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Abstract

Protein-protein interactions play an essential role in cellular processes. Certain proteins form stable complexes with their
partner proteins, whereas others function by forming transient complexes. The conventional protein-protein interaction
model describes an interaction between two proteins under the assumption that a protein binds to its partner protein
through a single binding site. In this study, we improved the conventional interaction model by developing a Multiple-Site
(MS) model in which a protein binds to its partner protein through closely located multiple binding sites on a surface of the
partner protein by transiently docking at each binding site with individual binding free energies. To test this model, we used
the protein-protein interaction mediated by Src homology 3 (SH3) domains. SH3 domains recognize their partners via a
weak, transient interaction and are therefore promiscuous in nature. Because the MS model requires large amounts of data
compared with the conventional interaction model, we used experimental data from the positionally addressable syntheses
of peptides on cellulose membranes (SPOT-synthesis) technique. From the analysis of the experimental data, individual
binding free energies for each binding site of peptides were extracted. A comparison of the individual binding free energies
from the analysis with those from atomistic force fields gave a correlation coefficient of 0.66. Furthermore, application of the
MS model to 10 SH3 domains lowers the prediction error by up to 9% compared with the conventional interaction model.
This improvement in prediction originates from a more realistic description of complex formation than the conventional
interaction model. The results suggested that, in many cases, SH3 domains increased the protein complex population
through multiple binding sites of their partner proteins. Our study indicates that the consideration of general complex
formation is important for the accurate description of protein complex formation, and especially for those of weak or
transient protein complexes.
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Introduction

Protein-protein interactions are essential in virtually every

process within cells. The rate of protein complex formation is

governed by diffusion and geometric constraints, followed by a

structural reorganization to form a stable complex [1,2]. For

certain proteins, a transient complex, the ‘‘encounter complex’’,

accelerates the formation of the protein complex [3]. The

encounter complex is primarily formed from charge-charge

interactions between proteins and operates by reducing the

conformational search space [4]. The existence of the encounter

complex has been verified by several kinetic experiments [5] and

visualized using NMR paramagnetic relaxation enhancement,

which is used for relatively weak and fast-exchanging protein-

protein complexes [6]. Protein complexes that are bound by non-

covalent interactions are in dynamic equilibrium (i.e., they

continuously switch between free and bound states) [5,7]. If a

peptide ligand has multiple binding sites that are located close to

one another, an encounter complex would increase the speed in

such a way that a protein shuttles between each binding site in the

peptide ligand [7].

Protein-binding modules mediate protein interactions [8]. The

Src homology 3 (SH3) domain is one of the most abundant

protein-binding modules and is shown in Figure 1a. More than

11,000 different SH3 domains can be retrieved from SMART’s

non-redundant database [9]. There are various consensus

sequences for SH3-binding ligands, which are usually composed

of fewer than 10 residues [10,11,12]. SH3 domains recognize

proline-rich regions that are typically composed of a ‘‘PxxP’’

binding motif, and residues at the flanking sides of the motif

determine the orientation and specificity of the binding interaction

[13]. However, it has also been reported that SH3 domains bind

peptide ligands that lack the PxxP motif [13,14,15].

SH3-mediated interaction is weak and transient. Many SH3

domains have micromolar affinity to their putative ligands [16].

Nck adaptor protein increases the binding affinity via cooperation

with multiple SH3 domains [17]. Mutation studies have shown

that the surface of the SH3 domain binding to a peptide ligand

was not fully optimized by evolution to form a stable complex [18].

Using a fluorine-based NMR study, Evanics et al. reported that

the Fyn SH3 domain, while 96% of them being in a bound state,

had an average exchange rate of 5200 s21 between the free and
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bound states [19]. Using a computer simulation of SH3 docking,

Ahmad et al. reported that electrostatic effects enhanced

encounter complex formation and stabilized the transient complex

[4]. Moreover, certain SH3-binding proteins may have multiple

binding sites as shown in Figure 1b. For example, the SH3 domain

in amphiphysin (P49418) recognizes the ‘‘PxRPxR’’ binding motif;

the Arg/Pro-rich region of the Itch protein (containing the

‘‘PSRPPRPSR’’ sequence) has two binding sites for the amphi-

physin SH3 domain [20]. Thus, to describe SH3-mediated

interaction, the properties of the encounter complex and its

dynamic equilibrium have to be considered. However, existing

computational models for the SH3 interaction ignore the dynamic

nature of complex formation and assume a stable complex

[21,22,23,24].

In this study, we developed a Multiple-Site (MS) model, which

was derived based on the formalism for the standard free energy of

binding [25] and used for describing SH3-mediated interaction, in

which an SH3 domain recognizes its partner protein through

closely located multiple binding sites on the surface of the partner

protein by transiently docking each binding site. In the model,

each site binds to the SH3 domain with its individual binding free

energy. To verify the analysis results for the individual binding free

energies, we compared the free energies with those calculated

using FoldX, which is a well-established algorithm based on

atomistic force fields [26]. Additionally, we defined a parameter,

called the maximum local population (MLP), as a metric to

measure the contribution of a specific binding site that dominantly

contributes to the complex population. To test this model, we used

the positionally addressable synthesis of peptides on continuous

cellulose membrane supports (SPOT-synthesis) experimental data

of SH3 domains reported by Landgraf et al. [12], which provided

semi-quantitative dissociation constants for SH3-peptide complex-

es [12,27]. In this study, we show that our model better describes

the data than an alternative conventional model by assuming that

SH3 domains recognize their partners through closely located

multiple binding sites. Finally, we discuss the physical basis for and

biological meaning of the proposed computational model.

Methods

Protein-protein interaction via multiple binding sites
Protein complexes with weak binding affinities are in a dynamic

equilibrium between the free and bound states. Previous studies

have focused on describing the formation of a stable complex

between proteins. However, in certain protein-protein interac-

tions, a protein may bind at multiple binding sites on a partner

protein. To depict the protein-protein interaction mediated by

multiple binding sites, we derived an equation based on the

formalism of the standard free energy of binding.

The standard free energy of binding depicts the binding

phenomenon, in which two proteins form a complex with a

nonbonding interaction [25]. Considering an equilibrium state in

which the proteins A and B are dissolved in solvent, the standard

binding free energy of the protein complex AB at equilibrium, G, is

written as follows:

G~{RT ln c ZABZ0=ZAZBð ÞzP DVAB, ð1Þ

where P, c, R, and T denote the standard pressure, a constant, the

gas constant, and the temperature, respectively. Z denotes

configuration integrals: Z0 is a configuration integral of the solvent

molecules, and ZD is the configuration integral when a protein or

protein complex D is dissolved in the solvent. DVAB is the volume

change between the bound and free states of the complex of

proteins A and B. The volume change causes work, but the

pressure-volume work, P DVAB, is typically very small at standard

pressure because DVAB is small [25].

We generalized the standard free energy formula by expanding

the configuration integral of the protein complex, in which a

protein B binds at multiple binding sites on a protein A by

randomly shuttling between all of the sites. The configuration

integral of the complex is written as follows:

ZAB~

ð
I jð Þ Jj e{bU rA ,rB ,j,rSð ÞdrAdrBdjdrS, ð2Þ

where j denotes the coordinates of protein B relative to protein A,

Jj is the Jacobian determinant for the Eulerian rotation, U is the

potential energy function of the molecular system, and I(j) denotes

the binding criteria for the complex [25]. If the two proteins are

sufficiently close together and measured as a bound state by a used

experimental method, then I(j) is equal to 1; otherwise, this term is

equal to zero. Generalization of the equation is achieved by

Figure 1. Cartoon representation of SH3 domain-ligand
complex. (a) Multiple conformations of the peptides bound to an
SH3 domain were collected from various crystal structures and aligned
using MODELLER. The peptides form a polyproline II structure on the
binding surface of an SH3 domain. (b) A physical concept involved in
the MS model is shown, where Motifs denotes binding sites in a proline-
rich region. An SH3 domain of a protein shuttles between each binding
site on a proline-rich region of a partner protein.
doi:10.1371/journal.pone.0032804.g001
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assuming the criteria such that if protein A has various, well-

separated binding sites for protein B, then I(j) is equal to 1 when

protein B approaches each binding site of protein A; otherwise, this

term is equal to zero. Simply, integration of ZAB is equal to zero in

most regions of the coordinates j except for a few regions

containing binding sites. If we label the regions as B1, B2, and so

on, then the configuration integral is described by the linearly

additive terms of the contributions of each binding site, as follows:

ZAB~

ð
B1

Jje{bU rA,rB,j,rSð ÞdrAdrBdjdrS

z

ð
B2

Jje{bU rA,rB,j,rSð ÞdrAdrBdjdrS z � � � ,

~ZAB,1zZAB,2z � � �

ð3Þ

where integrals are conducted in the regions; ZAB,i denotes a

configuration integral of the protein-protein complex when

protein B is localized at the ith binding site of protein A.

By combining Eqs.1 and 3, we derived the following equation:

G~{RT ln
X

i

c ZAB,iZ0=ZAZB

 !
zP DVAB ð4Þ

To simplify the formula, we defined the individual binding free

energy, in which protein B binds only at the ith binding site of

protein A, as follows:

Gi~{RT ln c ZAB,iZ0=ZAZB

� �
zP DVAB,i, ð5Þ

where DVAB,i is the volume change between the bound and free

states of the complex of proteins A and B when protein B binds to

ith binding site of protein A.

By combining Eqs. 4 and 5, we derived a binding free energy of

the proteins A and B as terms of individual binding free energies as

follows:

G~{RT ln
X

i

exp {Gi=RT
� � !

ð6Þ

where we assumed the individual volume changes are nearly equal

to DVAB. Furthermore, dividing by RT made the binding free

energy unitless. The final equation of the binding free energy is as

follows:

G~{ln
X

i

exp {Gi

� � !
: ð7Þ

where the binding free energies can be converted into the real

binding free energies by multiplying by RT. This equation

converges to the equation for the standard free energy of binding

if only one binding site contributes to the binding interaction and

explicitly includes the idea that additional binding sites near the

best binding site will increase the population of the complex

Experimental data preparation
SH3 domains bind at a proline-rich region that adopts a

polyproline II structure on the binding surface of the SH3 domains

and is composed of dozens of residues, as shown in Figure 1.

Because the MS model requires large numbers of binding free

energies, we used the binding free energy data from SPOT

synthesis technology. SPOT synthesis has previously been used to

screen peptides that bind to proteins, nucleic acids, and small

ligands [28,29]. Using the physical property of a correlation

between the SPOT intensities and binding free energies [12,27],

a large amount of binding free energy data can be collected. We

used the SPOT peptide array data reported by Landgraf et al. for

preparing the binding energies for the SH3-ligand complex,

where the data were given as SPOT intensities and peptide

sequences [12]. The SPOT synthesis data were prepared using

the following methods [12]. Phage display experiments were

conducted to identify a consensus sequence for SH3-binding

peptides. Based on this consensus sequence, the peptides for

SPOT synthesis were collected by screening the yeast and human

proteomes for their respective SH3 domains. These peptides were

prepared with a longer sequence (13 or 14 amino acids)

compared with the consensus (from 6 to 9 amino acids), where

the longer sequences were selected from yeast and human

proteomes. Thus, the sequences may contain multiple binding

sites for SH3 domains. We used the SH3 domains from Abp1

(P15891), Myo5 (Q04439), Boi1 (P38041), Boi2 (P39969), Sho1

(P40073), Rvs167 (P39743), Lsb3 (P43603), Ysc84 (P32793),

amphiphysin (P49418), and endophilin-1 (Q99962). We random-

ly selected 1,000 SPOT-synthesis data for each domain and used

the negative natural logarithm of the SPOT intensity as the

pseudo-binding free energy (-ln[BLU], where BLU [Boehringer

light unit] is an arbitrary light intensity unit provided by the

Lumi-Imager instrument).

Multiple-Site (MS) model
The MS model was developed to describe the binding of a

protein to its partner protein through closely located multiple

binding sites on a surface of the partner protein by transiently

docking at each binding site with an individual binding free

energy. A graphical representation of the model for SH3-mediated

interaction is shown in Figure 2a, in which an SH3 domain binds

at multiple sites on the peptide that represents the SH3-binding

region in a partner protein. To extract the individual binding free

energy for each binding site, we used SPOT-synthesis data, which

consisted of peptide sequences and their relative binding free

energies. These binding free energies include the random noise

involved in the experimental procedure. For example, an

uncertain peptide density on the membrane, the purity of the

synthesized peptides, the washing step, and the uncertainty

involved in the signal detection procedure can all contribute to

noise [27]. We introduced a statistical method to reduce the

random error involved in the experimental data. This statistical

method consisted of two steps.

In the first step, we converted the peptide sequences into

binary-number sequences. The peptide sequences can be

decomposed by the combination of an invariant term, single-

residue terms, and higher-order terms, where the invariant term

can be regarded as a reference sequence, single-residue term as a

single mutation, and higher-order term as multiple mutations.

Although, inclusion of the higher-order terms improves the

accuracy of the descriptions of the peptide sequences, it also

requires a large amount of data. Thus, it is necessary to cut the

higher-order terms in a certain level based on the amount of

experimental data available. In this study, we used only an

invariant term and single-residue terms in the sequence

conversion. The sequence conversion scheme was simple: we

assigned 1 to the first position of a binary number sequence for

designating a reference sequence and converted the residues in

the peptide into binary numbers composed of 19 sequential

Transient PPI via Multiple Binding Sites
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elements (an amino acid in the reference sequence was not

counted), where the binary numbers indicated that a given

peptide had a specific amino acid at a specific residue position.

Concisely, by introducing an equation, the sequence conversion

and its relation to the binding free energies can be rigorously

described. If we consider an N-residue peptide s = [a1, …, aN],

where as represents the amino acid at the sth residue position,

which binds to an SH3 domain and has a binding free energy

G(s). Further, assuming M amino-acid possibilities at each residue

site, as can take on values from 0 to M-1, where each index

corresponds to a specific amino acid, and the index zero to a

reference amino acid of the corresponding residue position. The

binding free energy is described as follows:

G sð Þ~GP sð Þze sð Þ with GP sð Þ~J0z
XN

s~1

XM{1

k~1

Js,k
:fs,k sð Þ, ð8Þ

where GP(s) denotes a predicted binding free energy of a

sequence s. The e term is an error, which is the difference

between the binding free energy and its predicted value; the value

is random and depends on the sequence. The fs,k(s) term is the

basis function of the sequence expansion and is equal to 1 if the

site s in the sequence s is occupied with the amino acid k and is

otherwise zero. The J terms are the energies corresponding to the

basis functions, where J0 and Js,k denote reference and single-

mutation energies, respectively [30,31]. From Eq.8, the problem

of determining individual binding free energies is converted into

finding the J terms.

In the second step, we combined Eqs.7 and 8 to derive an

equation to fit the SPOT-synthesis data. The resulting equation

for fitting is as follows:

GSPOT sð Þ~a:G sð Þ~{a:ln
X

i

exp {GP sið Þð Þ
 !

ze sð Þ

with GP sið Þ~J0z
XN

s~1

XM{1

k~1

Js,k
:fs,k sið Þ,

ð9Þ

where the binding free energy of the SH3-peptide complex is

expressed by a combination of the contributions from multiple

binding sites represented by the individual binding sequence si

explained in Figure 2c. The inclusion of the parameter a improves

the fitting accuracy by partially reducing errors in the conversion

of SPOT intensities into pseudo-binding energies. In this equation,

the pseudo-binding energies from SPOT-synthesis data GSPOT are

used to find optimal a and J terms by reducing the fitting errors, e.

To determine these values, we used a MATLABH script that was

developed in-house (see Supplemental Information S1). Because

the curve-fitting algorithm in the script would not give a global

solution, we used several sets of initial J terms as inputs. Using the

obtained J terms, the binding free energies of new sequences were

further predicted.

Single-Site (SS) model
The SS model was developed to simulate the binding

phenomenon in which an SH3 domain is bound at a specific

site of its partner protein. A graphical representation of the model

is shown in Figure 2b, which depicts an SH3 domain that

specifically binds at a site that represents a specific sequence region

in a partner protein. For an N-residue peptide, there are N-S+1

possible binding sites in the peptide when the binding site consists

of S residues as shown in Figure 2c. Because, in this model, we

Figure 2. Two different binding models for SH3 complexes. (a) A graphical representation of the MS model, wherein short peptides with the
same sequence were synthesized on a small region of membrane and SH3 domains are assumed to bind at various sites on the peptides. G(si)
denotes the binding free energy of the ith binding site. An SH3 domain may bind at multiple sites on a single peptide, but temporally, one site per
peptide due to the SH3 domain size; each site is in dynamic equilibrium with a different binding free energy. (b) A graphical representation of the SS
model, which assumes that the SH3 domain binds at the same position on the peptides according to the alignment used in the SPOT experiment. (c)
An example of multiple binding sites with a window size of 6 is illustrated for a 14-residue peptide, where the red squares with a dotted line denote
individual binding sites and correspond to the individual binding sequences, si in Eq. 9.
doi:10.1371/journal.pone.0032804.g002
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assume that each binding site is the only place to bind with an SH3

domain, there are N(N+1)/2 possible models for a training set.

To establish a relationship between the binding free energies

and their sequences for each binding model, we converted the

sequences of the binding sites into binary-number sequences, as

explained in the MS model. Multiple linear regression analysis was

applied to the binary-number sequences to minimize the fitting

error, e, in the following equation,

GSPOT sð Þ~a:G sð Þ~J0z
XN

s~1

XM{1

k~1

Js,k
:fs,k srð Þze sð Þ, ð10Þ

where sr denotes a representative binding site in the sequence s,

and the other parameters are explained in Eq.9. The equation for

the binding free energy of the SS model is a special case of the MS

model if only one binding site contributes to the binding

interaction.

Evaluation of prediction performance
We carried out a 10-fold cross validation using 1,000 randomly

selected experimental data, which are listed in Supplemental

Information S2. We processed the data by the following methods.

First, 1,000 SPOT-synthesis data were equally assigned into 10

different data sets, of which each data set had 100 randomly

selected SPOT-synthesis data. Second, 10 different [test, training]

sets were prepared by circularly changing the role so that one

data set was placed into a test set and the other 9 data sets into a

training set. The training sets were used to derive the

relationships between the peptide sequences and the binding

free energies. Thus, 10 different training results were obtained for

each SH3 domain. Each test set was used to assess the

corresponding training results. We predicted the binding free

energies of the peptide sequences and evaluated the root-mean-

square (RMS) error between the predicted and the experimental

values for each test set. As a result, 10 different RMS errors were

obtained for each SH3 domain. Due to the small number of data

in the test set, the RMS error depended on the standard deviation

of binding energies. To remove the dependency, we divided each

RMS error by the standard deviation value of a respective test set

and named the resulting quantity ‘‘RMSE’’. Thus, an RMSE of

less than 1 indicates that the prediction is better than random;

otherwise, the prediction is worse than random. Additionally, we

used different a values for each SH3 domain in Eq.9, which were

dependent on the training data. We used a median value among

the a values for each SH3 domain. The selected a values were

12.3, 20.2, 28.7, 27.6, 2.7, 3.2, 5.9, 13.3, 5.0, and 3.6 for Boi1,

Boi2, Abp1, Myo5, Sho1, Rvs167, Ysc84, endophilin-1, Lsb3,

and amphiphysin, respectively. The selected a values were used to

fit the training data again to assess the prediction performance for

the test sets.

Evaluation of the FoldX energies for the amphiphysin
SH3 domain

We modeled the structure of the amphiphysin SH3 domain

based on the crystal structure of the rat amphiphysin-2 SH3

domain (PDB entry 1bb9) using MODELLER [32,33]. We used

ten residues (AAPRRPPRAA) as an effective binding partner for

the SH3 domain, of which we used the six core residues

(PRRPPR) to simulate the complex binding and the alanines at

the flanking sides for the conformational search that was irrelevant

to the core binding [12,23,24]. To build a complex structure, we

used the crystal structure of the C-Crk N-terminal SH3 domain

complexed with the C3G peptide (PDB entry 1cka) as a template

and built the structure using MODELLER [32,34].

To sample stable complex structures, we carried out a molecular

dynamics (MD) simulation of the modeled structure using the

AMBER9 with AMBER 2003 force field [35]. The complex

structure was neutralized using Na+ ions and solvated in 4,220

TIP3P water molecules. The particle mesh Ewald (PME) was

employed to treat the long-range electrostatic interactions. The

simulation was performed under the condition of 300 K

temperature and 1 g/cm3 density. We performed 1 ns of

simulation and collected complex conformations every 1 ps [36].

The conformations from the MD simulation were clustered

using the clustering module in ROSETTA 3.2 [37]. From the

clustering, 28 structures were selected as the templates for

evaluating the binding energies. We obtained 15,135 independent

sequences by the fragmentation of the peptides into six-residue

peptides. The core residues in the structural templates were

mutated to the six-residue peptides using the fixed-backbone

design module in ROSETTA 3.2. The binding energies of the

mutated structures were evaluated using FoldX. We used the

minimum value among the binding energies for each sequence as

the FoldX energy for the sequence.

Maximum local population
To quantify the degree of binding specificity, we defined the

maximum local population (MLP) which measures the maximum

localization of a specific binding site as follows:

Lmax~exp({GP(smin))=
X

i

exp({GP(si)), ð11Þ

where Lmax denotes an MLP value and smin denotes a sequence

with the minimum energy among the individual binding free

energies. Thus, the MLP value represents the maximum

percentage occupied by an SH3 domain at a specific site of a

peptide.

Results

Previous studies have reported that an SH3 domain forms a

transient complex with other proteins [4,19]. This physical

phenomenon makes it difficult to measure the correct binding

energy of the SH3 domain for a specific site of a protein because

the domain may bind at other sites around the specific site. To

overcome this difficulty, we developed a computational model

based on a rigorous theoretical formula. This model facilitated the

measurement of the correct binding energy and the determination

of the underlying physics on the complex formation. We applied

the model to the analysis of SPOT-synthesis data of various SH3

domains. In the process, we suggested two models: one model was

used to fit the data under the condition of stable complex

formation, and the other was used to fit the data under the

condition of transient complex formation.

Prediction of the binding free energies
It should be noted that the prediction performances of the

proposed models depend on three factors: 1) the random error in

the binding free energies, 2) the relationship between the

sequences and the binding free energies (the primary source of

unknown factors), and 3) a balance between the amount of data

and the number of unknown factors. Because the random error

depends solely on the experiment, computational improvement

can be achieved by adjusting the remaining two factors.

Transient PPI via Multiple Binding Sites
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Multiple-Site (MS) model: Interaction mediated by
multiple binding sites

In thermodynamics, a protein-protein interaction is described

by an equilibrium state in which all possible binding conforma-

tions are considered to be adopted by the protein complex. Due to

the weak and transient nature of SH3-mediated interactions, an

SH3 domain may bind at multiple binding sites on a partner

protein by shuttling among all of the sites in a short time. In the

process of obtaining the SPOT-synthesis data, the binding sites of

the partner proteins were selected by a consensus derived by a

phage display technique, the peptide sequences of the selected

binding sites were synthesized on a cellulose membrane, and the

binding affinities to SH3 domains were measured by a

spectroscopic method. Thus, the extracted peptide sequences,

which were composed of fewer than 14 residues, represented the

protein sequence. Because the consensus sequences for the SH3

domain-binding peptides were composed of fewer than 10 amino

acids, the peptides could contain multiple binding sites for an SH3

domain. For an N-residue peptide, the number of binding sites is

N-S+1 when an SH3 domain recognizes an S–residue peptide

(called a window size of S), as shown in Figure 2c. Because the

window size of SH3 domains is unknown, there are N possible

models with different window sizes. In all of the models except the

window size of N, the existence of multiple binding sites increases

the population of the complex, as explained in Eq. 9.

In Figure 3, we show the results for 6 SH3 domains, where the

balance between the amount of experimental data and the number

of unknown factors determines the RMSEs. We plotted the

RMSEs from the MS model according to window size as circles,

and we particularly marked the data with the lowest RMSEs as

solid circles. In this approach, a higher window size contains a

greater number of J terms for fitting, which improves the

prediction accuracy; however, the inclusion of more terms requires

more experimental data because a small amount of data causes

prediction bias. The RMSEs ranged from 0.5 to 1.1, and the best

window size of the SH3 domains ranged from 4 to 8 residues (a

window size of 4 for Rvs167; 6 for Lsb3, Ysc84, and amphiphysin;

7 for endophilin-1; and 8 for Sho1, where we excluded a full-

length window size from the selection). These results are supported

by a previous study, in which Cestra et al. reported that

amphiphysin and endophilin-1 bind preferentially at 6- and 8-

residue peptides, respectively, by analyzing phage display results

[38].

Single-Site (SS) model: Interaction mediated by a single

binding site. SH3 domains mediate protein-protein

interactions that are implicated in various human diseases [39].

There have been various attempts to find inhibitors of SH3-

mediated interactions for therapeutic purposes [39,40]. In those

studies, it was assumed that SH3 domains bind at one specific site

of their partner protein. Based on this assumption, we devised the

SS model, which considers such a condition in the fitting

procedure.

In Figure 3, we represented the results of the SS model as

triangles, and the optimal window sizes were marked as solid

triangles, where each triangle for the window size of S designated

the model which was selected among the N-S+1 possible models to

have the minimum RMSE. As the window size increased, the

RMSEs of all SH3 domains except Sho1 showed a monotonically

decreasing pattern, indicating that almost all residues in the

representative sequences contribute to the binding free energy.

The reason for the increasing pattern of Sho1 is that one residue

site in front of the ‘‘PxxP’’ motif dominantly reduced the RMSE

value.

Comparison between models. We developed two

computational models in the previous subsection, where the

models adopted different physical binding phenomena to extract a

relationship between the sequences at a binding site and the

binding free energies. The SS model assumed that the complex

Figure 3. Comparison of the prediction errors between two computational models. The prediction errors from the MS and SS models are
plotted as circles and triangles, respectively, and the points with the lowest prediction error are marked as solid circles and triangles. In this figure, the
RMSE denotes the normalized prediction error against the experimental values.
doi:10.1371/journal.pone.0032804.g003
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was firmly bound, and it required the determination of both the

window size and the correct binding site to find the best prediction

model. The MS model assumed that the complex underwent

dynamic binding, and it required the determination of the window

size and the binding free energies of all binding sites. Thus, each

model has a different number of unknown factors. The MS model

requires a larger amount of data than the SS model because the

MS model contains larger amounts of unknown factors to be

determined.

As the window size increases, the models include more unknown

factors to be determined. Because the amount of experimental data

is fixed, the window size is the main factor that determines the

prediction performance of the model. To compare the prediction

performance between the two models, we divided the window sizes

into three regions: from 1 to 2, from 3 to 9, and from 10 to 14. For

the region between 1 and 2, the SS model had certain advantages

because the peptide sequences that we analyzed were not selected

randomly, in that specific amino acids at certain peptide positions

were restricted. For example, if peptides contained the ‘‘PxxP’’

sequence motif, with fixed proline residues, then a window size of 2,

which only varies the ‘‘xx’’, was the same as a window size of 4 in the

SS model, but this restriction had no effect on the MS model. This

effect was observed in Ysc84 and amphiphysin, where the SS model

using window sizes less than 2 outperformed the MS model using

the same window size. However, both models performed similarly

when using a window size of 3. In Sho1, we noted an extreme case

of this restriction effect, where a window size of 1 already gave

almost the best performance (the model with the window size of 1

has only 0.2% higher prediction error than the best model). For the

region between 3 and 9, the MS model performed better than the

SS model where the sequence-space-restriction effect disappeared.

It was previously explained that improvements in prediction

performance can be achieved by adjusting two factors. In this case,

the better performance of the MS model in this window size region

originated from the better description of the relationship between

the sequences and the binding free energies because the other factor

for better performance was unfavorable to the MS model. Lastly, for

the region greater than 10, the SS model outperformed the MS

model due to the smaller experimental data size.

In Figure 4, the differences in prediction error between the

models with the best performance are shown, where negative

values indicate that the application of the MS model lowers the

prediction error compared with the result from the SS model. All

of the prediction errors were reduced except that of Sho1: 5.7-,

0.2-, 7.0-, 4.6-, 6.5-, 9.1-, 1.0-, 8.4-, and 6.5-percent decreases for

Boi1, Boi2, Abp1, Myo5, Rvs167, Ysc84, endophilin-1, Lsb3, and

amphiphysin, respectively. For Sho1, the SS model gave a 6.6-

percent lower prediction error compared with the MS model. This

improvement in the prediction performance indicated that the MS

model provided a better method of describing the relationship

between the sequences and the binding free energies.

Dissociation constant
Previous studies reported that SPOT intensities correlated with

dissociation constants [12,27]. However, the prediction of the

dissociation constants directly using the SPOT intensities was

hampered by the stochastic nature involved in the SPOT-synthesis

experiment [27]. In Figure 5, the SPOT intensities are plotted

according to their dissociation constants, where Pearson’s

correlation coefficients are 0.56, 0.23, 0.21, and 20.29 for

Abp1, Rvs167, Lsb3, and Ysc84, respectively. Those correlations

between the two experiments were improved by incorporating the

predicted values from the MS model instead of directly using the

pseudo-binding energies from the SPOT-synthesis experiment,

where Pearson’s correlation coefficients are 0.79, 0.51, 0.43, and

0.59 for Abp1, Rvs167, Lsb3, and Ysc84, respectively. This

improvement in the correlation is related to the statistical

averaging procedure contained in the model, which reduces the

stochastic errors in the SPOT data [41,42].

FoldX energies
The MS model works by dividing the binding energy of a

sequence into several binding energies of sequence fragments.

To check the robustness of the MS model, we compared the

binding energies of the fragments with the FoldX energies for the

amphiphysin SH3 domain. Several experiments reported that

the binding site of the amphiphysin SH3 domain was composed

of 6-residues [24,38]. We divided a 14-residue peptide sequence

into nine 6-residue peptide sequences, labeled the nine sequences

using the numbers from 1 to 9 on the basis of the starting

position of the sequence, applied the procedure to all of the

remaining 14-residue peptide sequences, grouped the 6-residue

peptides into nine groups according to the labels, and calculated

the Pearson’s correlation coefficient between the FoldX energies

and the pseudo-binding energies for each group. In Table 1, the

direct comparison of FoldX energies with the pseudo-binding

energies from the SPOT intensities gave Pearson’s correlation

coefficients from 20.09 to 0.34; the coefficient for 15,135

independent 6-residue peptides was 0.10. These lower correla-

tion coefficients originated from the difficulty of identifying the

correct sequences for the binding free energies, where a pseudo-

binding energy represented the interaction energy of an SH3

domain with a 14-residue peptide, whereas the FoldX energy

represented that with a 6-residue peptide. In contrast, the MS

model gave the binding energies for the six-residue peptides,

which made it possible to compare correctly with the FoldX

energies. The Pearson’s correlation coefficients between the

FoldX energies and the energies from the MS model ranged

from 0.16 to 0.62; the coefficient for 15,135 independent 6-

residue peptides was 0.66.

Figure 4. The prediction error difference between the MS
model and the SS model. The differences in the prediction errors are
plotted as squares, where a negative value denotes better performance
of the MS model. The error bars denote the standard deviations of the
differences for each SH3 domain. In this figure, the difference in
prediction errors was measured by the following methods: the lowest
prediction error was selected for each computational model, and the
difference between the selected prediction errors from the models was
evaluated for 10 training/test sets.
doi:10.1371/journal.pone.0032804.g004
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Localization analysis of SH3 domains
We evaluated the binding specificity of all of the peptides from

the proteome using the MS model to show that an SH3 domain

requires a different level of specificity, depending on its binding

partners, for proper biological function. To quantify the degree of

binding specificity, the MLP values were evaluated for SH3

domains, and two representative cases are shown in Figure 6. It is

commonly shown that certain proteins prefer binding to an SH3

domain using a specific site (MLP larger than 0.7) and that other

proteins prefer binding to an SH3 domain using multiple sites

(MLP lower than 0.5). For amphiphysin, certain proteins have

both lower pseudo-binding energies (approximately 210) and

lower MLP values (approximately 0.5), which indicates that these

proteins increase their binding affinity by providing multiple

binding sites. It was verified by Western blotting that a proline-rich

region of the ubiquitin ligase Itch, PSRPPRPSR, bound to

amphiphysin [20]. Because the SH3 domain in amphiphysin

recognizes the ‘‘PxRPxR’’ binding motif [38], the proline-rich

region of the Itch protein has two binding sites for the

amphiphysin SH3 domain. These multiple binding sites were also

measured by the MLP value (approximately 0.5). For Sho1, a

specific site in certain proteins bound with strong binding free

energy (the MLP and pseudo-binding energy were approximately

1.0 and 211, respectively). The formation of a stable complex may

be useful in certain biological functions, such as those of the

binding partners of Sho1.

Discussion

In this study, we proposed two different physical models to

understand the binding phenomena for SH3 domains. The MS

model, which assumes that multiple binding sites in a peptide

contribute to SH3-mediated interaction, provides better results

than the SS model, which assumes that only a single specific

binding site contributes to binding interaction. The MS model

displays improved performance because of the minute description

of the binding complex. This description coincides with three

observations. First, the binding sites of SH3 domains can dock

with a limited number of amino acids. Second, SH3 domains have

a weak binding affinity, which is in the micromolar range. Third,

longer peptides have a stronger binding affinity with SH3

domains.

The SH3 domains, Rvs167, Lsb3, Ysc84, Sho1, endophilin-1,

and amphiphysin, performed best when we used window sizes that

ranged between 4 and 8. These window sizes were reasonable

because they were similar to the number of amino acids in the

consensus sequence. The MLP data indicated that the binding

partners of an SH3 domain show different docking modes,

providing a specific or multiple sites to the SH3 domain. For

examples, the SH3 domain in amphiphysin binds to the proline-

rich region in Itch with moderate specificity (MLP of 0.5) [20],

whereas the SH3 domain in Sho1 binds to the proline-rich region

in Pbs2 with high specificity (MLP of 0.7), where the complex

formation is an important event for signaling in the high osmotic

stress response pathway of yeast [43,44]. Although Pbs2 has a high

MLP and binding affinity, there are several proteins with higher

MLPs and binding affinities than Pbs2. This result suggests that a

Table 1. A comparison of FoldX energies with experimental values.

Correlation coefficient

INDEX++ 1 2 3 4 5 6 7 8 9

SPOT* 0.13 0.24 0.14 20.09 0.25 0.14 0.07 0.34 0.16

MS Model+ 0.57 0.31 0.50 0.60 0.16 0.53 0.47 0.52 0.62

The Pearson’s correlation coefficients between the FoldX energies and the experimental data are shown.
++INDEX denotes a starting position in the 14-residue peptides to select representative fragment sequences for energy evaluation.
*SPOT denotes pseudo-binding energies.
+MS Model denotes the binding free energies derived from the MS model (MS-model energies).
We used 2010 SPOT synthesis data for amphiphysin from reference [12]. We took six consecutive residues in peptide sequences to evaluate the FoldX and MS-model energies.
doi:10.1371/journal.pone.0032804.t001

Figure 5. The MS model provides a better correlation with the
dissociation constants than the prediction using the SPOT
intensities. The predicted values for the SPOT intensities correlate
better with the dissociation constants. (a) The experimental SPOT
intensities were plotted according to their dissociation constants, and
(b) their predicted SPOT intensities were plotted. The Pearson’s
correlation coefficient for each SH3 domain is in parentheses. The
value for Boi2 is not provided because the dissociation constants are
fixed due to experimental limitation.
doi:10.1371/journal.pone.0032804.g005
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strong binding energy does not ensure a proper biological

function. As an example, Pbs2 has evolved to maintain a balance

between protein complex stability and binding specificity for a

biological function [44,45]. The remaining SH3 domains, Abp1,

Myo5, Boi1, and Boi2, performed best when we used window sizes

less than 2. Although it is unclear whether those window sizes

reflect the real binding properties, the MS model still improved the

prediction performance compared with the conventional model.

The peptides that we used were longer than the consensus

sequences because flanking residues were included [12]. These

additional residues were useful for obtaining stronger SPOT

signals and enabled us to collect a larger amount of data.

However, this additional portion of the peptides generated obscure

results, as the added portions provided additional binding sites.

The MLP data show that many peptides bind to an SH3 domain

using multiple sites. This observation introduces certain difficulties

in the use of SPOT data intensities as a reference for

computational modeling. For example, in other studies, SPOT

data were used as the reference data, and a specific site on the

peptides was used to represent the peptide region responsible for

the binding free energy [23,24]. These computational difficulties

can be resolved using the MS model. Interestingly, for amphi-

physin SH3 domain, the individual binding free energies were well

correlated with the FoldX energies (Pearson’s correlation coeffi-

cient of 0.66), and the ensemble of the individual free energies

using the MS model also gave a good correlation with the pseudo-

binding energies (Pearson’s correlation coefficient of 0.82).

An analysis of the MLP data shows that the protein complex

population grows by increasing either 1) the binding affinity

between an SH3 domain and a specific site in a sequence or 2) the

number of closely-located sites able to bind with an SH3 domain

in a sequence. This difference in binding modes according to

binding partners alludes that for achieving an appropriate

biological function, proteins have evolved a part of their sequence

which recognizes SH3 domains toward two different directions

providing: 1) a specific sequence site for a specific biological

function requiring a stable complex or 2) multiple sites to increase

local population of the protein complex with preserving transient

binding nature. Thus, the usage of multiple sites by proteins is

expected to have various functional benefits, such as regulating

protein localization without perturbing the dynamics of the

complex, increasing the exchange rate of binding, and accelerating

the speed of the complex formation.

In summary, we report a computational model that is designed

to describe a protein complex bound with a weak and transient

interaction. Next, we show that the application of this model

improves the prediction performance for the binding free energies

of SH3-peptide complexes, indicating that the model contains a

more realistic description of the binding phenomenon than

previous approaches. This observation provides a biological

insight into the mechanisms by which certain proteins increase

the local population around an SH3 domain by providing closely

located multiple binding sites to the domain. This model also

provides a new method of describing a weak and transient protein

binding. Many proteins have a proline-rich region that is

recognized by various domains with a weak and transient

interaction, and these domains can be new targets for the

application of the proposed model. One possible application is

to search the entire proteome for binding partners because this

model gives a better correlation between the predicted values and

the dissociation constants. Future improvements can be achieved

by incorporating other feature spaces, such as those used in the

cluster expansion method [31], and alternative statistical methods

that incorporate the proposed physical model for better prediction

performance.
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Figure 6. The maximum local populations for representative
SH3 domains are shown. The predicted pseudo-binding energies are
plotted based on the MLPs. (a) The MLP data for amphiphysin are
shown. The maximum binding affinity data for amphiphysin fall within
the middle region of the MLP. A solid circle marks the peptide
(PSRPPRPSR) from the Itch protein that has two possible binding sites.
(b) The MLP data for Sho1 are shown. The fully localized interaction for
Sho1 has the maximum binding affinity. A solid circle marks the peptide
(NKPLPPLPVAGSSKV) from the Pbs2 protein, which is a well-known
binding partner of Sho1.
doi:10.1371/journal.pone.0032804.g006
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