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Abstract
Objectives Patient-tailored contrast delivery protocols strongly reduce the total iodine load and in general improve image quality
in CT coronary angiography (CTCA). We aim to use machine learning to predict cases with insufficient contrast enhancement
and to identify parameters with the highest predictive value.
Methods Machine learning models were developed using data from 1,447 CTs. We included patient features, imaging settings,
and test bolus features. The models were trained to predict CTCA images with a mean attenuation value in the ascending aorta
below 400 HU. The accuracy was assessed by the area under the receiver operating characteristic (AUROC) and precision-recall
curves (AUPRC). Shapley Additive exPlanations was used to assess the impact of features on the prediction of insufficient
contrast enhancement.
Results A total of 399 out of 1,447 scans revealed attenuation values in the ascending aorta below 400 HU. The best model
trained using only patient features and CT settings achieved an AUROC of 0.78 (95% CI: 0.73–0.83) and AUPRC of 0.65 (95%
CI: 0.58–0.71). With the inclusion of the test bolus features, it achieved an AUROC of 0.84 (95% CI: 0.81–0.87), an AUPRC of
0.71 (95% CI: 0.66–0.76), and a sensitivity of 0.66 and specificity of 0.88. The test bolus’ peak height was the feature that
impacted low attenuation prediction most.
Conclusion Prediction of insufficient contrast enhancement in CT coronary angiography scans can be achieved using machine
learning models. Our experiments suggest that test bolus features are strongly predictive of low attenuation values and can be
used to further improve patient-specific contrast delivery protocols.
Key Points
• Prediction of insufficient contrast enhancement in CT coronary angiography scans can be achieved using machine learning
models.

• The peak height of the test bolus curve is the most impacting feature for the best performing model.
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Abbreviations
AUPRC Precision-recall curves
AUROC Area under the receiver operating characteristic
BSA Body surface area
CI Confidence interval
CM Contrast material

CO Cardiac output
CT Computed tomography
CTCA Computed tomography coronary angiography
CV Cross-validation
HU Hounsfield units
IDR Iodine delivery rate
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kV Kilovolt
LR Logistic regression
ML Machine learning
NN Neural networks
RF Random forest
SHAP Shapley Additive exPlanations
SVM Support vector machines
TIL Total iodine load
XGB Extreme gradient boosting

Introduction

Computed tomographic coronary angiography (CTCA) is a
non-invasive imaging technique used for the anatomical assess-
ment of coronary artery disease [1–6]. Iodine containing con-
trast material (CM) is used to enhance luminal attenuation to
enable assessment of the coronary artery lumen, vessel wall,
and the surrounding structures [7]. Adjustments in CMdelivery
protocols change the attenuation coefficient of the blood pool.
A commonly used strategy to adjust CM delivery is to regulate
the iodine delivery rate (IDR = amount of iodine injected per
second [g I/s] = concentration of CM × flow rate in ml/s) [7].
Besides CM delivery, coronary lumen attenuation also depends
on patient features like body weight and length as well as CT
scanner settings and the tube voltage (kV) in particular [7].
Other parameters, such as the peak height and time to peak of
a test bolus, are also associated with attenuations but are com-
monly not considered in current CM protocols [8, 9]. A better
understanding of the interrelation between these parameters
and luminal attenuation is valuable for further improvements
in patient-specific contrast delivery protocols. Reducing the
iodine load is important to lower the risk for renal function
impairment, reduce environmental pollution, and lower overall
costs. However, inappropriate correction in contrast adminis-
tration may result in insufficient coronary lumen attenuation
and this is not tolerable.

For accurate assessment of coronary artery disease on
CTCA, intra-arterial attenuation values higher than 350 HU
are recommended [10–15]. In previous studies, the introduc-
tion of patient-tailored CM protocols, adjusting the IDR for
bodyweight and kV, resulted inmore constant coronary artery
attenuation values and a favorable reduction in total iodine
load [8, 10–12]. However, in some cases, CM delivery result-
ed in low coronary attenuation values, thereby jeopardizing
the diagnostic value of CTCA [8].

We hypothesized that machine learning (ML) can help to
predict cases with insufficient contrast attenuation in CTCA.
This will allow for CM delivery and CT scanner settings to
enhance coronary attenuation and improve diagnostic value.
Additionally, we investigated the added value of using the test
bolus features for the prediction. To this end, we also analyzed
the impact of the features on predicting insufficient attenuation.

Materials and methods

Study design and population

This retrospective study was performed following the princi-
ples of the Declaration of Helsinki and the local Institutional
Review Board approved this study. The Ethics Committee
approved this research with a waiver. All consecutive patients
above 18 years old who underwent CTCA between
September 2017 and September 2020 were included in the
study. CT scans were excluded if the acquisition protocol
deviated from the standard CTCA protocol (e.g., TAVI or
cardiac function) or if the test bolus enhancement curves were
not stored in the hospital’s picture archiving and communica-
tion system.

CTCA acquisition protocol

The imaging protocol has been described before [8]. In sum-
mary, all images were obtained using a third-generation dual-
source 192 detector row CT scanner (Somatom Force,
Siemens Healthcare). Sublingual nitro-glycerine spray was
administered before the CTCA acquisition and beta-blockers
were administered on indication (heart rate > 65 per min). The
time between the start of contrast medium injection and the
time to peak contrast enhancement in the ascending aorta was
determined using a test bolus injection with a fixed contrast
bolus of 10 ml undiluted contrast medium (Ultravist 300:
iopromide 300 mg I/ml, Bayer AG or Xenetix 350: iobitridol
350 mg I/ml, Guerbet OptiVantage DH) a fixed scan delay of
8 s and a fixed kV value of 100 kV. For timing the CTCA
acquisition, the scan delay was determined by the time to peak
and an additional 4 s for coronary artery filling. For the CTCA
scans, automatic tube voltage selection (CARE kV, Siemens
Healthcare) was applied in all patients with kV categories
ranging from 70 to 120kV with increments of 10kV. All
CTCA scans were visually evaluated by the attending CT
technician. CT scanner acquisition parameters were: detector
collimation 2 × 96 × 0.6 mm, slice acquisition 2 × 192 ×
0.6 mm using a z-flying focal spot, gantry rotation time of
250ms, temporal resolution of 66ms, 70–120 kV tube voltage
(CARE kV), and 180–600 μA tube current. High-pitch spiral
scanning was performed in diastole in patients with a regular
heart rate < 70/min. A prospective ECG-gated sequential scan
(step and shoot) was performed in diastole for patients with
irregular heart rate < 70/min or heart rates ranging between 70
and 80/min. For patients with irregular heart rates of > 80/min,
a sequential scan was performed in systole. Padding in an
adaptive prospective sequential scan mode for high and irreg-
ular heart rates was used to enable reconstruction of more
cardiac phases. Images were reconstructed with a slice thick-
ness of 0.6 mm and an increment of 0.4 mm using iterative
reconstruction factor 2 (ADMIRE, Siemens Healthcare).
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Contrast delivery protocol

Iodinated contrast medium (300 or 350 mg I/ml) was admin-
istered via a dual-head contrast delivery injector (Guerbet
OptiVantage DH) equipped with a high-pressure resistant ex-
tension tube and injected in the right antecubital vein. A test
bolus of 10 ml contrast medium was injected at 6 ml/s or 6.5
ml/s, followed by a 40-ml saline chaser also injected at 6 or 6.5
ml/s. The bolus of (un)diluted contrast material for high-pitch
spiral CTCA scans was 50 ml and the bolus for prospective
sequential step-and-shoot scans was 65 ml. The larger con-
trast bolus volume in prospective sequential step-and-shoot
scans was applied to compensate for the longer acquisition
time. The contrast bolus was injected at an injection rate of
6 ml/s or 6.5ml/s. All contrast injections were followed by a
saline chaser of 40 ml (6 or 6.5 ml/s). The IDR was adjusted
for body weight and kV settings, as presented in a previous
study [8]. The kV settings for CTCA acquisition, as select-
ed by CARE kV, were used together with body weight to
provide a patient-specific IDR (1–2.3 g I/s). To reach the
required IDR, the CM was diluted with saline via the dual-
head contrast delivery injector, of which one was filled with
undiluted contrast material and the other with saline solu-
tion. The two fluids were blended in the high-pressure re-
sistant extension tube, after which it was injected in the
right antecubital vein.

Data extraction

Data was retrieved automatically from DICOM headers and
electronic patient records. Collected patient features included
sex, age, average heart rate, body weight, and body height.
Also, kV settings (tube voltage), iodine delivery rate (IDR),
total iodine load, and contrast dose concentration were collect-
ed. Furthermore, we extracted test bolus features, such as the
peak height of the test bolus attenuation curve (peak height in
HU), the time to peak of the contrast curve (time-to-peak in
seconds), and the time to the start of the contrast curve (the
time-to-start-curve in seconds) from the bolus tracking curves
(DynEva, Siemens Healthcare) as illustrated in Fig. 1. An
association between the height of the test bolus and coronary
attenuation has been reported in previous studies. Therefore,
we considered the test bolus to contain important information
and included this in the model [8, 9]. Regarding the time to
start and time to peak, the default delay of 8 s was ignored in
the analysis once the values used were obtained from the bolus
tracking curves.

For the assessment of luminal attenuation, we used an in-
house developed tool to automatically detect the ascending
aorta. Correspondingly, a region of interest with a radius of
approximately 70% of the aorta radius was fitted to calculate
the average attenuation in the ascending aorta and exclude
possible edges and calcifications in the vessel wall. In cases

in which the tool did not detect the ascending aorta, the loca-
tion was selected manually. The attenuation value in the as-
cending aorta was used as a proxy of the attenuation in the
coronary arteries. It should be noted that the attenuation in the
ascending aorta is slightly higher than that in the coronary
arteries. Previous research has shown that there is a strong
association between attenuation in the ascending aorta and
coronary arteries with a mean decay of 25 HU expected from
the ascending aorta to the proximal coronary arteries and of 50
HU to the distal coronary arteries [8]. Therefore, the cutoff
value for adequate attenuation in the ascending aorta for this
study was 400 HU.

Model development

The models were trained to predict insufficient luminal atten-
uation in the ascending aorta. Insufficient attenuation was de-
fined as an average attenuation lower than 400 HU within the
region of interest. ML techniques were used to deal with both
linear and nonlinear interactions between the included fea-
tures. These techniques included the following: logistic re-
gression (LR), random forest (RF), extreme gradient boosting,
support vector machines, and neural networks. To assess the
added value of extracting information from the test bolus, we
performed two experiments: only patient features with CT
settings and, additionally, also including the test bolus fea-
tures. Both experiments followed the same methods and only
differed in the features included.

We used stratified 10-fold cross-validation (CV) for the
development and evaluation of the MLmodels. In some cases
where CTs from the same patient were split into training and
test set, the CTs were removed from the training set to avoid
patient data leakage. The training set was also used to find the
optimal hyper-parameters using a grid search with another 5-
fold CV. For model selection after the hyper-parameter opti-
mization, the models with the largest average area under pre-
cision (positive predictive value) and recall (sensitivity)
curves were selected. The testing folds were not used during
the training steps.

To deal with the missing values, we used MissForest, an
iterative technique based on random forests [16] for impu-
tation. The imputation model was created with the training
data only to avoid data leakage. As a requirement for some
of the ML techniques, the continuous features were stan-
dardized by removing their mean and scaling to unit
variance.

Detailed information about the selected classifiers and
hyper-parameters used for optimization is available in the
Supplementary Material Tables I and II. The analysis was
performed with Python (Python Software Foundation, version
3.6, www.python.org) using the scikit-learn [17] and
XGBoost [18] packages.
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Model evaluation

The area under the receiver operating characteristic (AUROC)
and precision-recall curves (AUPRC) were used to evaluate
the models. As a 10-fold CV was applied, we computed the
averages and 95% confidence interval (CI) for each model.
The Wilcoxon signed-rank test was performed to assess
whether the difference in AUROC and AUPRC between the
prediction models with and without using the test bolus fea-
tures are statistically significant (p-value < 0.05).

Model interpretation

For the visualization of the importance of included features in
the prediction analysis, the Shapley Additive exPlanations
(SHAP) framework was used [19]. For each of the features,
the feature importance (SHAP value) was calculated by mak-
ing predictions excluding that feature. This value describes
how it affects the prediction probability. The larger the
SHAP value, the more it affects the prediction. Additionally,
the values can be either positive, for low attenuations, or neg-
ative, for regular attenuations.

The SHAP values were computed for the entire population.
In addition, for a better understanding of the effect of the
features per tube voltage, we also computed the SHAP values
per tube voltage group (70–120 kV).

Results

A total of 1,447 scans from 1,364 patients were included in the
analysis. Of these scans, 399 (27%) were considered to have
insufficient attenuation. Figure 2 displays an example of
CTCAs with insufficient (227 HU), accurate (433 HU), and
high (595 HU) attenuation. The tool for automated ascending
aorta detection failed in less than 1% of the cases. Baseline
and descriptive features are shown in Table 1 and average
attenuation values per tube voltage are shown in Table 2.
The relationship between patient weight and mean attenuation
per kV group is shown in Supplementary Material Figure I.
Despite the already-applied correction for kV and body
weight in our acquisition protocol, there was considerable
variation between patients.

The AUROC and AUPRC together with corresponding
95% CI for all experiments are shown in Table 3. The models
with the highest average accuracies were trained with RF and
had an AUPRC of 0.71 (95% CI: 0.66–0.76) and AUROC of
0.84 (95% CI: 0.81–0.87), with a sensitivity of 0.66 and spec-
ificity of 0.88 (Fig. 3). Notably, these models included the test
bolus features. Regarding the models without the test bolus
features, the best performing model was also achieved by the
RF model. In comparison, this model had an AUROC of 0.78
(95% CI: 0.73–0.83) and AUPRC of 0.65 (95% CI: 0.58–
0.71). The differences between the AUROC and AUPRC
values for the various models using the test bolus features

Fig. 1 Dynamic bolus tracking of the test-bolus scan example. An ROI is
used to measure the attenuation at the level of the ascending aorta below
the level of the carina (a, 1). The curve (b) represents the measured values

over time. Time-to-start-curve (blue dashed line) in seconds, time-to-peak
(red dashed line) in seconds, and peak height (green dashed line) in HU
where t = 0 corresponds to 8 s after contrast media injection
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were not statistically significant. The AUROC difference of
the prediction models between using and not using the test
bolus features was statistically significant (p value = 0.027).
The difference in AUPRC between the two models was not
statistically significant (p value = 0.23).

The SHAP summary plot is presented in Fig. 4, showing
only the features related to the CM protocol. As might be
expected, it shows that high tube voltages are strongly associ-
ated with low attenuations. Furthermore, higher body weights
and lower IDR also result in higher chances of insufficient
attenuation. As the contrast delivery protocol, used in this
study, adjusted the IDR for kV settings and body weight, the
effect of these features was evaluated in each tube voltage
group (Fig. 5). The kV categories of 70, 80, and 90 kV are
associated with intended attenuation values (with a negative

SHAP value) and 100, 110, and 120 kV with lower attenua-
tion values (with a positive SHAP value).

Figure 6 shows the SHAP values of all features used in the
model. Of all these features, the peak height of the test bolus
contrast curve is the most impactful feature (with low peak
height associated with low attenuation) followed by body
height (high body height values associated with low attenua-
tion). Regarding the protocol features, the tube voltage is the
third most important.

Discussion

In this study, we have shown that ML models are accurate in
predicting low attenuation scans. Moreover, in the setting of a
patient-specific contrast delivery protocol adjusting the IDR
for kV setting and body weight, the peak height of the test
bolus curves is the most impacting feature for the model.
Including the test bolus features, the prediction accuracy of
the models increased, compared to models using only patient
features and CT settings. This highlights the association of the
test bolus features, specifically the peak height of the test
bolus attenuation curve with luminal attenuation and this
should be considered when further refining contrast protocols.

In our population, attenuation was inversely associated
with kV, despite IDR adjustment for kV settings. These results
suggest that it is worth adjusting the IDR even more for kV in
our clinical protocol. However, such extra IDR adaptation for
kV cannot account for the interplay of other settings on IDR
and image quality as indicated by the results showing that

Table 1 Descriptive statistics of
the study group, mean ± SD or
N (%)

Missing (n) Low attenuation

(n = 399)

Regular attenuation
(n = 1048)

Age (years) 374 55.7 ± 11.8 52.8 ± 12.2

Sex (female) 374 494 (62%) 101 (37%)*

Height (cm) 568 171 ± 10 177 ± 10*

Weight (kg) 556 77 ± 14 86 ± 19*

Average heart rate (bpm) 0 61.9 ± 10.2 61.6 ± 11.2

Iodine delivery rate (g I/s) 0 1.5 ± 0.3 1.5 ± 0.3*

Tube voltage (kV) 70 0 357 (34%) 111 (28%)*

80 426 (41%) 110 (28%)

90 214 (20%) 75 (19%)

100 29 (3%) 39 (10%)

110 18 (2%) 23 (6%)

120 4 (0%) 41 (10%)

Total iodine load (g) 0 16.0 ± 2.8 15 ± 2.7

Peak height-test bolus (HU) 0 127 ± 40 95 ± 35*

Time to peak-test bolus (s) 0 8.5 ± 2.7 9.6 ± 3.4*

Time to start-test bolus (s) 2 3.4 ± 1.9 4.3 ± 2.4*

*p < 0.001, two-sample T-test or chi-square, as appropriate

Table 2 Average and standard deviation of the attenuations per tube
voltage group

Tube voltage (kV) Low attenuation Regular attenuation

n Attenuation (HU) n Attenuation (HU)

70 111 350 ± 37 357 522 ± 41

80 110 342 ± 35 426 499 ± 37

90 75 348 ± 34 214 506 ± 36

100 39 347 ± 35 29 484 ± 36

110 23 340 ± 27 18 473 ± 33

120 41 312 ± 36 4 431 ± 44
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multiple parameters influence image quality, most likely in a
non-linear fashion. In a previous study, we showed that the
patient-tailored contrast delivery protocol contributed to re-
duced variation in contrast attenuation in the coronary arteries.
However, despite the correction for kV and bodyweight, there
remained considerable variation between patients, and coro-
nary attenuation was not sufficiently high in all patients to
assure accurate radiologic assessment. Therefore, our study
suggests that a straightforward correction for kV settings and
body weight underestimates the complexity of the scanning
parameters, which do not take the interaction of other param-
eters with the IDR into account.

Although the peak height of the test bolus was already
found significantly associated with image quality in other
studies, in this study, we aimed at the application of AI to
predict too low coronary artery attenuation in a clinical setting
with a contrast protocol adjusted for body weight and kV. The
strong association of the test bolus and optimal enhancement
in the ascending aorta on the CCTA is not surprising because
of its similar signal. However, the test bolus is a small volume
of contrast. A longer bolus results in accumulation and there-
with a higher plateau of attenuation. The filling timewill result
in this plateau feature. The form of this upslope and plateau
may vary, most likely concerning time to peak and peak value.

Fig. 2 Examples of CTCA scan (axial slice through the ascending aorta above and curved multiplanar reconstruction of the right coronary artery below)
of patients with low (a), accurate (b), and high (c) attenuation. The images are displayed with a window width of 800 and a window level of 200

Table 3 Evaluation of the low
attenuation detection models with
95% confidence interval. AUPRC
= area under the precision-recall
curve, AUROC = area under the
receiver operating characteristic
curve

Model/metric Including patients features CT settings
and test bolus features

Including patients features and
CT settings

AUPRC AUROC AUPRC AUROC

Logistic regression 0.70 (0.63–0.76) 0.83 (0.79–0.87) 0.62 (0.55–0.68) 0.77 (0.72–0.82)

Random forest 0.71 (0.66–0.76) 0.84 (0.81–0.87) 0.65 (0.58–0.71) 0.78 (0.73–0.83)

XGBoost 0.70 (0.66–0.75) 0.83 (0.80–0.87) 0.64 (0.59–0.69) 0.78 (0.74–0.82)

Support vector machines 0.67 (0.62–0.73) 0.82 (0.78–0.86) 0.56 (0.50–0.63) 0.75 (0.70–0.80)

Neural networks 0.69 (0.63–0.74) 0.82 (0.79–0.86) 0.61 (0.55–0.68) 0.76 (0.71–0.80)
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Model performance

We evaluated five differentML techniques and the differences
between the accuracy of these models were not statistically
significant. All evaluated ML techniques used in this study
seem to be able to identify insufficient contrast cases, includ-
ing LR, which only takes linear relationships between features
and outcome into consideration. Using as reference the RF
model, with a sensitivity of 0.66 and specificity of 0.88, we
can identify 263 (from 399) CTs with a relatively small num-
ber of false positives (125). Additionally, the prediction prob-
ability threshold could be adjusted to have higher sensitivity at
a cost of lowering the specificity.

Comparison with previous studies

Multiple studies aim to use ML to improve the CT acquisition
process and image quality [20]. Also, some studies aimed on
developing patient-tailored CM protocols using the test bolus

features in 100–120 kV scans, not covering the currently
available kV range 70–120 kV [21, 22].

Besides the use of test bolus, some studies use tailored CM
protocols with (automatic) bolus tracking. Martin et al [23]
evaluated the feasibility of a vendor’s software using a tube
voltage-tailored CM application, which still resulted in more
than 25% of the CTAswith attenuations in the ascending aorta
below 400 HU. In another study with bolus tracking, Yin et al
[24] evaluated protocols tailored for BMI or BSA, and, either
way, cases of insufficient attenuation in the aorta occurred.
The use of AI, as presented in the current study, could poten-
tially improve different protocols by automatically detecting
cases with insufficient attenuation when using a test bolus
protocol.

Limitations

This study was performed with a relatively large cohort; how-
ever, due to the retrospective nature of the study design, some

Fig. 3 Average receiver operating characteristic (left) and precision-recall curves (right) with 95% confidence interval for models trained with patient
features, CT settings, and test bolus features and with only patient features and CT settings. RF = random forest, AUC = area under the curve

Fig. 4 Importance of the CM protocol features (average on the test folds)
using SHAP values. The amplitude of the SHAP value indicates the
feature importance for the prediction (positive values mean low

attenuation). The colors represent the values of the features, with red for
high values and blue for low values. CM = Contrast material
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patient-specific features were incomplete. Furthermore, this is
a single-center study and the CTCAs were acquired with a
specific protocol, making the ML models not generally suit-
able for different protocols without re-training them with ad-
ditional data. Also, the selected cutoff value, 400 HU for the

ascending aorta is arbitrary. However, it should be noted that
this value is not the only marker of high-quality coronary
CTA. Moreover, the quality was addressed by the
(objective) attenuation assessment whereas the quality could
also have been addressed by the (subjective) radiologist’s

Fig. 5 Importance of the CM protocol features (average on the test folds)
using SHAP values divided by tube voltage group. The amplitude of the
SHAP value indicates the feature importance for the prediction (positive
values mean low attenuation). The colors represent the values of the

features, with red for high values and blue for low values. Note that
there is only one color for the tube voltage since there is only one tube
voltage per group. CM = Contrast material

Fig. 6 Importance of all features
included in the model (average on
the test folds) using SHAP values.
The amplitude of the SHAP value
indicates the feature importance
for the prediction (positive values
mean low attenuation). The colors
represent the values of the
features, with red for high values
and blue for low values. CM =
Contrast material
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rating. However, it should be noted that this value is not the
only marker of high-quality coronary CTA. Moreover, the
quality was addressed by the (objective) attenuation assess-
ment whereas the quality could also have been addressed by
the (subjective) radiologist’s rating.

Regarding the ML techniques used in this study, all models
tested achieved similar accuracies. It might be explained by the
limited number of features considered for this analysis. The
addition of more features, such as information extracted from
the test scan or engineered features, would add additional value
that could be exploited by the techniques that can handle a large
number of features and nonlinearities. Although attenuation is
an important topic regarding image quality of CCTAs, it does
not cover image quality completely. Noise, artifacts, or quali-
tative quality assessments were not considered in this study.

The model can accurately predict low attenuation retrospec-
tively in a large population. Therefore, the current study should
be conceived as a proof-of-concept study to predict low atten-
uation. The effectiveness of the proposed prediction model
needs to be addressed in a subsequent prospective study.
Also, the extent to which the IDR should be adjusted was
beyond the scope of this study. Regression models to estimate
the attenuation itself, instead of a binary classification, may be a
solution. With a correct estimation of the attenuation, the IDR
could be adjusted such that the predicted attenuation is close to
acquired luminal attenuation that should be close to the desired
value. This approach will be explored in a further study.

Although the peak height of the test bolus was already
found significantly associated with image quality in other
studies [8, 9], in this study, we aimed at the application of
AI to predict too low coronary artery attenuation in a clinical
setting with a contrast protocol adjusted for body weight and
kV. The strong association of the test bolus and optimal en-
hancement in the ascending aorta on the CCTA is not surpris-
ing because of its similar signal. However, the test bolus is a
small volume of contrast. A longer bolus results in accumula-
tion and therewith a higher plateau of attenuation. The filling
timewill result in this plateau feature. The form of this upslope
and plateaumay vary, most likely concerning time to peak and
peak value.

An infrequent but important factor for inadequate contrast
media arrival is dynamic venous compression in the thoracic
outlet region. Although technicians are trained in patient po-
sitioning to avoid venous compression for optimal contrast
dynamics, dynamic venous compression can not be ruled
out entirely and this might have also contributed to low atten-
uation in some patients, which is not accounted for in the
current analysis.

Clinical implications

Current fixed CM delivery protocols may be too simple for
adequate contrast enhancement in CTCA. An important step

in improving patient-tailored contrast delivery protocols is to
understand why and when current approaches fail. Predicting
when the protocol is potentially failing is the first step to
develop more robust protocols. With the models developed
in this study, insufficient attenuation can accurately be pre-
dicted and adjustments (such as increasing the IDR) can be
performed to avoid too low attenuation. This study also shows
the potential value of the information that can be extracted
from the test bolus which can be incorporated in more ad-
vanced and robust protocols.

Conclusion

We demonstrate that ML is accurate in the prediction of
CCTA with insufficient attenuation on our local imaging pro-
tocol. We have shown that, in a protocol already adjusting for
kV and body weight, the most impacting feature for the ML
model is the peak height of the test bolus curve. Our findings
support the development of more refined and more robust
patient-tailored contrast delivery protocols with the inclusion
of test bolus features. Also, it should be noted that the ap-
proach is general and could be applied to a wide range of
scanning protocols.
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