seconds)

[54]. Under these conditions, neural responses in the frontal eye fields (FEFs) were repelled

from the previously remembered location even though saccades were attracted to the previ-

ously remembered location. Given the tight link between the FEF and attentional control [55–

57], the authors speculated that the observed neural repulsion was due to residual attentional

shifts carrying over from the previous trial. However, our observation of repulsive biases start-

ing in V1 and persisting across later visual areas suggests that bottom-up adaptation may be a

viable alternative explanation (which the authors also acknowledged). Further support for this

account comes from a recent magnetoencephalography (MEG) study showing that representa-

tions were repelled from past stimuli both within the current trial and from the previous trial

[58]. As in our study, this neural repulsion contrasts with attractive behavioral biases to the

previous stimulus, suggesting that sensory representations do not directly shape behavior even

in simple sensory paradigms [50]. Behavioral studies using similar high-contrast orientation

stimuli to our own have also shown that responses are attracted to past decisions and repelled

from past stimuli, further suggesting that these attractive biases do not emerge in early sensory

areas [38,59,60]. Several modeling studies additionally suggest that serial biases are mediated

by later readout circuits due to synaptic changes arising from persistent bump attractor

dynamics as opposed to early sensory processing [37,39]. Thus, in line with our findings:

behavioral, neuronal, and modeling studies utilizing high-contrast stimuli in working memory

paradigms consistently point to attractive effects emerging in either memory or decision-mak-

ing circuits and not early sensory areas.

In line with classic accounts, adaptation in visual cortex should lead to a reduction in energy

usage during encoding [14]. However, the main advantage of adaptation may be to decorrelate

inputs, thus enhancing the discriminability of incoming stimuli [14,61] and even acting as a

form of short-term memory [62]. An optimal processing stream may emphasize differences at

encoding and only favor stability once a stimulus has been selected by attention for more

extensive postperceptual processing [38]. This motif of pattern separation followed by pattern

completion would not be unique to adaptive visual processing. Similar mechanisms have been

proposed as a critical component of long-term memory processing in the hippocampus and

associative memory formation in the fly mushroom body [63]. Thus, the biases introduced by

adaptation may be beneficial in part because they expand the dimensionality of the representa-

tional space as we found in our recordings (S5 Fig).

We did not explicitly define how awareness of adaptation is implemented, but it is clear

that both attention to and conscious awareness of the previous stimulus are necessary for serial

dependence to occur [25,64]. This is consistent with our model, and it suggests that some

representation of information about stimulus history should be a minimum requirement for
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an aware decoding scheme. The identity of the previous stimulus for spatial position and angle

has been shown to be decodable from the spiking activity of single units in the FEF and poste-

rior parietal cortex (PPC) as well as large-scale activity patterns in human EEG and MEG [31–

33,54,58,65]. We additionally demonstrate that information about the previous trial is encoded

in patterns of fMRI activity in human visual cortex (Fig 2F), but not in a sensory-like code

(S4A and S4B Fig). These signals could potentially be represented concurrently with represen-

tations of the current stimulus in the same populations of sensory neurons but in orthogonal

codes analogous to what has been found for sequentially encoded items in primate prefrontal

cortex and human EEG [66,67]. An alternate account holds that representations of stimulus

history are maintained outside of early visual areas, consistent with findings from mouse parie-

tal and primate prefrontal cortex [39,65]. This anatomical segregation could disambiguate

incoming sensory drive from representations of stimulus history. Critically, optogenetically

suppressing nonsensory representations of stimulus history eliminated history effects, thus

providing strong support for some form of an aware readout mechanism [65].

For the decoding stage of our model, we established that only readout schemes that are

aware of adaptation could explain attractive serial dependence. The Bayes-aware model is an

extension of previously proposed models that employ an explicit prior but that did not con-

sider effects of adaptation at encoding [4]. In contrast, the overaware model is a novel account

that can achieve similar performance without needing an explicit prior based on stimulus his-

tory. While model fit metrics did not readily distinguish one of these 2 models as superior, the

overaware model may prove to be more flexible. For example, one of our fMRI participants

showed significant repulsion from far stimuli, an observation also reported by others [35,42].

While the overaware model can fit this repulsive regime, the Bayes-aware model is incapable

of generating repulsive patterns (compare models fits for participant #3; S8 Fig). This limita-

tion of a purely Bayesian account of serial dependence is also observable in prior work (Fig 6B

in [4]).

The overaware model proposed in our study may instead be a special condition of a decoder

with “fixed awareness” that is based on temporal transition probabilities in natural scenes that

are steeply peaked around 0 (no change) over short timescales [1,2,4]. Such a readout would

correct for the most encountered levels of adaptation by accounting for the transition proba-

bilities of stimuli while being “fixed,” or inflexible, when stimuli violate these expectations.

This decoder could account for additional phenomena not directly assessed in the present

study such as the tilt aftereffect (TAE). The TAE and other forms of (repulsive) behavioral

adaptation are often ascribed to an unaware decoder [7,51] but might instead reflect levels of

adaptation that exceed the fixed level of adaptation expected by a “fixed-aware” decoder due to

long presentations or high-contrast stimuli. This is supported by an apparent disconnect in the

magnitude of repulsive biases between behavior and neural representations [5,19]. In contrast,

the fixed awareness decoder would lead to attractive biases (serial dependence) when stimuli

create less bottom-up drive than expected (e.g., through brief presentations or low contrast

items). This “fixed-aware” decoder is consistent with previous findings of attractive biases dis-

appearing or switching to repulsion when stimulus contrast or duration is increased [25,28].

This scheme could extend to spatial adaptation such as the tilt illusion where the joint proba-

bility of center and surround orientations being perfectly distinct would be vanishingly rare in

natural scenes [68–70].

In this study, we extended previous descriptions of serial dependence by quantifying how

both bias and variance are shaped by stimulus history. We report a robust pattern of percep-

tion being most precise following small changes in successive stimulus features (Figs 1F, 1G,

2A and 2B). This relationship violates a proposed perceptual “law” that bias is inversely pro-

portional to the derivative of discrimination thresholds [71]. This account would assert that
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our attractive bias should come with a less precise representation following small changes (or a

repulsive bias to account for our enhanced precision). We argue that serial dependence is not

violating this law, but rather believe this is further evidence for delay dependent serial depen-

dence being a postsensory phenomenon. Neural representations exhibit repulsive biases,

expanding the perceptual space and allowing greater discriminability (S5 Fig). When these

representations are read out by an aware decoder, the bias is undone but the enhanced

discriminability remains (Fig 5D and 5G).

Methods

Participants

Behavioral study: A total of 56 participants (male and female) were drawn from a participant

pool of primarily undergraduate students at UC San Diego. All participants gave written con-

sent to participate in the study in accordance with the UC San Diego IRB (approval number

180067) and were compensated either monetarily or with class credit. Of these 56 participants,

9 were removed from further analysis for completing less than 200 trials (2) or getting less

than 60% of trials correct (7). We included the remaining 47 participants who completed on

average 421 trials, range: [204, 988], in our lab over the course of 1 to 3 sessions.

fMRI study: A total of 6 participants (3 female, mean age 24.6 ± 0.92) participated in four

2-hour scanning sessions. Each participant completed between 748 and 884 trials (mean

838.7). For 2 participants, 1 session had to be repeated due to technical difficulties that arose

during scanning.

Behavioral discrimination task

Participants in the behavior-only study completed the task on a desktop computer in a sound

attenuated room. Participants were seated with a chin rest to stabilize viewing 50 cm from a 39

by 29 cm CRT monitor (1600 × 1200 px) with a visual angle of 42.6˚ (screen width). Each trial

consisted of a full-field oriented grating (1,000 ms), which had to be remembered across a

delay period (3,500 ms) before a test. At test, the participant judged whether a line was slightly

CW or CCW relative to the remembered orientation (max response time window: 3,000 ms,

Fig 1A). The oriented grating consisted of a sine wave grating (spatial frequency 1.73 cycles/˚,

0.8 Michelson contrast) multiplied by a “donut” mask (outer diameter Ø = 24.3˚, inner Ø =

1.73˚). The stimulus was then convolved with a 2D Gaussian filter (1.16˚ kernel, SD = 0.58˚) to

minimize edge artifacts [72]. Phase and orientation were randomized across trials, and the

stimulus was phase-reversed every 250 ms. After the offset of the oriented grating, a mask of

filtered noise was presented for 500 ms. The mask was generated by band passing white noise

[low 0.22, high 0.87 cycles/˚], multiplying by the same donut mask, and convolving with a 2D

Gaussian filter (0.27˚ kernel, SD = 0.11˚). The mask was phase reversed once after 250 ms. A

black fixation point (diameter 0.578˚) was displayed throughout the extent of the block and

turned white for 500 ms prior to stimulus onset on each trial. The probe was a white line

(width 0.03˚, length 24.3˚) masked by the same donut. Participants indicated whether the

probe line was CW or CCW from the remembered orientation by pressing 1 of 2 buttons (“Q,”

“P”) with their left and right pointer fingers. The next trial started after a 1,000 ms intertrial

interval (ITI). For some behavioral participants (n = 9), delay and ITI were varied between 0.5

and 7.5 seconds without notable effects on performance.

First, participants completed a training block to ensure that they understood the task. Next,

they completed a block of trials where difficulty was adjusted by changing the probe offset (δθ)

between the stimulus and probe to achieve 70% accuracy. This δθ was used in subsequent

blocks and was adjusted on a per-block basis to keep performance at approximately 70%.
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Participants completed an average of 5.76 ± 0.24 blocks [min = 3, max = 9]. Some participants

completed the task with slight variations in the distribution and sequence of orientations pre-

sented. For completeness, we include those details here. Note, however, we additionally report

a set of control analyses in which we repeat all of our main analyses excluding blocks with

binned stimuli and find no relevant difference in behavior. For most participants, stimuli were

pseudo-randomly distributed across the entire 180˚ space such that they were uniformly dis-

tributed across blocks of 64 trials (n = 25). However, some participants saw stimuli that were

binned (with some jitter) every 22.5˚ to purposefully avoid cardinal and oblique orientations

(11.25˚, 33.75˚, 56.25˚, etc.), and the trial sequence was ordered so that a near oblique orienta-

tion was always followed by a near cardinal orientation (n = 7). This was implemented to max-

imize our ability to observe serial dependencies in our binary response data as it is typically

strongest around orientation changes of 20˚ and is more pronounced around oblique orienta-

tions [43]. The remaining participants completed both blocks with uniform and blocks with

binned stimuli (n = 14). All participants were interviewed after the study and reported that sti-

muli were nonpredictable and that all orientations felt equally likely. For our main analysis, we

include all trials from all participants, irrespective of whether they participated in uniform

blocks, binned blocks, or both.

fMRI discrimination task

In the scanner, participants completed the behavioral task outlined above with slight modifica-

tions. fMRI participants completed the task using a fiber-optic button box while viewing sti-

muli through a mirror projected onto a screen mounted inside of the bore. The screen was 24

by 18 cm and was viewed at a distance of 47 cm (width: 28.6˚ visual angle; 1024 × 768 px native

resolution). The stimulus timing was the same except that the sample-to-probe delay period

was either 5, 7, or 9 seconds, and the ITIs were uniformly spaced between 5 seconds and 9 sec-

onds and shuffled pseudo-randomly on each run of 17 trials. The oriented gratings had a spa-

tial frequency of 1.27 cycles/˚, outer Ø = 21.2˚, inner Ø = 2.37˚ and were smoothed by a

Gaussian filter (0.79˚ kernel, sd = 0.79˚). The noise patch (SF low 0.16, high 0.63 cycles/˚) was

also smoothed by a Gaussian filter (0.29˚ kernel, sd = 0.11˚). The probe stimulus was a white

line (width = 0.03˚).

fMRI participants completed 44 to 52 blocks of 17 trials spread across four 2-hour scanning

sessions for a total of 748 to 884 trials. As in the behavior-only task described above, 4 out of 6

fMRI participants had some blocks of trials where the stimuli were binned in 22.5˚ increments

and ordered in a nonindependent manner (21 to 24 blocks/participant). However, all of the

fMRI participants also participated in blocks with a uniform distribution of orientations across

the entire 180˚ space (24 to 52 blocks/participant). For our main analysis, we include all trials

from all participants. However, as with the behavioral analyses, we also report control analyses

in which we repeat all of our main analyses excluding blocks with nonrandom stimuli.

fMRI localizer task

Interleaved between the main task blocks, participants completed an independent localizer

task used for voxel selection where they were presented with a sequence of grating stimuli at

different orientations. Stimuli had a pseudo-randomly determined orientation that either

matched the spatial location occupied by the donut stimuli used in our main task (outer diam-

eter Ø = 21.2˚, inner diameter Ø = 2.37˚) or were a smaller foveal oriented Gabor correspond-

ing to the “hole” in the donut stimuli (diameter Ø = 2.37˚). Participants were instructed to

attend to 1 of 3 features orthogonal to orientation depending on the block: detect a contrast

change across the entire stimulus, detect a small gray blob appearing over part of the stimulus,
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or detect a small change in contrast at the fixation point. Each stimulus was presented for

6,000 ms and was separated by an ITI ranging from 3 to 8 seconds.

Response bias

Each trial consisted of a stimulus and a probe separated by a probe offset (δθ) that was either

positive (probe is CW of stimulus) or negative. We report degrees in a compass-based coordi-

nate system such that 0˚ is vertical and orientation values increase moving CW (e.g., 30˚

would point toward 1 o-clock). Participants judged whether the probe was CW or CCW rela-

tive to the remembered orientation by making a binary response. To quantify the precision

and the response bias, we fit participant responses with a Gaussian cumulative density function

with parameters μ and σ corresponding to the bias (mean) and standard deviation of the distri-

bution. The likelihood of a given distribution was determined by the area under the curve

(AUC) of the distribution of CW (CCW) offsets between the stimulus and the probe (δθ) on

trials where the participant responded CW (CCW). In extreme cases, a very low standard devi-

ation (σ) value with no bias would mean that all δθ would lie outside the distribution and the

participant would get every trial correct. A high negative bias (μ) value would mean that δθ
would always lie CW relative to the distribution and the participant would respond CW on

every trial. The best fitting parameters were found using a bounded minimization algorithm

(limited memory BFGS) on the negative log likelihood of the resulting responses (excluded the

small number of trials without a response) given the generated distribution [73]. We included

a constant 25% guess rate in all model fits to ensure the likelihood of any response could never

be 0 (critical for later modeling). While this was critical to fitting our model to raw data, the

specific choice had no qualitative effect on our behavioral findings besides making the σ values

smaller compared to having a 0% guess rate. By having a constant guess rate rather than vary-

ing it as a free parameter, we were able to directly compare σ values across participants as a

measure of performance.

Serial dependence

To quantify the dependence of responses on previous stimuli, we analyzed response bias and

variance as a function of the difference in orientation between the previous and current orien-

tation (Δθ = θn−1−θn). We performed this analysis using a sliding window of 32˚, such that a

bias centered on 16˚ would include all trials with a Δθ in the range [0˚, 32˚].

We additionally fit a Derivative of Gaussian (DoG) function to parameterize the bias of par-

ticipant responses. The DoG function is parameterized with an amplitude A and width w

y ¼ xAwce� ðwxÞ
2

; ½1�

where c ¼
ffiffiffiffiffi
2e
p

is a normalization constant. For the purpose of fitting to our participant

responses, x is Δθ and y corresponds to μ in our response model. For each participant, we

adjusted 3 parameters: A, w, and σ to maximize the likelihood of participant responses. We

report the magnitude of our fits as well as the resulting FWHM estimated numerically.

Response precision

In addition to quantifying how responses were biased as a function of stimulus history, we also

estimated how precise responses were depending on their unsigned distance from the previous

stimulus (|Δθ|). When quantifying variance difference between close and far trials, we “folded”

trials with Δθ<0 so that the bias would generally point in the same direction and not artificially

inflate our variance measure. Values from the bin with more samples (typically “far”) were
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resampled (31 repetitions) without replacement with the number of samples in the smaller bin

and the median chosen to control for sample number differences.

Scanning

fMRI task images were acquired over the course of four 2-hour sessions for each participant in

a General Electric Discovery MR750 3.0T scanner at the UC San Diego Keck Center for Func-

tional Magnetic Resonance Imaging. Functional echo-planar imaging (EPI) data were

acquired using a Nova Medical 32-channel head coil (NMSC075-32- 3GE-MR750) and the

Stanford Simultaneous Multi-Slice (SMS) EPI sequence (MUX EPI), with a multiband factor

of 8 and 9 axial slices per band (total slices 72; 2-mm3 isotropic; 0-mm gap; matrix 104 x 104;

field of view 20.8 cm; TR/TE 800/35 ms; flip angle 52˚; in-plane acceleration 1). Image recon-

struction and un-aliasing was performed on cloud-based servers using reconstruction code

from the Center for Neural Imaging at Stanford. The initial 16 repetition times (TRs) collected

at sequence onset served as reference images required for the transformation from k-space to

the image space. Two 17-second runs traversing k-space using forward and reverse phase-

encoding directions were collected in the middle of each scanning session and were used to

correct for distortions in EPI sequences using FSL top-up (FMRIB Software Library) for all

runs in that session [74,75]. Reconstructed data were motion corrected and aligned to a com-

mon image. Voxel data from each run was de-trended (8TR filter) and z-scored.

We also acquired one additional high-resolution anatomical scan for each participant

(1 × 1 × 1-mm3 voxel size; TR 8,136 ms; TE 3,172 ms; flip angle 8˚; 172 slices; 1-mm slice gap;

256 × 192-cm matrix size) during a separate retinotopic mapping session using an in vivo

8-channel head coil. This scan produced higher-quality contrast between gray and white mat-

ter and was used for segmentation, flattening, and visualizing retinotopic mapping data. The

functional retinotopic mapping scanning was collected using the 32-channel coil described

above and featured runs where participants viewed checkerboard gratings while responding to

an orthogonal feature (transient contrast changes). Separate runs featured alternating vertical

and horizontal bowtie stimuli; rotating wedges; and an expanding donut to generate retinoto-

pic maps of the visual meridian, polar angle, and eccentricity, respectively [76]. These images

were processed using FreeSurfer and FSL functions and visual ROI were manually drawn on

surface reconstructions (for areas: V1-V3, V3AB, hV4, and IPS0).

Voxel selection

To include only voxels that showed selectivity for the location of the oriented grating stimulus

used in our main experimental task, we used responses evoked during the independent locali-

zer task (see fMRI localizer task). For all analyses, we used TRs 5–11 (4 to 8.8 seconds) follow-

ing stimulus onset. First, voxels were selected based on their response to the spatial location of

the grating stimulus by performing a t test on the responses of each voxel evoked by the donut

and the donut-hole stimuli, selecting the 50% of the voxels most selective to the donut for a

given ROI. Of the voxels that passed this cutoff, we then performed an ANOVA across 10˚ ori-

entation bins and selected the 50% of voxels with the largest F-score, thus retaining approxi-

mately 25% of the initial voxel pool. These selected voxels were used in all main analyses.

Orientation decoding

We performed orientation decoding by training an IEM [77] on BOLD activation patterns

using a sliding temporal window of 4 TRs. For most analyses, we focused on a 3.2 seconds (4

TR) window centered 6.4 seconds after stimulus presentation. We first designed an encoding

model that assumes voxels are composed of populations of neurons with tuning functions
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centered on 1 of 8 orientations evenly tiling the 180˚ space. The response of population i to

stimulus θ is given by

ciðyÞ ¼ maxð0; cos5ðy � oiÞÞ; ½2�

where ωi is the center of the tuning function. The response of voxel j is defined as a weighted

sum of these hypothetical populations:

Bj ¼
P8

i ciwi ½3�

or in matrix notation,

B ¼ CW ½4�

where B (trial × voxel) is the resulting BOLD activity, C (trial × channel) is the hypothetical

population response, and W (channel × voxel) is the weight matrix. The weight matrix W is

estimated as

cW ¼ C� 1B ½5�

where C−1 (channel × trial) is the pseudo-inverse of C (implemented using the NumPy pinv

function). We then estimated channel responses using the inverse of our estimated weight

matrix:

bC ¼ BcW � 1 ½6�

This channel response corresponds to a representation of orientation activity. To decode

orientation, we took the inner product with a vector of the tuning curve centers in polar coor-

dinates. The angle of the resulting vector was taken as the estimated orientation (by) while the

vector length was taken as a proxy for model certainty (bR).

by ¼ angleðbCeioÞ ½7�

bR ¼ kbCeiok ½8�

The weight matrix of our model was estimated from a subset of our data and used to esti-

mate orientation representations on a held-out portion of the task data. We used leave-one-

block-out cross-validation where each block was a set of 4 consecutive runs (64 trials). These

blocks had orientations that were linearly spaced across the entire 180˚, with a random phase

offset for each block, to ensure a balanced training set. We performed an additional analysis

training a model on all data from the localizer task and testing on the memory task. This

model had lower SNR than models trained on the task but showed qualitatively similar results

as our task trained neural decoder.

Kernel-based decoding

Estimating average voxel HRFs through deconvolution. Because we are measuring the

effects of previous stimuli on responses to the current stimulus, we did an additional analysis

to quantify any influence of overlapping HRFs that last for 20 to 30 seconds (e.g., the “under-

shoot” that happens approximately 8 to 18 seconds poststimulus; see Fig 3A). To account for

overlapping HRFs, we used deconvolution to estimate the average univariate response sepa-

rately in each voxel in each ROI by modeling the responses to both the stimulus and probe for

30 TRs (24 seconds) poststimulus [44, 45]. We created a design matrix (rows × columns = total
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number of TRs × 30) with the first column containing ones corresponding to the onset TR of

each stimulus (and zeros elsewhere). Subsequent columns were the same vector shifted for-

ward in time by one TR. Following the same procedure, another design matrix was defined for

the probe onset times. These matrices were stacked with a column of ones added for each run

as a constant term, yielding a final design matrix X of dimensions (total number of TRs × (60

+number of blocks)). We created a related matrix of voxel activity Y (total number of

TRs × number of voxels) by concatenating responses in each voxel across blocks. We then esti-

mated the HRF by performing least squares regression using the normal equation:

h ¼ ðXTXÞ� 1
ðXTYÞ ½9�

The resulting weights corresponded to the average time course of the HRF evoked sepa-

rately by the stimulus and the probe across all trials. We note that this HRF is estimated inde-

pendent of the orientation of the presented stimuli as we wanted to use these estimates to then

decode orientation dependent changes in activation patterns. For each voxel, we then parame-

terized the HRF using a 6-parameter double gamma function using scipy.optimize.minimize

so that we could use the voxel-specific HRF model in a generalized linear model (GLM) to esti-

mate the response magnitude in each voxel on each trial. We excluded the 11% of voxels which

failed to converge on a solution.

Estimating trial-by-trial responses using parameterized voxel HRFs. For each voxel, we then

created a design matrix Xv (rows × columns = total number of TRs × (number of trials � 2 +number

of blocks)) with each column a delta function centered at the onset of the stimulus (or probe). We

then regressed this matrix onto the (total # of TRs) vector Yv of voxel activity using Eq 9. This

resulted in a simultaneous estimation of the trial-by-trial magnitude of responses to each stimulus

grating and each probe which was repeated for each voxel to allow voxel specific HRFs to be utilized

in the creation of Xv. The resulting activity pattern associated with each stimulus was used in the

same manner as the raw time course of the BOLD response to train and test an IEM, and the result-

ing estimates should be largely independent of linear contributions of previous stimuli [44].

Neural bias

To quantify how BOLD representations were biased by sensory history, we computed the cir-

cular mean of decoding errors (θerror = wrap(θdecode−θstim)):

mcirc ¼ angleðR!Þ; ½10�

R!¼
1

nTrials

XnTrials

k¼0
eiy

k
error : ½11�

We estimated this bias using the same 32˚ sliding window as a function of Δθ used for visu-

alizing response bias from participant responses. We additionally quantified the magnitude of

the bias in decoding errors by fitting a DoG function to the raw decoding errors by minimizing

the RSS and reporting the amplitude term.

Neural variance

To quantify the variance of decoded orientations from visual areas, we computed the circular

standard deviation on binned decoding errors:

scirc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 2 lnjR!j
q

½12�
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This was visualized using the same sliding window analysis as well as in reference to

whether it was close or far from the previous stimulus.

Dimensionality analysis

To quantify how stimulus history shaped the structure of neural responses independent of

neural tuning we utilized principal component analysis (PCA). For a given set of neural

responses R (number of trials × number of voxels) we mean centered and performed eigen-

value decomposition on the (number of voxels × number of voxels) covariance matrix. Eigen-

values were sorted in descending order and our response matrix was projected into PCA space

(for visualization purposes) by multiplying by the sorted eigenvectors.

To compare dimensionality across conditions, we subset our data into trials following close

(<30˚) or far (>60˚) trials and randomly sub selected trials from the larger group (without

replacement) to equate trial numbers. We then performed PCA separately for each group and

compared the relative proportion of total variance explained as the magnitude of the sorted

eigenvalues. We quantified both the minimum number of components to reach at least 90% of

the variance explained and also recorded the mean (AUC) of the variance curve.

Modeling

We sought to develop a model that could explain both neural and behavioral biases as a function

of stimulus history. For the fMRI data, we focused on explaining changes in encoding that could

lead to the observed biases in the output of the BOLD decoder that was specifically designed to be

“unaware” of stimulus history. To explain the behavioral data, we assumed that a decoder would

receive inputs from the same population of sensory neurons that we measured with fMRI and

that the decoder would read out this information in a manner that gives rise to attractive serial

dependence. We considered readout models that were either unaware, aware, or overaware of

adaptation and additionally applied a Bayesian inference stage, which integrates prior expectations

of temporal stability, to the unaware and aware decoders [4]. We then compared performance

between these competing models to see which could best explain our behavioral data.

Our full models consisted of 2 stages: an encoding stage where the gain of artificial neurons

was changed as a function of the previous stimulus (adaptation) and a decoding stage where

the readout from this adapted population was modified. The encoding population consisted of

100 neurons with von Mises tuning curves evenly tiling the 180˚ space. The expected

unadapted population response is

RespNðynÞ ¼ R gNe
k cosðF� ynÞ� 1; ½13�

where γN is the scalar 1 for constant gain without adaptation, F is the vector of tuning curve

centers, θn is the orientation of the current stimulus, κ = 1.0 is a constant controlling tuning

width, and R is a general gain factor driving the average firing rate. We implemented sensory

adaptation by adjusting the gain of tuning curves relative to the identity of the previous stimu-

lus, θn−1 (Fig 4A, Gain adaptation):

gAðyn� 1Þ ¼ gN � rect
�
gmcos

3ðgsðF � yn� 1ÞÞ
�
; ½14�

where γm is the magnitude of adaptation, γs scales the width of adaptation, and rect is the half-

wave rectifying function. The responses of the adapted population thus depend on both the

current and previous stimulus (Fig 4A, Efficient encoding):

RespAðyn; yn� 1Þ ¼ R gAe
k cosðF� ynÞ� 1: ½15�
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Unaware decoder. We first considered a model in which an adapted orientation-encod-

ing representation is being decoded by an unaware readout mechanism (Fig 4B). The likeli-

hood of each orientation giving rise to the observed response profile across N neurons was

estimated assuming activity was governed by a Poisson process:

PunawareðRespAjyÞ ¼ expð
PN

i¼1
log PPoissonðResp

i
AðyÞ;Resp

i
NðyÞÞÞ ½16�

PPoisson k; lð Þ ¼
l
ke� l

k!
; ½17�

where RespiNðyÞ is the expected response of the unadapted neuron i to stimulus θ and PPoisson(k;

λ) is the probability of observing k spikes given an expected firing rate of λ. The decoded orien-

tation is then the θ giving rise to the maximum likelihood estimation (MLE).

Aware decoder. In addition to the unaware decoder, we also evaluated the ability of a

decoder that was aware of the current state of adaptation to explain behavior. The aware

decoder differs from the unaware decoder in that its assumed activity level for each unit is

modulated as a function of stimulus history:

PawareðRespAjyn; yn� 1Þ ¼ expð
PN

i¼1
log PPoissonðResp

i
Aðyn; yn� 1Þ;Resp

i
Aðyn; yn� 1ÞÞÞ: ½18�

Note that here the rate parameter k�λ�RespA such that the observed and expected values

perfectly align with the presented orientation. Paware(RespA|θn; θn−1) is dependent on sensory

history and is nonbiased.

Overaware decoder. Our final decoding scheme we call the overaware decoder. This

model can test whether serial dependence can be achieved without an explicit stage of Bayesian

inference introduced in the next section. The decoder has an assumed adaptation defined by a

unique set of free parameters, γm2 and γs2, which shapes a separate gain adaptation:

gOAðyn� 1Þ ¼ gN � rectðgm2 cos
3ðgs2ðF � yn� 1ÞÞÞ; ½19�

which, in turn, shapes the response profile of RespOA in the same manner as RespA. The likeli-

hood profile is then defined as

Pover� awareðRespAjyÞ ¼ expð
PN

i¼1
log PPoissonðResp

i
AðyÞ;Resp

i
OAðy; yn� 1ÞÞÞ; ½20�

where our expected (assumed) rate λ is designated by RespOA. By having a larger assumed

adaptation than implemented at encoding (through either γm2>γm or γs2>γs) the net effect of

the overaware decoder should be behavioral attraction.

Bayesian inference. In addition, we explored the effect of applying an explicit Bayesian

prior based on temporal contiguity to the likelihood functions derived from these different

readout schemes. This type of prior has been previously used to explain behavioral biases with-

out considering how encoding might also be affected by stimulus history [4]. Specifically, the

prior is defined by the transition probability between consecutive stimuli and is defined as a

mixture model of a circular Gaussian and a uniform distribution:

PT ynjyn� 1ð Þ ¼
1

Z
e�

angleðy;yn� 1Þ
2

2c2 ½21�

PBayesian ynjyn� 1ð Þ ¼ PSAMEPT yjyn� 1ð Þ þ
1

2p
1 � PSAMEð Þ; ½22�

with PSAME set to 0.64 (as found empirically in [4]), Z as a normalization constant so PT inte-

grates to 1, and ψ is a free parameter describing the variance of the transition distribution.
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This prior (Fig 4C, black line) is multiplied by the unaware likelihood (Fig 4C, yellow dashed

line): to get the posterior estimate of our Bayesian-unaware decoder (Fig 4C, yellow solid line):

PBayesian� unawareðynjRespA; yn� 1Þ ¼ PBayesianðyjyn� 1ÞPunawareðRespAjynÞ: ½23�

We can additionally examine a Bayesian-aware decoder by substituting its respective likeli-

hood function. We did not examine a Bayesian-overaware model so that all decoding models

would have the same number of free parameters and so that we could directly evaluate the

need for an explicit prior.

Model fitting. The encoding stage of the model has 2 free parameters and for each partici-

pant these parameters were optimized to minimize the RSS between our measured fMRI

decoding errors and the decoding errors of our unaware decoder. For simplicity, we only fit

our model to decoding errors from V3 as it had the highest SNR, but other early visual ROIs

showed similar results. After fitting the encoding stage of the model, we then separately fit the

3 competing decoding models to best account for the behavioral data: Bayes-unaware, Bayes-

aware, and overaware (2 free parameters each). The output of this readout stage was treated as

the behavioral bias (μ), and the free parameters were optimized to maximize the likelihood of

the observed responses (assuming constant standard deviation σ estimated empirically for

each participant). For the purposes of fitting the model, the firing rates of the modeled neurons

were deterministic (no noise process). Having noiseless activity had no effect on the expected

bias (verified with additional simulations) and served to make model fitting more reliable and

less computationally intensive. Both stages of the model were fit using the same cross-valida-

tion groups as our neural decoder. To ensure all models had a sufficient chance of achieving a

good fit to behavioral data, we implemented a grid search sampling 30 values along the range

of each variable explored (900 locations total) followed by a local search algorithm (Nelder–

Mead) around the most successful grid point. We found dense sampling of the initial parame-

ter space was especially important for our Bayes-unaware model.

Model evaluation. For bias of neural and behavioral responses, we evaluated the perfor-

mance of the 2 stages of our model separately. These stages must be evaluated in a qualitatively

different manner as the neural data give us an orientation estimate for each trial while the

behavioral data consists of binary responses. For the encoding stage, we quantified how well

the output of our unaware decoder predicted the raw errors of our BOLD decoder using circu-

lar correlation. The performance of this model was contrasted with the true presented orienta-

tion, which is analogous to the representation of an unadapted population. We additionally

computed the variance of the neural decoding errors explained by the model bias (R2). For the

decoding stage of our model, we compared the log-likelihood of observed responses for each

model.

We additionally estimated the variance of our models using neurons with rates generated

by a Poisson process. The average bias was unaffected by allowing random fluctuations in

activity, but the trial-to-trial variance increased. To get a stable estimate, we simulated 1,000

trials for each set of parameters estimated for a cross-validation loop for each participant and

pooled these outputs. We compared the overall variance of our models to our single parameter

estimate of participant precision using Jensen–Shannon divergence. We additionally examined

relative precision of our model for close and far trials in the same manner as participant

responses and decoding errors (Response precision).

Supporting information

S1 Fig. Response model. Encoding of stimulus is assumed to be a noisy process whereby the

distribution of encoded orientations is described by a Gaussian pdf with mean μ and standard
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deviation σ. Dashed line is pdf, and solid line is the cdf of encoding distribution. Note that par-

ticipants are reporting the probes orientation relative to the stimulus so more frequent CCW

responses would correspond to a CW perceptual bias. (A) Example estimation curve with no

bias and a very small σ. If the difficulty was set to δθ = 6˚ (3 sd) than this participant would get

essentially all (99.7%) trials correct. (B) Estimation curve with a μ = −10, this participant

would respond CW on almost every trial. (C, D) Realistic encoding curves. To aid with fitting

and to best describe responses, a constant guess rate of 25% was included in the response

model fit to participant responses. (C) An unbiased distribution with 2 theoretical stimuli on

which the participant responded CW. The left response δθ = −6˚ is incorrect. (D) A CCW

biased distribution results in a higher likelihood for all CW responses. Data and code support-

ing this figure found here: https://osf.io/e5xw8/?view_only=

e7c1da85aa684cc8830aec8d74afdcb4. CCW, counterclockwise; CW, clockwise.

(TIF)

S2 Fig. A subset of behavior only participants completed a version of the experiment with

inhomogeneities in their stimulus sequences (such that consecutive orientations were not

independent). To confirm this manipulation did not drive any of our results, we repeated our

behavioral analyses excluding participants with nonindependent sequences leaving a cohort of

n = 25 with an average accuracy of 70.46 ± 1.14˚ at an average δθ of 4.97 ± 0.35˚. (A, D) This

cohort still showed significant serial dependence (DoG amp = 4.71 ± 0.49, t(23) = 9.4,

p = 2.4�10−9; width 0.027 ± 0.0019, FWHM 43.68 ± 1.86˚, (B, C) and had responses that were

more accurate (t(24) = 3.14, p = 0.0023, (E, F) and precise following “close” stimuli (t(24) =

−3.54, p = 0.0009, (G) Last, bias and variance were still positively correlated across this cohort

(r(22) = 0.72, p = 0.00003, (H–J) Stimulus history effects are larger for worse performing par-

ticipants. H: Serial dependence was significantly greater for less precise participants (t(45) =

−2.5, p = 0.012, unpaired t test comparing DoG Amplitude). (I–J) Variance was modulated sig-

nificantly by stimulus history (low-performing: t(23) = 3.9 p = 0.0007; high-performing t(22) =

2.4, p = 0.02, 1-sample t tests), with a significant interaction between overall performance and

the effect size (p = 0.017, mixed effects linear model). Data and code supporting this figure

found here: https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4. DoG,

Derivative of Gaussian; FWHM, full width at half maximum.

(TIF)

S3 Fig. A subset of fMRI participants completed some sessions where consecutive stimuli

were not strictly independent. (A) To confirm this structure was not driving our results, we

repeated our main analyses excluding these sessions and found that responses were still

strongly attracted to the previous stimulus (DoG Amp: 3.25 ± 0.34, t(5) = 8.85, p = 1.53e-04;

DoG FWHM: 36.1 ± 2.9). (B) We found that responses were no longer significantly more pre-

cise following small changes in orientation but were trending in the same direction as when

including all sessions (t(5) = −1.55, p = 0.09). We additionally confirmed that our finding of

reduced bias around small changes in orientation was not driven by the oblique effect in the

same manner as the behavioral cohort (mean % cardinal close: 48.6 ± 0.9%, far: 49.8 ± 0.2%,

t(5) = −1.0, p = 0.36, paired t test). (C–E) We further replicate our finding of neural repulsion

and increased uncertainty following “close” stimuli across all ROIs except IPS0. (F) As a con-

trol analysis, we attempted but were unable to decode the identity of the next trial in any ROI

when including all sequences. ns, not significant; �, p< 0.05; ��, p< 0.01; ���, p< 0.001. Data

and code supporting this figure found here: https://osf.io/e5xw8/?view_only=

e7c1da85aa684cc8830aec8d74afdcb4. DoG, Derivative of Gaussian; fMRI, functional magnetic

resonance imaging; FWHM, full width at half maximum; ROI, region of interest.

(TIF)
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S4 Fig. Impact of previous trial across time and individuals. (A) Decoding of the previous

stimulus dropped to chance around stimulus presentation before rebounding. (B) Decoding

using sensory localizer data was consistently at chance during N+1 trial suggesting informa-

tion relating to past stimulus is not stored in a sensory code. (C, D) Decoded biases across

time for both decoders are consistently repulsive. (E) Bias curves for individual participants

using the memory decoder across ROIs (see legend) overlayed with behavioral biases (black).

Neural and behavioral biases are consistently in opposite directions. Note that id#3 exhibits

peripheral repulsion. Data and code supporting this figure found here: https://osf.io/e5xw8/?

view_only=e7c1da85aa684cc8830aec8d74afdcb4. ROI, region of interest.

(TIF)

S5 Fig. To quantify the intrinsic dimensionality of neural representations and whether it

changes following a “close” stimulus, we performed PCAs on the activity matrix (number

of trials × number of voxels) of responses across different ROIs. (A) We found that early

principal components were correlated with the presented orientation, here presenting both

individual trials as well as the average location for different orientation bins (large solid circles)

for an example participant and ROI. (B) We performed PCA separately for trials following

“close” and “far” trials, being careful to subsample the number of trials in the larger group. We

then sorted the eigenvalues and examined the proportion of variance explained as a function

of the number of components included separately for each group. (C) We found that it took

significantly more components to explain 90% of the variance on the population activity fol-

lowing close versus far stimuli. This suggests that the representations in most visual areas

occupy a higher dimensional space following close stimuli, but curiously not V1. Note that the

total number of dimensions is shaped by the number of voxels included, so differences

between participants/ROIs should not be interpreted with how these data were processed. (D)

We additionally looked at the area under the variance curve to avoid any arbitrary effects of

choosing 90% and found a similar effect (higher AUC implies lower dimensionality). Data and

code supporting this figure found here: https://osf.io/e5xw8/?view_only=

e7c1da85aa684cc8830aec8d74afdcb4. AUC, area under the curve; PCA, principal component

analysis; ROI, region of interest.

(TIF)

S6 Fig. Decoded uncertainty as a function of Δθ across ROIs. (A) σcirc of decoding errors is

significantly greater for close (<30˚) versus far (>30˚) stimuli across early visual ROIs (see

Neural variance). Points and error bars are mean ± SEM across participants; gray lines depict

individual participants. Error bars depict SEM across participants. (B) Sliding σcirc for V1-V3

shows a monotonic relationship (± SEM across participants). (C, D) Same as A and B but mea-

suring uncertainty directly measured from the single trial posterior (see Eq 8). Results are qual-

itatively very similar for both techniques. �, p< 0.05, ��, p< 0.01, ���, p< 0.001. Data and

code supporting this figure found here: https://osf.io/e5xw8/?view_only=

e7c1da85aa684cc8830aec8d74afdcb4. ROI, region of interest.

(TIF)

S7 Fig. To better understand how our experiment’s trial sequence could impact results, we

simulated BOLD signals based on our empirically estimated HRFs and our trial sequences

used in the task. We first created a population of 32 voxels with uniformly distributed von

Mises tuning curves. Note that for the purposes of this simulation, we are effectively treating

voxels as neurons instead of a summation of the metabolic demands of many neurons. This

shortcut comes from experience simulating voxel activity and finding decoding results are
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unaffected by such a shortcut while making results a bit simpler to understand (and faster to

generate). The responses of each voxel were estimated by first generating a design vector based

on the stimulus presentation times of both the stimulus and probe for a given participant with

the amplitude of the response based on the defined tuning curves. This vector was then con-

volved with an empirically estimated HRF (both the raw output and when parameterized with

a double gamma function) randomly sampled from voxels of the same participant to get the

estimated evoked response to both the stimulus and the probe. These 2 signals were then com-

bined along with gaussian noise to simulate the voxel response (A). Importantly, the tuning

properties of these simulated voxels were unaffected by past stimuli so any biases found by

applying our decoding techniques could reflect artifacts of our task design or analysis proce-

dure. We additionally simulated BOLD responses with true adaptation in the underlying neu-

ral tuning. For simplicity, we simply attenuated the response to the current trial by 40% of the

response to the previous trial while keeping all other stages of our analysis the same. We first

applied a decoder across time to the epoched data and found a similar pattern to our empirical

data with decoding performance following a parabolic shape before leveling off at some inter-

mediate level, here utilizing HRFs from V3 voxels (B). This was true whether we used parame-

terized or raw HRFs and whether the simulation included adaptation. We next examined

biases in our decoder as a function of stimulus history. With adaptation (red curves), decoded

representation were systematically repelled from previous stimuli matching our empirical

findings (C). Importantly, without adaptation the resulting bias was never repelled from the

previous stimulus (blue curves). This suggests that the timing of our stimuli and the resulting

evoked responses should not bias us toward seeing the repulsive results we report. We finally

implemented the regression-based estimation of BOLD responses as we did with our empirical

data. As stated before, this technique should remove any linear contributions of past evoked

responses to our estimate of the current trial’s response. When analyzing the resulting biases,

we found that while the unadapted data showed no bias from the previous stimulus (as

expected, despite added noise) the adapted response continued to show a repulsive bias (D).

This analysis demonstrates that (1) while our task design could lead to biases in decoded repre-

sentations in the absence of any neural history effects, these effects tend to be in the opposite

direction of our reported effects and (2) our use of HRF kernels to estimate trial responses is

unbiased by across trial contamination and robustly recovers repulsive patterns in the presence

of real neuronal adaptation at noise levels similar to our study. Data and code supporting this

figure found here: https://osf.io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4.

HRF, hemodynamic response function.

(TIF)

S8 Fig. Model fits for individual participants (same order as Fig 3). Solid lines correspond

to empirical neural (yellow) or behavioral (green) bias; dashed lines correspond to model fits

to BOLD decoding bias (Unaware model, A) or behavior (B–D). Model fits plotted are average

of noiseless biases generated by models fit to each CV fold. Note that models are fit to raw

data, not binned data presented here. Pearson correlations are reported above each fit between

binned and model estimated bias. Data and code supporting this figure found here: https://osf.

io/e5xw8/?view_only=e7c1da85aa684cc8830aec8d74afdcb4.

(TIF)

S1 Table. Cells correspond to parameters for proposed decoder. Items with bold values indi-

cate free parameters adjusted to fit empirical data (± SEM across participants). γm controls the

amplitude, and γs controls the width of gain adaptation (Fig 4A). These parameters were fit by

minimizing the RSS between the unaware decoder and the BOLD decoder output. γm2 and γs2
are the assumed adaptation parameters at decoding. These terms were either set to assume no
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adaptation (unaware), match the true amount of adaptation (aware) or are free parameters

adjusted to maximize the likelihood of responses (overaware, Fig 4B). Last, R adjusts the aver-

age Poisson firing rate and ψ controls the variance of the prior distribution (Fig 4C). These

parameters are adjusted for decoders using a Bayesian prior while R is set to the arbitrary value

of 5 for non-Bayesian decoders (it has no effect on bias for non-Bayesian decoders). Increasing

R increases the precision of the likelihood function and reduces the relative influence of the

prior. Increasing ψ increases the range of Δθ over which the prior has an influence. Data and

code supporting this figure found here: https://osf.io/e5xw8/?view_only=

e7c1da85aa684cc8830aec8d74afdcb4. RSS, residual sum of squared errors.
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