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Anlotinib is an oral small molecule inhibitor of multiple receptor tyrosine kinases (RTKs),
which was approved by the National Medical Products Administration (NMPA) of China in
2018 for the third-line treatment of non-small cell lung cancer (NSCLC). Here, for the first
time, the longitudinal pharmacometabonomics was explored for predicting malignant
tumor patient responses to anlotinib, including the metabolic phenotype variation, drug
efficacy, and toxicity. A total of 393 plasma samples from 16 subjects collected from a
phase I additional study of anlotinib (NCT02752516) were submitted to targeted
metabolomics analysis. The orthogonal partial least-squares discriminant analysis
(OPLS-DA) models were constructed for the predication of anlotinib efficacy and
toxicity based on the longitudinal pharmacometabonomics data. Statistical results
showed that 38 metabolites, mainly involved in aminoacyl-tRNA biosynthesis, alanine,
aspartate, and glutamate metabolism, and steroid hormone biosynthesis, were all
significantly upregulated attributing to anlotinib treatment. The anti-tumor efficacy and
occurrence of proteinuria after anlotinib administration can be predicted with 100%
accuracy using the established OPLS-DA models. Glycodeoxycholic acid and
glycocholic acid possessed the most excellent sensitivity and specificity in predicting
the efficacy of anlotinib, with area under the receiver operating characteristic curve (AUC of
ROC curve) 0.847 and 0.828, respectively. NG, NG-dimethylarginine was the most
promising biomarker for the prediction of proteinuria occurrence after anlotinib
administration, with AUC of ROC curve 0.814. In conclusion, this work developed
efficient and convenient discriminant models that can accurately predict the efficacy
and toxicity of anlotinib based on longitudinal pharmacometabonomics study.

Keywords: pharmacometabonomics, anlotinib, phenotype, efficacy, toxicity, ultra-high performance liquid
chromatography-tandem mass spectrometry
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INTRODUCTION

Anlotinib is an oral small molecule inhibitor of multiple receptor
tyrosine kinases (RTKs) developed by Jiangsu Chia-Tai Tianqing
Pharmaceutical and Advenchen Laboratories for the treatment
of advanced cancer (1). It was designed to primarily inhibit
vascular endothelial growth factor receptors (VEGFRs) 2 and 3,
fibroblast growth factor receptors (FGFRs) 1–4, platelet-derived
growth factor receptors (PDGFRs) a and b, c-Kit and Ret, which
brought it a broad spectrum of inhibitory effects on tumor
angiogenesis and growth (1–3). It was approved by the
National Medical Products Administration (NMPA) of China
in 2018 for the third-line treatment of non-small cell lung cancer
(NSCLC) (1). Anlotinib is also undergoing clinical trials for the
treatment of various sarcomas and carcinomas in China, USA,
and Italy (1, 4–6). The development of anlotinib is a major
breakthrough in the Chinese history of anti-tumor drugs.

The pharmacokinetic characteristics of anlotinib have been
elucidated by the first-in-human, open-label phase I study
(NCT01833923) in subjects with advanced refractory solid
tumors (7). The time for the blood concentration to reach the
peak was 7.3 h after a single dose of 12 mg anlotinib. The
elimination of anlotinib was very slow, with an elimination half-
life of 98 h. The long half-life resulted in marked accumulation of
the drug over time. Anlotinib 12 mg once-daily on the first 14
days of each 21-day cycle showed promising anti-tumor activity.
This 2-week on/1-week off administration protocol was defined
as one treatment cycle and ultimately used in the clinical
practice. In the phase I study (NCT01833923), all the subjects
experienced adverse events (AEs). The most common grade 3
AEs related to anlotinib were proteinuria, hypertension, fatigue,
dyslipidemia, and hand–foot skin reactions (2, 8, 9). Though, it
was revealed that anlotinib administration showed less and
milder diarrhea than other oral anti-VEGFR receptor tyrosine
kinase inhibitors (10–12). It should pay attention that patients
undergoing anlotinib treatment still had a high occurrence of
AEs. At present, regular monitoring of patients was the only way
to detect AEs caused by anlotinib (2, 13). More accurate and
specific method needs to be developed for the early prediction of
AEs caused by anlotinib treatment.

Personalized medicine is the choice of medicines for subgroups
or even individual patient, aiming to maximize drug efficacy and
minimize toxicity. It is a key goal of the 21st century healthcare (14,
15). Pharmacometabonomics is the profiling of metabolite levels in
biofluids or tissues to predict the benefits and toxicity of a drug
intervention (14, 15). It has emerged as an important tool of
personalized medicine in the past decade, applying for discovering
the therapeutic mechanism, predicting efficacy and AEs of a drug
(14). As the patients’ responses to drugs are influenced by both
genetic and environmental elements, the pharmacometabonomics
plays an increasing important role in personalized medicine because
of its sensitivity to both genes and environment (15). It has
been successfully used for the prediction of drug metabolism,
efficacy, and toxicity (16–20). Recent applications of
pharmacometabonomics have extended to the use of longitudinal
sampling from clinical trials of new drugs (21). Unlike the
traditional pharmacometabonomics study, which was the use of
Frontiers in Oncology | www.frontiersin.org 2
pre-dose metabolomics data to predict drug disposition, the
longitudinal pharmacometabonomics conducted metabolomics
profiles prior to, during, and after drug intervention to stratify the
patient in terms of prediction of response to future treatment
(21, 22).

In this study, the utility of longitudinal pharmacometabonomics
was explored for predicting malignant tumor patient responses to
anlotinib, including themetabolic phenotype variation, drug efficacy
and toxicity. Plasma samples were collected from a phase I
additional study of anlotinib (NCT02752516) (23). A robust and
single-injection targeted metabolomics profiling method was used
for metabolites quantification in the plasma samples by ultra-high
performance liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS). Finally, 181 metabolites were successfully
quantified from the plasma and their concentrations were further
applied for statistical analysis. Metabolic phenotype and pathway
variation related to anlotinib treatment were explored. The
orthogonal partial least-squares discriminant analysis (OPLS-DA)
models were established for the predication of efficacy and toxicity
of anlotinib based on the longitudinal pharmacometabonomics
data. The OPLS-DA models were further evaluated by both
internal and external validation.
MATERIALS AND METHODS

Chemicals and Reagents
Unlabeled metabolite standards (Supplementary Table S1) were
purchased from Sigma-Aldrich (St. Louis, MO, USA), Cayman
Chemical (Ann Arbor, MI, USA), Bidepharm (Shanghai, China)
or Steraloids (Newport, RI, USA). Stable isotope-labeled internal
standards (ISs) were purchased from Cambridge Isotope
Laboratories (Cambridge, MA, USA). Acetonitrile (MS grade)
and isopropyl alcohol (HPLC grade) were purchased from Fisher
Scientific (Pittsburgh, PA, USA). Formic acid (HPLC grade) was
obtained from TEDIA Co., Inc. (Fairfield, OH, USA). A Milli-Q
purification system (Bedford, MA, USA) was used for the
preparation of ultrapure water.

Study Population
All the plasma samples employed in this longitudinal
pharmacometabonomics study were collected from a phase I
additional study of anlotinib. This phase I clinical trial of
anlotinib was conducted in the Cancer Hospital, Chinese
Academy of Medical Sciences and Peking Union Medical College.
The clinical trial was approved by the Chinese government with a
clinical trial registration number CTR20160544. It was also
registered on the ClinicalTrials.gov with registration number
NCT02752516. Detail information of this clinical trial of anlotinib
can be found on the internet (http://www.chinadrugtrials.org.cn/
and https://clinicaltrials.gov/) by entering the clinical trial
registration number. Dosage selection for this clinical trial was
based on preclinical pharmacological and toxicological
experimental results. Patients with pathologically and/or
cytologically proven advanced cancer with no standard therapy
were included in the clinical trial. Eligibility criteria included ages
18–65, ECOG PS 0–1, and an estimated survival duration of more
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than 3 months. Patients who had used other chemotherapy drugs
needed to stop for at least 30 days; patients who had received major
surgery needed to rest for at least 4 weeks. The dosage selection,
inclusion and exclusion criteria of this clinical trial were described in
detail in a previous report (7).

393 plasma samples from 16 subjects in this phase I study
were applied to longitudinal pharmacometabonomics study. A
single dose of 12 or 16 mg anlotinib/person was orally
administered to all the 16 subjects in the single-dose study.
Serial blood samples were collected in heparinized tubes at 1, 2, 4,
8, 11, 24, 48, 72, 120, 168, and 240 h after dosing. Ten days after
the single dosing, all the 16 volunteers were given multiple doses
of anlotinib at 12 mg anlotinib/person/day for two cycles, with
twenty-one days for each treatment cycle. Blood samples were
collected on days 1, 4, 7, 10, 14, 18, 21, 22, 25, 28, 31, 35, 38, and
42 in the multiple-dose study. A summary of the time points of
drug administration and blood collection program was shown in
Figure 1. The subject numbered 008 withdrew from the trial on
day 22 of multiple-dose study due to serious adverse events
(SAEs). The remaining 15 subjects completed the entire clinical
trial. If the subjects benefited from the trial, they would continue
to use anlotinib after the clinical trial with the 2-week on/1-week
off administration protocol and were followed up. Efficacies were
evaluated according to NCI-proposed Response Evaluation
Criteria in Solid Tumors (RECIST 1.1) every two cycles of the
administration protocol. AEs were graded into 0–5 according to
the National Cancer Institute Common Terminology Criteria for
Adverse Events (NCI-CTCAE 4.0). Subjects with unresolved AEs
at the end of the trial needed to be treated and followed until the
reactions returned to the grade 1 degree or less, or stable.

This study was conducted in accordance with the Declaration
of Helsinki, International Conference on Harmonization (ICH)
and Good Clinical Practice guidelines. All study documentations,
such as study protocol and consent forms, were reviewed and
approved by the Institutional Review Board of Cancer Hospital
before the initiation of the clinical trial. The longitudinal
pharmacometabonomics study was conducted in Beijing Chao-
Yang Hospital affiliated with Capital Medical University. As the
Frontiers in Oncology | www.frontiersin.org 3
plasma samples used in this pharmacometabonomics study were
the remaining samples from the pharmacokinetic study, the
longitudinal pharmacometabonomics study met the conditions
for exemption from informed consent and was approved by the
ethics committee of Beijing Chao-Yang Hospital (ethical
approval number: 2019-Research-144).

Sample Pretreatment
IS mixture solution was prepared by mixing eight isotopic IS,
with final concentration of 400 ng ml−1 for each. Standard
mixture solution was prepared from all the standards listed in
Supplementary Table S1. The working solution was stepwise
diluted with methanol to prepare standard curve with
concentrations of 0.2, 0.5, 2, 5, 20, 50, 100, 200, 500, 1,000,
2,000, and 5,000 ng ml−1. Finally, each 50 ml standard mixture
was successively spiked with 50 ml water, 10 ml IS mixture, and
90 ml methanol to get the standard curve samples.

Plasma samples were pretreated using protein precipitation
method as previously reported in the literature (24). Simply, each
50 ml plasma was mixed with 10 ml IS mixture and 140 ml methanol.
The resulting mixture was then vortex-mixed for 2 min and
centrifuged at 13,800 g for 10 min at 4°C. The supernatants were
collected for UHPLC-MS/MS analysis. Quality control (QC)
samples mixed by equal aliquot of plasma from all the tested
samples were processed as real samples and inserted into the
analysis sequence to check the stability of sample pretreatment
procedure and instrumental system.

Instrumental Analysis
A Spark Holland liquid chromatography system (Spark,
Holland) coupled with an API 5500 mass spectrometer (AB
Sciex, Canada) with a Turbo Ionspray electrospray ionization
(ESI) source was used for targeted metabolomics analysis.
Metabolomics analysis was conducted according to the
previously reported method (24). A HSS T3 (150 mm ×
2.1 mm, 3.5 mm) was selected for chromatographic separation.
The column temperature was maintained at 20°C, and the
injection volume was 5 ml. Solvent A was water containing
FIGURE 1 | The timeline of drug administration and blood collection. Numbers in the orange boxes represented the time. The black arrows below the timeline
indicated the points at which the blood samples were collected, and the blue texts indicated the corresponding sample number. The upper panel was timeline of the
single-dose study, and the lower panel was timeline of the multiple-dose study. C2D1-B and C2D1-A represented the time points 24 h before and 24 h after the first
administration in the second cycle, respectively.
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0.1% formic acid. Solvent B was acetonitrile/isopropyl alcohol in
a 7:2 (v/v) ratio. The flow rate was 0.5 ml min−1. The elution
gradient was set as follows: 0–4 min, 1–10% B; 4–8 min, 10–50%
B; 8–15 min, 50–80% B; 15–25 min, 80–100% B; 25–27 min,
100–100% B. The elution condition was returned to the initial
state over a period of 2 min.

All the metabolites were analyzed in a single-injection using
both negative and positive modes with scheduled multiple reaction
monitoring (s-MRM). Electrospray voltage was −4,500 V for
negative scan and 5,500 V for positive scan. Source temperature
was 600°C. GS1 was 60 psi. GS2 was 60 psi. Curtain gas was 40 psi.
The MRM parameters of metabolites were listed in
Supplementary Table S1.

Data Processing and Statistical Analysis
Raw data files of UHPLC-MS/MS analysis were processed using
MultiQuant software (version 3.0.2, AB SCIEX, Canada).
Concentrations of the metabolites with commercial standards
were calculated by the least-squares method with a 1/x2

weighting factor. For some acyl carnitines and fatty acids
without standards, their relative concentrations were calculated
according to the peak area ratio of an analyte to the
corresponding IS. SIMCA 14.1 (Umetrics AB, Umeå, Sweden)
was employed for principle component analysis (PCA) and
OPLS-DA analysis. IBM SPSS 21 (Armonk, New York, United
States) was employed for t-test, and P < 0.05 was set as the level
of statistical significance. Box plot analysis and receiver operating
Frontiers in Oncology | www.frontiersin.org 4
characteristic curve (ROC) analysis were conducted in an open
source tool of MetaboAnalyst 4.0 (HYPERLINK: https://www.
metaboanalyst.ca/).
RESULTS

Overview of the Targeted Metabolomics
Method and Data Quality
A targeted metabolomics method established in our laboratory
was used for metabolites quantification in plasma samples (24).
As shown in Figure 2A, a total of 289 metabolites of biological
activity were covered in this targeted metabolomics method. All
these 289 metabolites can be quantified in a single-injection of
27 min using both negative and positive modes with rapid
polarity switching. The limits of quantitation (LOQs) ranged
from 0.02 to 100 ng ml−1 (Figure 2B), depending on the
chemical structures. Over 90% of the metabolites had LOQs
lower than or equal to 10 ng ml−1, which guaranteed the
successful detection of low abundance compounds. Other
analytical parameters, including stability, linearity, and
dynamic range were all carefully investigated (Supplementary
Table S1). All these parameters can meet the requirement of
accurate quantification.

All the 393 plasma samples harvested from the anlotinib
phase I study (NCT02752516) were applied for metabolomics
analysis. Finally, a total of 181 metabolites were detected and
A B

D

E

C

FIGURE 2 | (A) Metabolites coverage of the targeted metabolomics method. (B) LOQs of the metabolomics method. (C) Performance of pooled plasma QC
samples during sequence analysis. (D) Total ion currents (TICs) of plasma samples. (E) PCA and OPLS-DA score plots of 393 plasma samples from 16 subjects.
OPLS-DA model was validated by random permutation test with 100 iterations. No overfitting was observed.
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quantified in the plasma samples. The chromatograms of plasma
sample were shown in Figure 2D. Pooled plasma QC samples
were evenly interspersed throughout the sample analysis
procedure to monitor the deviation introduced from sample
pretreatment and instrumental analysis. The relative standard
deviation (RSD) values of the QC samples were shown in Figure
2C. RSD values of all metabolites in QC samples were less than
30%, with more than 85% of them less than 20%. The good
performance of pooled QC samples indicated that the
metabolomics data achieved in this study was reliable and can
be further used for statistical analysis.

Longitudinal Metabolic Fingerprints
of the Subjects
In order to explore the differences of metabolic fingerprints of
the subjects at different time points, metabolite concentrations of
the 393 plasma samples of all time points from 16 subjects were
introduced to statistical analysis. Both PCA and OPLS-DA were
applied to integrate and coanalyze all observations from plasma
samples to investigate the longitudinal metabolic fingerprints of
the subjects. The score plots of PCA and OPLS-DA were shown
in Figure 2E. Individuals were used as the grouping basis and
dots of the same color represented samples of one subject at
different time points. As shown in the figure, plasma samples of
the same subject segregated into tight cluster in both
unsupervised PCA and supervised OPLS-DA, which indicated
the longitudinal metabolic fingerprint of the same subject was
relatively stable in different time points of anlotinib treatment.
The metabolic changes caused by individual differences of
subjects were greater than the metabolic disturbance caused by
anlotinib treatment.

Most of the samples from subject 008 were outside the 95%
confidence interval (CI) of both PCA and OPLS-DA score plots
(Figure 2E). These indicated the significant differences of
metabolic fingerprints between subject 008 and the other
subjects, which were supposed to be correlated to the
adverse clinical outcome. Subject 008 withdrew from the trial
on day 22 in multiple-dose study due to SAEs of anemia,
fatigue, and urinary infection. This subject later died of
tumor progression.

Metabolic Phenotype Variation Related to
Anlotinib Treatment
According to the pharmacokinetic results of single-dose
administration, anlotinib reached its maximum plasma
concentration in 4–11 h after dosing, then it was eliminated
slowly with mean residence time (MRT) ranged from 124 to
167 h (7). The multiple-dose study using 2-week on/1-week off
administration protocol brought continuously increased plasma
concentration of anlotinib in subjects in the first 2 weeks and the
maximum plasma concentration occurring on day 14 (C1D14
and C2D14) of the twenty-one days treatment cycle.
Subsequently, the plasma concentration of anlotinib apparently
decreased with a 7-day washout until the beginning of the next
2-week on/1-week off treatment cycle (7). Blood concentrations
(ng ml−1) of anlotinib at different time points were shown in
Frontiers in Oncology | www.frontiersin.org 5
Table S2. In order to explore the metabolic phenotype variation
induced by anlotinib treatment, the metabolomics data of plasma
sample at SH1 (1 h after the first anlotinib dosing) was compared
with the metabolomics data at C1D14 and C2D14 (with
maximum drug concentration). The time points C1D14 and
C2D14 possessed the maximum plasma concentration of
anlotinib (Table S2, Figure S1), which corresponded to the
14th day of the first and second treatment cycles, respectively
(Figure 1).

Paired t-test was first conducted to capture the most
significantly changed metabolites between SH1 and C1D14,
with all the 16 subjects included. A total of 48 metabolites
were found to be significantly changed (P < 0.05) between SH1
and C1D14 (Supplementary Table S3). All the significantly
changed metabolites were subjected to MetaboAnalyst 4.0 for
pathway analysis, with result shown in Figure 3A. Fifteen
metabolic pathways were obviously disturbed, with their
pathway names, P values, and pathway impact factors listed in
Supplementary Table S4.

To further validate whether the significantly changed
metabolic phenotypes between SH1 and C1D14 were caused
by anlotinib treatment, the metabolic phenotype of C2D14 was
also compared with the SH1 by paired t-test. A total of 52
metabolites were found to be significantly changed between SH1
and C2D14 (Supplementary Table S5). Pathway analysis was
also conducted using these 52 metabolites, with result shown in
Figure 3B. A total of 14 metabolic pathways were obviously
disturbed, with their pathway names, P values, and pathway
impact factors listed in Supplementary Table S4. Of the 48
significantly changed metabolites of SH1-C1D14 and 52
significantly changed metabolites of SH1-C2D14, 38
metabolites were shared by both (Table S6). A Venn diagram
showing the numbers of the significantly changed metabolites
was presented in Figure 3C. Of all the significantly disturbed
metabolic pathways, fourteen were shared by both SH1-C1D14
and SH1-C2D14 (Table S4). The statistical results of SH1-
C1D14 and SH1-C2D14 possessed a high degree of similarity.
Inherent metabolic phenotype variations had taken place owing
to the treatment of anlotinib. L-tyrosine, cortisol, succinate,
pregnenolone, 4-hydroxyphenylpyruvate, and L-glutamine
were the mostly significantly changed metabolites (Table S6).
The concentration trends of these six metabolites on the time
points of SH1, C1D14, and C2D14 were shown in Figure 3D. All
these six metabolites possessed lower concentrations at the
beginning of anlotinib administration (SH1) and further
increased to a higher level after achieving the maximum
plasma anlotinib concentration (C1D14 and C2D14). A typical
concentration trend of L-tyrosine across all the time points was
shown in Supplementary Figure S2. Although L-tyrosine can be
affected by exogenous foods, the concentrations of L-tyrosine still
exhibited an obvious correlation with the anlotinib
administration cycle. L-tyrosine achieved its highest
concentration at the time points of Cmax. A summary of the
metabolic pathway disturbances related to anlotinib treatment
was shown in Figure 4. All the metabolic pathways were
significantly upregulated by anlotinib treatment.
November 2020 | Volume 10 | Article 548300
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Identification of Potential Biomarkers
Associated With the Efficacy of Anlotinib
According to the RECIST 1.1 criteria, 13 of the 16 subjects had
target lesions and two of 16 had non-target lesions due to bone
metastases. Subject 008 withdrew from the trial because of SAEs.
Therefore, only 13 subjects were able to obtain the final objective
remission rate data. The best curative effect is an important
evaluation index of objective remission rate of tumor. It can be
calculated by the formula:

Best curative effect =
(minimum value of  tumor volume − baseline value of  tumor volume)� 100%

baseline value of  tumor volume
:

The best curative effects of the 13 subjects were shown in
Supplementary Table S7. All these 13 subjects were divided
into a good efficacy group (n = 6) and a poor efficacy group
(n = 7) according to their best curative effects. The good efficacy
group achieved a best curative effect data better than −10%, while
the poor efficacy group achieved a best curative effect data poor
Frontiers in Oncology | www.frontiersin.org 6
than −10%. A summary of the clinical characteristics and
pharmacokinetic parameters of the 13 subjects was listed in
Table 1. Both the baseline clinical characteristics and
pharmacokinetic parameters showed no significant correlations
with the efficacy of anlotinib.

Longitudinal pharmacometabonomics data was employed for
the identification of potential biomarkers associated with the efficacy
of anlotinib. Due to the limited number of the subjects included in
this study and the relatively stable longitudinal metabolic fingerprint
of the same subject in different time points of anlotinib treatment,
metabolomics data from all the 25 time points was included in the
final statistical analysis to increase the reliability of the statistical
results. First, the OPLS-DA and bilateral t-test were applied to
integrate and coanalyze all observations from plasma samples to
investigate the differences in metabolic phenotypes. The OPLS-DA
score plot was shown in Figure 5A. The good efficacy group was
completely separated from the poor efficacy group based on the
concentration of the 181 metabolites. A random permutation test
with 100 iterations was performed to validate the OPLS-DA model
A B

D

C

FIGURE 3 | Metabolic phenotype variations induced by anlotinib treatment. (A) Overview of pathway analysis of the significantly changed metabolites between SH1
and C1D14. (B) Overview of pathway analysis of the significantly changed metabolites between SH1 and C2D14. All dots represented matched pathways from
topology pathway analysis. Pathways were colored according to their significance values from pathway enrichment analysis, with gradations from yellow, having the
least significance, to red having the highest significance. (C) A Venn diagram showing the shared metabolite numbers between SH1-C1D14 and SH1-C2D14.
(D) Concentration trends of six metabolites on the time points of SH1, C1D14, and C2D14.
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with result shown in Figure 5B. No overfitting was observed. The
statistical result indicated that significant different metabolic
phenotypes existed between good efficacy and poor efficacy groups.

To screen potential biomarkers associated with the efficacy of
anlotinib, the variable importance in the projection (VIP) of each
metabolite was calculated based on the established OPLS-DA
model. Unsupervised PCA was conducted based on
concentrations of 12 metabolites that possessed VIP values
larger than 1.5, with score plot shown in Figure 5C. A
moderate separation of the good and poor efficacy groups can
Frontiers in Oncology | www.frontiersin.org 7
be observed even on this unsupervised statistical method.
Further statistical analysis showed that all the 12 metabolites
possessed P values less than 1 × 10−9 and area under the curves
(AUCs) of ROCs larger than 0.7. The VIP values and fold
changes (FCs) of the 12 metabolites were shown in Figure 5D.
More detailed information of the 12 metabolites was listed in
Supplementary Table S8. Glycodeoxycholic acid and
glycocholic acid were two metabolites with the most significant
FCs and the largest AUCs of ROC analysis, with their ROCs and
box plots shown in Figures 5E, F, respectively. Both of them
belong to the glycine conjugated bile acids. The AUCs of
glycodeoxycholic acid and glycocholic acid were 0.847 (95%
CI: 0.803–0.886) and 0.828 (95% CI: 0.781–0.868), respectively.
They were the most promising biomarkers related to efficacy of
anlotinib. Lower plasma concentrations of glycodeoxycholic acid
and glycocholic acid indicated better efficacy of anlotinib.

In order to carry out external validation of the OPLS-DA
model, 80% of the total sample size was designed as the discovery
set, and the other 20% was designed as the validation set. Samples
in the discovery set were designed as good or poor groups
depending on their best curative effects. As shown in Figure
5G, excellent OPLS-DA model was established based on samples
from the discovery set. The established OPLS-DA model was
further used for the discrimination of samples in the validation
set. As shown in the figure, all the samples in the validation set
can be distinguished with 100% accuracy based on the
established OPLS-DA model.

Exploring the Predictive Biomarkers
Associated With the Toxicity of Anlotinib
According to the result of the clinical trial study, proteinuria was
the most common AE related to anlotinib treatment, with more
TABLE 1 | Clinical characteristics and pharmacokinetic parameters of the
patients in the efficacy study by longitudinal pharmacometabonomics.

Characteristic Good efficacy
(n = 6)

Poor efficacy
(n = 7)

P value*

Age (years) 45.5 ± 12.9 54.1 ± 14.8 0.289
BMI (kg/m2) 22.8 ± 3.1 24.0 ± 3.3 0.485
Gender 0.066
Male 3 4
Female 3 3
AUC(0–t) (mg/L*h) 801.2 ± 179.3 724.9 ± 216.0 0.507
AUC(0–∞) (mg/L*h) 1076.0 ± 196.8 933 ± 248.2 0.281
Cmax (mg/L) 9.03 ± 2.28 7.36 ± 3.11 0.299
Tumor types 0.428
Endometrial stromal tumor n = 1 n = 0
Adenoid cystic tumor n = 2 n = 2
Schwannoma n = 3 n = 1
Thyroid follicular tumor n = 0 n = 1
Hepatic carcinoma n = 0 n = 1
Corticosuprarenaloma n = 0 n = 1
Thymic carcinoma n = 0 n = 1
*P values were calculated using bilateral t-test for age, BMI, AUC(0–t), AUC(0–∞) and Cmax

and using Chi2 test for gender and tumor types.
FIGURE 4 | Metabolic pathways significantly disturbed by anlotinib treatment. The blue arrows indicated a significant (P < 0.05) upregulation of metabolite
concentrations in plasma after treatment with anlotinib.
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than 60% incidence. Here, potential biomarkers for the
prediction of proteinuria occurrence were explored based on
the longitudinal pharmacometabonomics data. Eight of the 16
subjects had experienced an AE of proteinuria, which were
judged to be possibly or definitely related to the administration
of anlotinib by research doctor. For biomarkers exploring, all
these 16 subjects were divided into a proteinuria group (n = 8)
and a no proteinuria group (n = 8). A summary of the clinical
characteristics and pharmacokinetic parameters of the 16
subjects was listed in Table 2. Both the baseline clinical
characteristics and pharmacokinetic parameters showed no
significant correlations with the occurrence of proteinuria.

The longitudinal metabolomics data was employed for the
discovery of potential biomarkers for the prediction of
proteinuria after anlotinib administration. Due to the limited
subject number and the relatively stable longitudinal metabolic
fingerprint of the same subject in different time points of
anlotinib treatment, metabolomics data from all the 25 time
points was included in the statistical analysis to increase the
reliability of the statistical results. The OPLS-DA was employed
to discover the most obviously different metabolites between the
proteinuria and no proteinuria groups, with result shown in
Figure 6A. The subjects with AE of proteinuria were completely
separated from the subjects without proteinuria. As shown in
Figure 6B, no overfitting of the OPLS-DA model was observed
through a random permutation test with 100 iterations.
Frontiers in Oncology | www.frontiersin.org 8
Significant different metabolic phenotypes existed between the
proteinuria and no proteinuria groups. A total of 15 metabolites
with VIP > 1.5 in OPLS-DA were screened out. Unsupervised
PCA was conducted based on concentrations of these 15
metabolites, with score plot shown in Figure 6C. A moderate
separation of the proteinuria and no proteinuria groups can be
achieved in this unsupervised statistical method.

In order to carry out external validation of the OPLS-DA
model, 80% of the total sample size was designed as the discovery
set, and the other 20% was used for model validation. Based on
the presence or absence of proteinuria, samples in the discovery
set were classified as proteinuria or no proteinuria groups. As
shown in Figure 6D, excellent OPLS-DA model was established
based on samples from the discovery set. The established OPLS-
DA model was further used for the discrimination of samples in
the validation set. As shown in the figure, all the samples in the
validation set can be distinguished with 100% accuracy based on
the established OPLS-DA model.

To screen potential biomarkers associated with the AE of
proteinuria, the 15 metabolites with VIP > 1.5 from OPLS-DA
were further applied for bilateral t-test and ROC analysis. NG,
NG-dimethylarginine was found to be the most obviously
different metabolite between proteinuria and no proteinuria
groups. The ROC curve and box plot of NG, NG-
dimethylarginine were shown in Figure 6E. The AUC of NG,
NG-dimethylarginine was 0.814 (95% CI: 0.774–0.851). It was
A B

D E F

G

C

FIGURE 5 | Identification of potential biomarkers associated with the efficacy of anlotinib. (A) OPLS-DA score plot of good and poor efficacy groups based on
concentrations of all metabolites. (B) Random permutation test with 100 iterations. (C) PCA score plot of good and poor efficacy groups based on concentrations of
the 12 metabolites with VIP > 1.5. (D) Compound names, VIP values, and FCs of the 12 metabolites with VIP > 1.5. (E) ROC and box plot of glycodeoxycholic acid.
(F) ROC and box plot of glycocholic acid. (G) External validation of the OPLS-DA model. Samples in the discovery set were designed as good or poor groups, while
samples in the validation set were designed as test-good or test-poor groups. Both depended on the best curative effect.
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the most promising biomarker for the prediction of proteinuria
occurrence after anlotinib administration. In order to explore the
earliest occurrence time point of the NG, NG-dimethylarginine
difference, subjects with or without the AE of proteinuria were
evaluated for their NG, NG-dimethylarginine levels in different
time points. As shown in Figure S3, significant different (P <
0.05) concentrations of NG, NG-dimethylarginine can be
observed between proteinuria and no proteinuria groups based
on the time points of SH1, SH2 and SH4, indicating that NG,
NG-dimethylarginine levels were different between the
proteinuria and no proteinuria groups as early as 4 h after
anlotinib administration. With more time points included, the
difference of NG, NG-dimethylarginine levels between the
proteinuria and no proteinuria groups became more and more
obvious, and the AUC under the ROC curve was also increasing
(Figure S3).
DISCUSSION

Many patients experienced little efficacy or even toxicity with
prescribed drugs (14). It was estimated that over two million
A B

D

E

C

FIGURE 6 | Identification of predictive biomarker associated with the AE of proteinuria after anlotinib administration. (A) OPLS-DA score plot of proteinuria and no
proteinuria groups based on concentrations of all metabolites. (B) Random permutation test with 100 iterations. (C) PCA score plot of proteinuria and no proteinuria
groups based on concentrations of the 15 metabolites with VIP values larger than 1.5. (D) External validation of the OPLS-DA model. Samples in the discovery set
were designed as proteinuria or no proteinuria groups. While samples in the validation set were designed as test-proteinuria or test-no proteinuria groups. Both
depended on whether proteinuria occurs. (E) ROC and box plot of NG, NG-dimethylarginine.
TABLE 2 | Clinical characteristics and pharmacokinetic parameters of the
patients in the toxicity study of proteinuria.

Characteristic Proteinuria
(n = 8)

NO proteinuria
( n = 8)

P value*

Age (years) 53.1 ± 10.9 46.0 ± 14.8 0.291
BMI (kg/m2) 23.9 ± 3.4 23.4 ± 2.8 0.739
Gender 1.000
Male 4 4
Female 4 4

AUC(0–t) (mg/L*h) 797.9 ± 257.1 782.8 ± 199.1 0.897
AUC(0–∞) (mg/L*h) 1076.6 ± 318.3 1018.2 ± 264.6 0.696
Cmax (mg/L) 7.84 ± 2.81 8.52 ± 2.79 0.632
Tumor types 0.647
Endometrial stromal tumor n = 0 n = 1
Adenoid cystic tumor n = 2 n = 2
Schwannoma n =v2 n = 2
Thyroid follicular tumor n = 1 n = 0
Hepatic carcinoma n = 0 n = 1
Corticosuprarenaloma n = 0 n = 1
Thymic carcinoma n = 1 n = 0
Medullary thyroid carcinoma n = 1 n = 1
Hemangiosarcoma n = 1 n = 0
*P values were calculated using bilateral t-test for age, BMI, AUC(0–t), AUC(0–∞) and Cmax

and using Chi2 test for gender and tumor types.
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patients had serious adverse drug reactions requiring
hospitalization, producing permanent disability, or leading to
death in US hospitals in 1994 (25). In particular, for anti-tumor
drugs, there are often a variety of AEs and significant individual
differences in efficacy. Personalized medicine is the selection of
medicines for subgroups or even individuals to maximize
drug efficacy and minimize toxicity (14, 15). In the past
decade, pharmacometabonomics has been successfully used in the
development of new drugs, prediction of drug metabolism, efficacy,
and toxicity (14, 15, 21). It has already become an important tool for
precision medicine research. Pharmacometabonomics is practical to
screen and follow longitudinally patients for certain types of therapy
such as anti-tumor therapy. Thus the concept of longitudinal
pharmacometabonomics was introduced. Longitudinal
pharmacometabonomics is dealing with metabolic trajectories as
opposed to static metabolic profiles. Much greater information with
high quality can be achieved for each patient using longitudinal
pharmacometabonomics.

In this study, the longitudinal pharmacometabonomics was
used for the first time to predict malignant tumor patient
responses to anlotinib therapy. Results showed that 38
metabolites (Table S6) were significantly upregulated attributing
to anlotinib treatment. The most obviously disturbed metabolic
pathways were aminoacyl-tRNA biosynthesis, alanine, aspartate
and glutamate metabolism, steroid hormone biosynthesis, citrate
cycle, tyrosine metabolism, and arginine and proline metabolism
(Table S4). According to the report of Kelly and coworkers,
dasatinib treatment caused significant metabolomics variations in
thedesmoid tumorcell lineT219 (26).All thedisturbedmetabolites,
including asparagine, aspartate, dimethylamine, glucose-1-
phosphate, glutamate, glutathione, isoleucine, leucine, proline,
uridine, and valine were significantly upregulated after dasatinib
treatment. Another work reported by Teresa and coworkers
demonstrated a significantly higher concentrations of glutamic
acid, aspartic acid, serine, hydroxyproline, methionine,
asparagine, malate, fumarate, and succinate in erlotinib-sensitive
tumor tissue than erlotinib-insensitive tumor tissue (27). As with
dasatinib and erlotinib, anlotinib also belongs to the class of tinib
anti-cancer drugs. Anlotinib treatment significantly improved the
plasma levels of amino acids andmetabolites associatedwith energy
metabolism, which was highly consistent with dasatinib and
erlotinib treatment. Our study suggested that the upregulation of
amino acid and metabolites related to energy metabolism was the
metabolic phenotypes of anlotinib and other tinib anti-
cancer drugs.

There is an urgent need to find appropriate biomarkers to
accurately predict and monitor the early efficacy, toxicity, and
drug resistance of Anlotinib. In the ALTER0303 trial, activated
circulating endothelial cells (aCECs) were measured in patients
receiving anlotinib or placebo (28, 29). However, there was no
significant relationship between progression free survival (PFS)
and aCEC min/baseline in patients receiving placebo. Further
study demonstrated that there was no correlation between
sensitizing endothelial growth factor receptor (EGFR)
mutations and PFS in 27 patients (5.53 months vs 5.53
months, HR = 1.16, 95% CI 0.73–1.85, P = 0.495) (30).
Frontiers in Oncology | www.frontiersin.org 10
Similarly, the EGFR T790M mutation did not reflect the
treatment efficacy of anlotinib in 17 patients with advanced
NSCLC (5.53 months vs 5.53 months, HR = 1.35, 95% CI
0.75–2.41, P = 0.253) (30). Unfortunately, all these results
achieved by pharmacogenomics study can hardly provide any
accurate and sensitive biomarkers for efficacy and toxicity
prediction of anlotinib.

Here, the OPLS-DA models were established for the
predication of efficacy and toxicity of anlotinib based on the
longitudinal pharmacometabonomics study. Both internal and
external validation results indicated the excellent accuracy of the
OPLS-DA models. The anti-tumor efficacy and occurrence of
proteinuria after anlotinib administration can be predicted with
100% accuracy using the established OPLS-DA models. Further
statistical analysis showed the glycodeoxycholic acid and
glycocholic acid possessed the most excellent sensitivity and
specificity in predicting the efficacy of anlotinib, with AUCs of
ROC 0.847 (95% CI: 0.803–0.886) and 0.828 (95% CI: 0.781–
0.868), respectively. Lower plasma concentrations of
glycodeoxycholic acid and glycocholic acid indicated better
efficacy of anlotinib. In addition, NG, NG-dimethylarginine
was found to be the most promising biomarker for the
prediction of proteinuria occurrence after anlotinib
administration, with AUCs of ROC 0.814 (95% CI: 0.774–
0.851). NG, NG-dimethylarginine is a metabolic by-product of
continual protein modification processes in the cytoplasm of all
human cells. It is created in protein methylation, a common
mechanism of post-translational protein modification. NG, NG-
dimethylarginine has been identified as a uremic toxin according
to the European Uremic Toxin Wording Group (31).

This is thefirst study to use longitudinal pharmacometabonomics
to explore biomarkers for prediction of efficacy and toxicity after
anlotinib administration.Metabolomicsdataofplasmasamples from
all the 25 time points (18 time points of subject 008) were included in
the biomarkers investigation procedures due to the relative stable
metabolic fingerprint of the same subject at different time points.
Metabolomics data of 393 samples from 16 subjects was finally
applied to statistical analysis for biomarker investigation. The bias
caused by small sample size can be significantly improved through
this strategy. However, it is still necessary to use larger samples to
verify whether the models and biomarkers established in this study
can be used in the final clinical practice. Another limitation of this
study was the absence of pre-dose metabolic phenotype. For the
exploring of metabolic phenotype variation related to anlotinib
treatment, the metabolomics data of 1 h (SH1) after the first
anlotinib dosing was used instead of the baseline metabolomics
data. Apart from the limitations of relative small sample size and
the absence of baseline phenotype, this study pioneered the use of
longitudinal pharmacometabonomics for predicting malignant
tumor patient responses to anlotinib therapy.
CONCLUSION

In summary, our study disclosed the metabolic phenotype
variation after anlotinib treatment. In addition, the mathematical
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Biomarkers for Personalized Anlotinib Treatment
models and potential biomarkers were established for the
predication of anlotinib efficacy and toxicity based on the
longitudinal pharmacometabonomics study. The anti-tumor
efficacy and occurrence of proteinuria after anlotinib treatment
can be predicted with 100% accuracy using the established OPLS-
DA models. Through further validation with a larger sample size,
we believed that the established OPLS-DA models and potential
biomarkers can be eventually applied to predict the efficacy and
toxicity of anlotinib in clinic. The results achieved in this study
demonstrated the broad prospects and values of longitudinal
pharmacometabonomics in promoting the precision use of anti-
tumor drugs.
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