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ABSTRACT
Fusion is an important life history strategy for clonal organisms to increase access
to shared resources, to compete for space, and to recover from disturbance. For reef
building corals, fragmentation and colony fusion are key components of resilience
to disturbance. Observations of small fragments spreading tissue and fusing over
artificial substrates prompted experiments aimed at further characterizing Atlantic
and Pacific corals under various conditions. Small (∼1–3 cm2) fragments from the
same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates
(e.g., tens of square centimeters per month) followed by isogenic fusion. Using this
strategy, we demonstrate growth, in terms of area encrusted and covered by living
tissue, of Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata as high as 63,
48, and 23 cm2 per month respectively. We found a relationship between starting and
ending size of fragments, with larger fragments growing at a faster rate. Porites lobata
showed significant tank effects on rates of tissue spreading indicating sensitivity to
biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse
over a variety of surfaces can be exploited for a variety of applications such as coral
cultivation, assays for coral growth, and reef restoration.

Subjects Aquaculture, Fisheries and Fish Science, Conservation Biology, Ecology, Environmental
Sciences, Marine Biology
Keywords Coral cultivation, Colony fusion, Colony fragmentation, Coral restoration, Coral
growth, Porites lobata, Orbicella faveolata, Pseudodiploria clivosa

INTRODUCTION
For many organisms, size is closely correlated to survivorship, fecundity, and outcome of

competitive interactions (e.g., Hughes, Ayre & Connell, 1992; Hall & Hughes, 1996; Sakai,

1998; Smith & Hughes, 1999; Palmer, 2004; Ayre & Grosberg, 2005; Marshall, Cook & Emlet,

2006). For clonal organisms such as corals, the smallest size classes (e.g., including larvae,

newly settled recruits, and small fragments) suffer the highest rates of mortality (Vermeij &

Bak, 2002; Raymundo & Maypa, 2004; Forsman, Rinkevich & Hunter, 2006). Coral colonies

above a size threshold shift resources from growth to sexual reproduction (Babcock, 1991;

Soong, 1993; Kojis & Quinn, 2001). Likewise, when a sexually mature colony is fragmented
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below a certain size, resources are allocated towards regrowth instead of reproduction

(Lirman, 2000; Zakai, Levy & Chadwick-Furman, 2000). Fragmentation and fission

(division of the colony) are common for reef building corals, resulting from factors such as:

physical disturbance (Brandt et al., 2013), wave damage (Dollar, 1982), erosion, predation

(e.g., from parrot fish bites Boulay et al., 2014), sedimentation (Nugues & Roberts, 2003),

disease, parasitism (Gochfeld & Aeby, 1997), and partial bleaching (Schuhmacher et al.,

2005; Roff et al., 2014). In contrast, fusion (portions of a colony growing together) can be

an important strategy for small coral colonies to grow as quickly as possible for a number

of reasons including; (1) more access to shared resources, (2) a competitive advantage

from occupying more space, (3) regaining sexual maturity and reproductive capacity

(Okubo, Motokawa & Omori, 2006), and (4) escaping vulnerability associated with small

colony size (Raymundo & Maypa, 2004; see Maldonado, 1998 for a counter example in

sponges; reviewed by Grosberg, 1988). Fusion may occur between genetically identical

fragments, or from larvae that settle gregariously (Raymundo & Maypa, 2004). Juvenile

cnidarians may also fuse with kin (Grosberg & Quinn, 1986; Wilson & Grosberg, 2004),

conspecifics, and possibly even congeners, resulting in chimerism (Rinkevich, 2004; Work

et al., 2011). Chimerism (fusion between genetically distinct colonies) has generally been

associated with conflicts among the partners (Puill-Stephan et al., 2009; Puill-Stephan

et al., 2012; Work et al., 2011); however, it has also been shown to confer benefits for

some clonal organisms by allowing expression of alternative phenotypes in contrasting

environments (Rinkevich & Weissman, 1992; Pineda-Krch & Lehtilä, 2004). However, the

present study focuses exclusively isogenic fusion, which is defined as the fusion of several

ramets (fragments) from the same genet (parent colony).

Previous experimental work with corals has shown that fusion can reduce size specific

mortality among juvenile corals (Raymundo & Maypa, 2004), and controlled conditions

can increase survivorship of small colonies (Raymundo & Maypa, 2004; Forsman, Rinkevich

& Hunter, 2006; Toh et al., 2013). Culture of juvenile colonies or small (e.g., ∼1 cm2)

fragments combined with fusion of genetically identical colonies (micro-colony fusion) is a

potential growth enhancement strategy for coral aquaculture. The ability to promote rapid

growth over a pre-determined substrate would be a beneficial tool for a range of applica-

tions such as propagation of rare coral species, for the development of standardized growth

assays, coral aquaculture, and reef restoration. We examined fusion in Orbicella faveolata

and Pseudodiploria clivosa to quantify rates of area increase. Similarly, we conducted an

experiment with Porites lobata to characterize tissue spreading and to determine if the

rates are influenced by biotic and abiotic factors in two contrasting tank environments. In

addition, we compile both qualitative and quantitative examples of isogenic colony fusion

across a variety of coral species in both the Atlantic and Pacific Oceans.

METHODS
Orbicella faveolata and Pseudodiploria clivosa fusion experiments
Five ramets of Orbicella faveolata from the same donor colony and of similar size were

each fragmented into 0.86 ± 0.22 cm2 (average ± stdev) pieces and glued to 5 ceramic

Forsman et al. (2015), PeerJ, DOI 10.7717/peerj.1313 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.1313


Figure 1 Orbicella faveolata and Pseudodiploria clivosa fusion experiments. (A) Initial fragments of
O. faveolata; (B) the fragmented colonies after 90 days; (C) the fragmented colonies at 139 days as colonies
begin to fuse; (D) initial fragments of P. clivosa; (E) the same fragmented colonies after 90 days; (F) the
fragmented colonies after 139 days as fusion between colonies begins.

20 × 20 cm tiles (Fig. 1A). Fragments were attached to tiles using cyanoacrylate gel and

were spaced equidistant from one another, separated by approximately 1 cm. The number

of fragments per tile ranged from 20 to 23. Similarly 5 separate individual donor colonies of

Pseudodiploria clivosa (∼30 cm2) were fragmented into 3.05 ± 1.02 cm2 (average ± stdev)

pieces and glued to 5 separate 20 × 20 cm tiles. Fragments were attached in the same way

as above and spaced equidistant from one another, separated by approximately 1.5 cm with

9 fragments mounted to each tile. The tiles were placed in a shallow 340 liter raceway with

flowing water drawn from a 24 m deep seawater well at a rate of 2.5 lpm. Temperature

was maintained in the raceway between 22 and 26 ◦C by constant seawater turnover and

four air stones (4 cm each) were used for water circulation and aeration. Algal growth was

controlled by the shore snail Batillaria minima, daily siphoning of detritus, and manual

removal of encroaching algae, particularly in the space between fragments. Additionally,

live newly hatched Artemia sp. were broadcast in the raceway on a weekly basis. Top down

photographs of each tile were taken at a fixed distance with a 1 cm cube used as a size

reference on 9/2/2014, 12/1/2014, and weekly thereafter. One photo of P. clivosa was not

taken on 1/19 and therefore was not included in the analysis. Area covered by live coral

tissue was measured using these photos with Sigma Scan Pro 5. The tiles were followed for a

period of 139 days.
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Figure 2 Porites lobata fragments fusing over ceramic tiles. (A) Thirty fragments were epoxied to
ceramic tiles on 6/25/2006, yielding 23 cm2 of area covered by coral tissue; (B) after 38 days of growth,
tissue begins to attach and 3 fragments are lost; (C) after 125 days of growth, tissue begins to come in
contact with other colonies; (D) after 205 days of growth, most fragments are fused and area covered by
tissue is 178 cm2; (E) after 368 days of growth the substrate is completely covered; (F) the resulting colony
is approximately a half meter in diameter after one year.

Porites lobata fusion experiment
Porites lobata fragments (n = 240 total fragments from a ca 15 cm portion of a single

donor colony) were fragmented to 0.69 ± 0.33 cm2 (average ± stdev) and epoxied with

approximately 2 cm of space between fragments to 30 × 30 cm glossy white ceramic tiles

(30 fragments per tile) with marine epoxy (Splash Zone Compound; Woolsey/Z-spar

Inc., Rockaway, New Jersey, USA; Fig. 2A). The tiles were mounted to triangular concrete

bases. The eight tiles were divided into two tanks at Kewalo Marine Laboratory that had

notable differences in both biotic and abiotic conditions. The ‘cleaned’ tank was exposed

to full sun, while the ‘established’ tank was partially shaded. The ‘established’ tank had

been continuously running for over 5 years as a mesocosm tank with sand, live rock, and

a variety of fish and invertebrates, while the ‘cleaned’ tank was emptied and cleaned prior

to the experiment and only a few snails (Trochus inextus) and urchins (Tripneustes gratilla)

were added to control algal growth (these species were also present at similar densities in

the ‘established’ tank). Hobo pendant light and temperature loggers (Onset Computer

Corporation, Bourne, Massachusetts, USA) recorded data hourly for the duration of the

experiment. Digital photographs were taken from a fixed photo frame with a scale, and top

down area covered by live coral tissue. Tissue area was measured with ImageJ v 1.0 after

fragmentation on 6/24/2006 and after 38 days of growth on 1/15/2007. Fragment tiles were
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Table 1 Rates of area increase for a variety of corals under a wide range of conditions.

Genus Species n Start area (cm2) End area (cm2) Obs. period (days) Rate (cm2/month) % increase

Orbicella faveolata 104 89.0 382.0 139 63.2 329

Pocillopora meandrina 5 6.0 24.9 435 1.3 315

Porites lobata 30 23.0 178.0 205 22.7 674

Porites lobata 217 5.5 12.6 38 5.6 129

Porites astreoides 6 26.2 139.0 706 4.8 431

Pseudodiploria clivosa 45 136.0 345.0 132 47.5 154

Solenastrea bornouni 3 3.9 7.9 511 0.2 103

kept in round fiberglass tanks (4 m diameter, 1 m deep) with unfiltered seawater from the

same source, each receiving approximately 10 lpm. The fastest growing module (10a) was

further monitored and photographed at 125, 205, and 368 days of growth, although after

205 days the area of each individual nubbin was no longer able to be measured since nearly

all of the fragments had fused together.

Additional observations
A Montipora capitata colony was fragmented and attached to ceramic tiles using the same

method as for the Porites lobata fusion experiment. The colonies were photographed after 3

months growth and again after six years of growth (Figs. S1A–S1C). Pocillopora meandrina

was attached to garden variety plastic mesh fencing material by cutting the mesh, then

forcing the fragments between the rigid plastic tabs such that the fragment was secured

(Figs. S1D–S1F), this method required no adhesive, is very fast, and also worked for Porites

compressa (Figs. S2A and S2B). For Porites astreoides, 6 fragments were attached to live

rock using cyanoacrylate gel and photographed after fragmentation and again after 706

days. Three fragments of Solenastrea bournoni were similarly attached and observed over a

period of 511 days (Table 1).

RESULTS
The overall rate of growth for common Atlantic and Pacific corals across all observations

was ∼20 cm2/month ± 25 cm2/month (average ± standard deviation), with a minimum of

0.2 cm2/month for Solenastrea bournoni and a maximum of 63.2 cm2/month for Orbicella

faveolata (Table 1). These observations occurred over variable sampling periods and under

various sampling conditions and some of these factors were examined in more detailed

experiments for Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata.

Orbicella faveolata and Pseudodiploria clivosa fusion experiments
After 139 days O. faveolata fragments increased in size by 329% with 13.5% of the

fragmented colonies fusing together, while P. clivosa fragmented colonies increased in

area by 154% with 31.1% of colonies fusing (Table 1 and Fig. 1). No fragments of either

species detached or perished during the experiment. The growth rates of both species

appeared to be approximately linear, explaining 86% of the variation for P. clivosa, and

88% for O. faveolata (Fig. 3). A second order polynomial regression explained 94% of the
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Figure 3 Average increase in coral area over ceramic tiles. Linear (gray lines) and polynomial (red lines)
values of Orbicella faveolata (black diamonds) and Pseudodiploria clivosa (black circles) from 9/2/2014 to
1/19/2015, and Porites lobata (black squares) from 6/25/2006 to 1/17/2007.

variance for P. clivosa and 97% of the variance for O. faveolata (Fig. 3). A linear regression

between initial fragment size and final fragment size further indicated that growth rates are

related to colony size, with larger fragments growing at a faster rate, explaining 56% of the

variability in O. faveolata and 79% in P. clivosa (Fig. 4).

Porites lobata fusion experiment
For P. lobata, the overall rate of increase was 5.6 cm2 per month; however the rates of

tissue spreading differed according to tank, which contrast in both biotic and abiotic

conditions. Module 10A had the highest rates of growth and was followed for additional

time intervals after the tank comparison experiment. After 205 days, the rate of tissue

increase was 22.7 cm2 per month, a 357% increase in area covered by tissue (Fig. 2). The

majority of coral colonies were fused and it was no longer possible to measure the growth

of individual colonies since the entire 0.6 m module became a single fused colony (Fig. 2F).

The ‘cleaned’ and ‘established’ tanks had significant differences in irradiance and

temperature (Table 2 and Fig. 5). The irradiance values for the ‘cleaned’ tank were more

than twice as high as the ‘established’ tank, while temperature values were significantly

different, they only differed by a few tenths of a degree Celsius (Table 2 and Fig. 5). Corals

in the ‘cleaned’ tank increased in average area covered by coral tissue by 122%, while

the ‘established’ tank increased by 217% over 38 days. The ‘established’ tank had higher

attachment failure (10.2% of the fragments were missing, compared to only 1 out of 109

fragments missing for the ‘cleaned’ tank), the missing fragments were most likely caused by

sea urchin grazing, since grazing marks were observed near the colonies in the ‘established’

tank, and no grazing marks were observed in the ‘cleaned’ tank. The ‘established’ tank had

red coralline algae covering a large proportion of the tiles after 38 days (Figs. 2B–2D), while
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Figure 4 Relationship between initial size and final size. (A) Initial size of Orbicella faveolata versus size
after 132 days of growth; (B) initial fragment size of Pseudodiploria clivosa versus 139 days of growth; (C)
initial size of fragments of Porites lobata versus size after 38 days of growth.
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Table 2 Survivorship, rates of growth and attachment failure for the Porites lobata fusion experi-
ment. Averages ± 95% confidence intervals are presented, survivorship excludes missing colonies.

Tank Lux Temp C n Net growth
(cm2)

Increase
(%)

Missing
(%)

Survival
(%)

Cleaned 1,132 ± 96 26.62 ± 0.03 109 0.63 ± 0.07 122 ± 27 0.01 99

Established 488 ± 33 26.40 ± 0.03 108 1.21 ± 0.12 217 ± 27 10.2 92

the ‘cleaned’ tank had almost no coralline algae. The initial fragment size was related to the

rate of growth, with a linear equation explaining nearly 26% of the variability, with 1 cm2

fragments nearly doubling in area over 38 days (Fig. 4).

DISCUSSION
Orbicella faveolata and Pseudodiploria clivosa fusion experiments
In less than 4 months micro-fragments of O. faveolata increased a total of 293 cm2

while P. clivosa fragments grew 222 cm2. This corresponds to ∼11 cm and ∼9 cm of

increased colony diameter respectively assuming circular colonies; however the present

study measures changes in area covered by thin sheets of encrusted tissue, therefore

these rates are not directly comparable to most field studies which measure change in

maximum diameter or linear extension, for example, Caribbean corals grow at a rate of

0.5–1 cm per year (Hubbard & Scaturo, 1985; Logan, Yang & Tomascik, 1994; Cruz-Piñón,

Carricart-Ganivet & Espinoza-Avalos, 2003). Nevertheless, starting with only 89 cm2 of

O. faveolata tissue and 136 cm2 of P. clivosa tissue, four months of growth yielded a 329 and

154% increase in area respectively.

Growth rates for both species fit the expectations of linear rates of growth, explaining

between 86 and 88% of the variance; however, a second order polynomial curve explained

between 94 and 97% of the variation indicating that growth rates likely accelerated towards

the end of the experiment (Fig. 3). The differences in growth rates through time could

be due to a variety of factors; however the initial size of fragment is clearly important,

with smaller sized fragments growing at a slower rate than larger fragments (Fig. 4). It was

beyond the scope of this experiment to determine if rates of tissue spreading correspond to

seasonality, temperature, colony age, or other biotic or abiotic factors; however, previous

work has also found clear relationships between size and growth rates, with larger

fragments growing at a faster rate (Edwards & Clark, 1999; Lirman et al., 2010; Lirman

et al., 2014).

Porites lobata fusion experiment
Similar to the O. faveolata and P. clivosa experiment, growth in terms of area covered by

tissue for P. lobata is orders of magnitude higher than previously recorded, although it is

important to emphasize that tissue spreading is not directly comparable to linear extension

or volumetric growth. P. lobata grows on the order of ∼1 cm per year in linear extension

or colony diameter, and these growth rates are known to be highly variable depending

on environmental conditions (Lough & Barnes, 2000; Smith, Barshis & Birkeland, 2007;

Elizalde-Rendón et al., 2010). This study documented growth of up to ∼22 cm2 per month
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Figure 5 Differences between tanks for the P. lobata fusion experiment. (A) Irradiance; (B) temper-
ature averages and 95% confidence intervals from loggers deployed during the Porites lobata fusion
experiment; (C) average percent increase in area covered by coral tissue. Error bars represent 95%
confidence intervals, significance values are from t-tests.
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(Table 1), which corresponds to ∼5 cm per month increase in diameter assuming a circular

colony. These rates are similar to observations of the highest rates of healing from artificial

lesions, which also varied considerably depending on environmental conditions (Van

Woesik, 1998; Denis et al., 2011). Roff et al. (2014) documented extraordinary rates of

tissue regrowth after a mass bleaching event in French Polynesia, from recolonization of

Porites skeleton from surviving cryptic patches of live tissue, and similar large scale rapid

recovery has also been observed for a coral community recovering from algal overgrowth

(Diaz-Pulido et al., 2009). These combined observations indicate that the capacity for rapid

tissue spreading may have been previously overlooked or underappreciated.

In the case of the P. lobata experiment, the differences in tissue spreading rates between

tanks may be attributed to a variety of abiotic factors (e.g., temperature, or large difference

in irradiance: Table 2), biotic factors (e.g., presence of CCA, algal biomass, bacterial

diversity), or a combination of both. Since light levels were approximately twice as high in

the cleaned vs. established tanks, and since photoinhibition can decrease growth rates, this

may contribute to the significantly lower rates between treatments. The ‘established’ tank

was a mesocosm that had at least 5 years to stabilize; providing grazing of herbivores to

prevent algal blooms as well as likely increased diversity in terms of microbial, planktonic,

and benthic micro-fauna. Newly established tanks on the other hand are inherently less

stable and prone to monotypic blooms of microorganisms such as diatoms and ciliates

and bacteria that may promote infection or inhibit growth. Another critical difference

between treatments was the presence of crustose coralline algae in the ‘established’ tank,

which is known to be important for coral settlement and growth (Bak, 1976; Harrington et

al., 2004). Attachment failure was higher in the ‘established’ tank, however the higher rates

of growth resulted in significantly higher growth overall. Although the differences in coral

growth rates were significantly different in each tank, the potential causes could not be

determined from this experiment; however, it is clear that growth rates are highly sensitive

to various factors, which is fertile ground for further work towards the development of

growth assays as well as for optimization of growth.

Potential for reef restoration, growth assays, and coral
aquaculture
As coral reefs are declining, there is increased demand for more responsible coastal

development (Nyström, Folke & Moberg, 2000; Bellwood et al., 2004). There is also increased

demand for sustainable sources of coral material for aquaculture, research, mitigation, and

restoration projects (Rinkevich, 2008; Leal et al., 2014). The micro-fragmentation-fusion

strategy effectively manipulates the surface area of a coral on to a two dimensional plane,

over which small colonies rapidly spread tissue and fuse (Page, 2013). The ability to encrust

coral onto a variety of substrates presents opportunities to design and test a variety of novel

approaches for coral cultivation and transplantation such as mass production of small

‘seedlings,’ or larger modular designs. Covering a complex three dimensional structure

with coral would effectively combine the benefits of coral transplantation with artificial

reefs (Abelson, 2006), however detailed longer term studies are needed to determine the
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Figure 6 Example of using small nursery grown tiles for outplanting. (A) Substrate cleaning and site
preparation; (B) tiles are mounted with epoxy; (C) finished array; (D) a separate array two months after
outplanting; (E) an example from a separate array of colonies fusing and self-attaching in the field after
five months of growth.

physiological and reproductive effects of the process, and to evaluate advantages over

traditional direct transplantation, which typically results in small fragments that are prone

to high rates of mortality (Yap, Alvarez & Dizon, 1998; Okubo, Taniguchi & Motokawa,

2005). This method could potentially be extended to much larger scales to provide more

sustainable sources of coral material and to fill knowledge gaps for cultivation of ‘slow

growing’ species. Integration with an in-situ or ex-situ nursery phase for example could

provide source material at scales previously not possible (e.g., Amar & Rinkevich, 2007;

Shafir, 2010).

The ability of a coral fragment to grow onto the benthic substrate or ‘self-attach’ is

critically important to the survival of the colony and the success of the transplantation

effort (Guest et al., 2011). Here, we observe self-attachment by tissue spreading, over

a wide variety of substrates (Figs. S1 and S2), which creates opportunities to improve

transplantation, and furthermore the fusion method may be exploited to increase the

chance of self-attachment by fusion over the benthic substrate (e.g., Figs. 6D and 6E). Field

trials are currently underway to develop methods to efficiently encourage nursery grown

coral to fuse and self-attach over the benthic substrate (Fig. 6). Experiments are currently

underway to test the utility of this method for restoring O. faveolata, M. cavernosa, and P.

clivosa to reefs that were affected by an anomalous cold temperatures occurring in early

2010 (Lirman et al., 2011). Three out-planting efforts have been recently initiated under

various conditions such as varying by season, number of fragments planted per plot, and
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location (inshore vs. offshore). The method may prove particularly advantageous for

massive stony corals with poor recruitment and or slow growth rates. The majority of

transplantation and restoration projects have focused on fast growing “weedy” species

which can rapidly increase coral cover (Edwards & Clark, 1999; Shaish et al., 2010);

however, these species tend to be less resilient to long term disturbance (Loya et al., 2001;

Van Woesik et al., 2012).

This study demonstrates that the micro fragmentation and fusion method can be

used to rapidly cover a variety of substrates with coral tissue, providing fertile ground

for further work. This study illustrates ‘proof of concept’ by focusing on isogenic colony

fusion, examining fusion between ramets from only one genet per species. Further work

is needed to compare multiple genotypes to determine genotypic effects on growth rates

and to examine genotype by environment interactions in greater detail, as well as possible

effects and tradeoffs of allogeneic fusion. In addition to possible reef restoration and coral

aquaculture applications, this technique could also be useful for developing standardized

growth assays that could be deployed in the field to monitor tissue growth or recession and

mortality in a reasonable time frame (e.g., weeks or months as opposed to years). These

deployable standardized growth assays could be used for determining if candidate sites are

amenable for coral transplantation, or for determining the species and size specific effects

of exposure to sediment plumes or other land based sources of pollution, or for laboratory

based toxicological assays. The widespread use of the method for reef restoration however

requires additional work to determine how the process can affect longer term survivorship,

reproduction, and resilience to a variety of stressors.
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