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Fear and anxiety-based disorders are highly debilitating and among the most prevalent
psychiatric disorders. These disorders are associated with abnormal network oscillations
in the brain, yet a comprehensive understanding of the role of network oscillations in
the regulation of aversively motivated behavior is lacking. In this review, we examine
the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the
theta and gamma-range. First, we describe neural oscillations and their link to neural
function by detailing the role of well-studied theta and gamma rhythms to spatial and
memory functions of the hippocampus. We then describe how theta and gamma
oscillations act to synchronize brain structures to guide adaptive fear and anxiety-
like behavior. In short, that hippocampal network oscillations act to integrate spatial
information with motivationally salient information from the amygdala during states
of anxiety before routing this information via theta oscillations to appropriate target
regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop
in the amygdala and neocortical areas during the encoding of fear memories, and
interregional synchronization reflects the retrieval of both recent and remotely encoded
fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key
node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic
extinction memories in the hippocampus.

Keywords: oscillations, theta, gamma, fear, anxiety, hippocampus, medial prefrontal cortex, amygdala

INTRODUCTION

Learning about potential danger is an adaptive process that is necessary for survival in all animals.
Similarly, animals must be able to update these memories when threat is no longer present. In
humans, this behavioral flexibility allows us to avoid potential harm while maintaining our daily
lives and routines. However, traumatic experiences can lead to pathological levels of fear and
behavioral rigidity in otherwise safe situations. For example, war veterans with posttraumatic stress
disorders (PTSD) may re-experience traumatic memories and experience high levels of fear or panic
when encountering triggering stimuli after they have returned home.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 936036

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2022.936036
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnbeh.2022.936036
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2022.936036&domain=pdf&date_stamp=2022-07-01
https://www.frontiersin.org/articles/10.3389/fnbeh.2022.936036/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-936036 June 27, 2022 Time: 16:38 # 2

Totty and Maren Oscillations and Aversively Motivated Behavior

The dysregulation of neural circuits that guide adaptive
learning and memory are thought to underlie trauma- and
anxiety-related disorders (Milad and Quirk, 2012; Maren
et al., 2013; Ressler et al., 2022). Activity within these
brain circuits is coordinated by electrical oscillations that
influence a range of neuronal processes to synchronize and
modulate network function. Decades of research implicate
oscillatory rhythms in both behavioral arousal and neural
computation. Importantly, psychiatric disorders are associated
with oscillatory abnormalities (Linkenkaer-Hansen et al., 2005;
Uhlhaas and Singer, 2010; Fitzgerald and Watson, 2018).
Therefore, a complete understanding of the neural circuits and
oscillations underlying adaptive regulation of fear and anxiety
is essential to developing and advancing therapeutic tools for
psychiatric disorders.

In this review we detail recent advancements in our
understanding of how neural oscillations regulate fear and
anxiety. We first review literature demonstrating that neural
oscillations are an intrinsic mechanism facilitating neural
computation with a focus on well-studied hippocampal theta
and gamma oscillations. Next, we describe how hippocampal-to-
prefrontal theta synchronization underlies anxiety-like behavior.
Finally, we discuss the current state of research on neural
oscillations and aversive learning and memory with a focus on
amygdala oscillations.

WHAT ARE NEURAL OSCILLATIONS?

Neural oscillations are rhythmic changes in brain electrical
activity that typically range in frequency from 1 to 250 Hz.
Oscillations can be observed at various levels of brain
organization, from the subthreshold membrane potential of
single neurons to brain-wide fluctuations in low-frequency
slow waves (Buzsáki and Draguhn, 2004). Neural oscillations
can be recorded either with depth electrodes that detect
extracellular local field potentials (LFPs) within the brain or
with scalp electrodes that reveal the electroencephalogram
(EEG) (Buzsáki et al., 2012; Reimann et al., 2013; Herreras,
2016). They are thought to underlie many cognitive functions,
including attention and sensory perception (Ward, 2003;
Schroeder and Lakatos, 2009; Obleser and Kayser, 2019) and
learning and memory (Klimesch, 1996; Fell and Axmacher,
2011; Herweg et al., 2020). Specific functions that arise from
or are facilitated by neural oscillations include information
routing, cell assembly organization, synaptic plasticity, and
interregional communication.

Multiple mechanisms underlie and influence oscillatory
activity in the brain. Ultimately, neural oscillations are largely
thought to emerge as a network property of reciprocally
connected excitatory and inhibitory neurons (Whittington
et al., 1995; Wang and Buzsáki, 1996; Gonzalez-Burgos and
Lewis, 2008; Buzsáki and Wang, 2012). Within these networks,
periods of precise inhibition are efficient for synchronizing
large numbers of pyramidal cells and generating network
oscillations, especially via fast-spiking gamma-aminobutyric
acid (GABA) interneurons (Gonzalez-Burgos and Lewis, 2008).

However, oscillations may additionally be generated by other
mechanisms such as synaptic interactions between single-neuron
oscillators (Llinás, 1988). Indeed, subsets of thalamic (Jahnsen
and Llinás, 1984), hippocampal (Núñez et al., 1987; García-
Muñoz et al., 1993; Butler and Paulsen, 2015), neocortical
(Gutfreund et al., 1995; Hutcheon et al., 1996), and amygdalar
(Pape et al., 1998) neurons possess ionic mechanisms that
endow intrinsic resonance and oscillatory firing at one or
more frequencies.

OSCILLATORY CORRELATES OF
HIPPOCAMPAL COMPUTATION

Our current understanding of the function of oscillations
in neural coding comes in large part from investigations
of oscillations commonly observed in the hippocampus
(Vanderwolf, 1969; Stewart and Fox, 1990; Buzsáki et al., 1994;
Vinogradova, 1995; Eichenbaum et al., 1999; Buzsáki, 2002;
Buzsáki and Tingley, 2018). Thus, will we briefly summarize
the dominant hippocampal oscillations and their role in
hippocampal function to serve as a framework for considering
the role of oscillations in other brain regions. It should be noted
that there are various sleep-related neural oscillations that are
critical for cognitive processes such as memory consolidation
(Steriade et al., 1993; Datta, 1997, 2000; Buzsáki, 1998; Popa
et al., 2010; Datta and O’Malley, 2013; Hutchison and Rathore,
2015; Boyce et al., 2016; Totty et al., 2017). This review,
however, will primarily focus on theta and gamma oscillations
during waking states. For a detailed review on sleep-related
oscillations see Adamantidis et al. (2019).

Theta Oscillations
One of the most prominent oscillations observed in the
hippocampus of behaving rodents are theta oscillations
commonly observed with peak frequencies ranging from 4 to
12 Hz. Type-1 theta oscillations are observed during locomotion,
correlate to movement speed, are atropine-resistant, and are
typically observed at higher theta frequencies (∼7–12 Hz)
(Kramis et al., 1975; Bland, 1986; Buzsáki, 2002). Conversely,
type-2 theta oscillations are commonly observed during
immobility and are linked to anxiety and motivated behaviors;
they are also atropine-sensitive and are typically observed at
lower theta frequencies (∼4–7 Hz) (Sainsbury et al., 1987;
Montoya et al., 1989; Mikulovic et al., 2018). These divergent
characteristics suggest that Type-1 and Type-2 hippocampal
theta oscillations are generated by distinct mechanisms and
likely play different roles in motivated behaviors. The medial
septum is thought to be the primary generator of hippocampal
theta oscillations through long-range inhibitory pacemaker
neurons (Stewart and Fox, 1990; Vinogradova, 1995; Hangya
et al., 2009; Colgin, 2013). However, recent studies have found
that divergent populations of glutamatergic and cholinergic
medial septal neurons are distinctly associated with Type-1 and
Type-2 hippocampal theta, respectively (Vandecasteele et al.,
2014; Fuhrmann et al., 2015). Nonetheless, the hippocampus can
generate theta oscillations without medial septum connections
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in vitro (Colgin, 2013), suggesting that there are multiple
mechanisms for generating hippocampal theta rhythms.

Decades of work have revealed that theta oscillations are
central to spatial and memory functions of the hippocampus.
Specifically, there is substantial evidence that these oscillations
temporally organize and bind participating neurons to form
cognitive maps during spatial navigation and episodic memory
(Eichenbaum et al., 1999; Buzsáki, 2005). For example,
hippocampal “place” cells whose activity is determined by an
animal’s spatial location fire in sequences that are synchronized
to the theta rhythm (O’Keefe and Dostrovsky, 1971; Moser et al.,
2015; Wang et al., 2015; Grieves et al., 2020). Although place
cells increase their firing in a particular spatial location, they
also fire sequentially at a preferential phase of the ongoing LFP
theta oscillation, representing past, present, and future locations
(Dragoi and Buzsáki, 2006). These temporally connected cells
are referred to as cell assemblies. Thus, a single hippocampal
theta cycle can package or “chunk” individual environmental
locations and stimuli into gestalt spatial representations via cell
assembly formation.

Not only do theta sequences represent past, present, and future
locations, but choices between possible future trajectories and
memories can be observed in alternating theta cycles (Johnson
and Redish, 2007; Jezek et al., 2011; Kay et al., 2020; Robinson
and Brandon, 2021). Thus, hippocampal theta oscillations enable
the accurate encoding and retrieval of spatial environments,
trajectories during navigation, and represent future decisions.
However, the hippocampus does not merely process spatial
information but also plays a critical role in the encoding
and retrieval of episodic memory representations (Bird and
Burgess, 2008; Nyhus and Curran, 2010; Lega et al., 2012;
Eichenbaum and Cohen, 2014; Moscovitch et al., 2016; Goode
et al., 2020). In addition to spatial navigation, it is likely that
theta oscillations support memory functions by binding memory-
related information from diverse neocortical structures to form
episodic memories. Importantly, disruption of hippocampal
theta coding impairs spatial processing and memory retrieval,
demonstrating that theta oscillations play an indispensable role
in hippocampus function (Shirvalkar et al., 2010; Petersen and
Buzsáki, 2020).

Gamma Oscillations
Gamma-band oscillations are fast rhythms (∼40–120 Hz) found
in cortical-like structures in rodents, non-human primates,
and humans (Buzsáki and Wang, 2012). Gamma oscillations
arise from local synaptic inhibition and this is similar in
the neocortex (Miltner et al., 1999; Whittington et al., 2011),
hippocampus (Wang and Buzsáki, 1996; Csicsvari et al., 2003),
and amygdala (Feng et al., 2019; Headley et al., 2021). One of
the primary functions of gamma oscillations is thought to be
the organization of cell assemblies (Buzsáki and Wang, 2012), a
network of connected neurons that are synchronously activated
by a particular cognitive process. Indeed, cell assemblies tend to
be organized within gamma bursts such that individual assembly
members are phase-locked to a preferential phase of gamma
rhythms (Harris et al., 2003). Moreover, specific sub-bands of
gamma rhythms likely have different underlying mechanisms

and it is hypothesized that switching between various gamma
modes may be an effective method of directing information
flow (Pantev, 1995; Colgin et al., 2009; van der Meer, 2010;
Ainsworth et al., 2011; Whittington et al., 2011; Colgin, 2015;
Amir et al., 2018). For example, slow (∼25–55 Hz) and fast (∼60–
100 Hz) gamma rhythms in the hippocampal CA1 region were
found to synchronize with CA3 and the medial entorhinal cortex,
respectively (Colgin et al., 2009). Moreover, slow and fast gamma
rhythms appear to separately support spatial navigation and
memory functions (Colgin, 2016). Interestingly, the amplitude
of gamma oscillations tend to be modulated by the phase of the
ongoing theta rhythm (Lisman and Jensen, 2013; Colgin, 2016).
Theta-gamma coupling has been linked to learning and memory
in rodents (Tort et al., 2009; Shirvalkar et al., 2010; Radiske et al.,
2020), and abnormal theta-gamma coupling is associated with
neurodegenerative disorders such as epilepsy and Alzheimer’s
disease in humans (Kitchigina, 2018).

Collectively, theta and gamma oscillations, and their
interaction, are intrinsically linked to hippocampal computations
that subserve cognition function. Similar theta and gamma-
range oscillations have been observed across many brain regions,
suggesting that these oscillations are likely a common mechanism
underlying neural coding across much of the mammalian brain
(Headley and Paré, 2017). We may thus be able to extrapolate
the function of hippocampal oscillations to the oscillatory
activity commonly observed in other limbic regions, such as the
amygdala and prefrontal cortex. Next, we will discuss how the
interregional synchronization of oscillations facilitates adaptive
anxiety-like behavior and fear regulation.

BEHAVIORAL PARADIGMS FOR THE
STUDY OF FEAR AND ANXIETY IN
RODENTS

Rodent models of anxiety-like behavior and learned fear have
greatly contributed to uncovering the neural circuits underlying
the regulation of emotions over the past several decades.
Commonly employed behavioral paradigms for the investigation
of anxiety-like behavior include the elevated plus maze (EPM)
and open field (OF) assays. In the EPM, rodents are placed
onto a novel elevated platform with four arms making a “+”
shape (Walf and Frye, 2007). Two of the arms are enclosed
by tall walls (closed arms) while the other two arms are open
and exposed (open arms). This task pits the natural tendency of
rodents to prefer protected areas against their innate motivation
to explore novel environments. Similarly, in the OF task rodents
are placed into a large open arena where the edges of the arena
near the wall are interpreted as “safe” and the center is anxiogenic
(Seibenhener and Wooten, 2015). Thus, an increase in time spent
within the closed arm of the EPM or near the enclosing walls
of the OF is interpreted as apprehensive or anxiety-like behavior
(Bailey and Crawley, 2009).

Pavlovian fear conditioning has been the primary choice
to study learned fear in both rodents and humans for many
decades (Pavlov, 1927; Maren, 2001). In this procedure, an
innocuous conditional stimulus (CS), such as an auditory tone,
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is paired with an aversive unconditional stimulus (US), such
as a mild footshock. After a few pairings, animals develop fear
to the auditory CS as it is predictive of the footshock US. In
response to the CS (or conditioning context), rodents display
freezing behavior (i.e., immobility), which is as an evolutionarily
conserved defensive response to threat. Conditioned freezing to
the CS can also be extinguished by repeatedly presenting the CS
without footshock reinforcement, a process known as extinction
(Bouton et al., 2021). Extinction does not erase the fear memory
(i.e., CS-US association), but rather creates a new inhibitory
memory that competes with the original fear memory (Quirk and
Mueller, 2008). Pavlovian fear conditioning and extinction have
direct clinical relevance as the circuits that underly adaptive fear
learning are thought to be disordered in patients with anxiety-
and trauma-based disorders, such as post-traumatic stress order
(Ressler et al., 2022). Moreover, extinction learning is the basis for
commonly used cognitive behavioral therapies, such as exposure
therapy (Milad and Quirk, 2012; VanElzakker et al., 2014; Ressler
et al., 2022).

HIPPOCAMPAL→PREFRONTAL THETA
TRANSMISSION UNDERLIES
ANXIETY-LIKE BEHAVIOR

Neural oscillations are not only critical to organizing cell
assemblies locally but have long been proposed to facilitate
long-range communication by synchronizing neural activity
across brain regions. This hypothesis of “communication through
coherence” is now widely accepted (Fries, 2005, 2015; Akam
and Kullmann, 2012) (though see Schneider et al., 2021). In
short, it is thought that neural oscillations facilitate interregional
communication by creating temporally aligned windows of
optimal neuronal excitability between sender-receiver systems.
It is worth noting that theta rhythms observed in extra-
hippocampal regions are often volume-conducted from the
hippocampus (Sirota et al., 2008; Buzsáki et al., 2012; Lalla et al.,
2017). That is, theta rhythms recorded in the prefrontal cortex or
striatum, for example, may not be generated locally. That being
said, this does not exclude the possibility of local theta generation
in these regions nor does it undermine their functional relevance
as hippocampal theta often acts to entrain local neural firing in
extra-hippocampal regions (Buzsáki et al., 2012).

The Dorsal and Ventral Hippocampus
Are Functionally Distinct
The hippocampus can be divided into distinct dorsal (dHPC) and
ventral (vHPC) subregions (posterior and anterior in humans,
respectively) that are functionally and anatomically distinct
(Fanselow and Dong, 2010). Although the entire hippocampus
encodes spatial representations, the receptive fields of place
cells within the hippocampus expand along the dorsoventral
axis such that the dHPC encodes environments at a higher
resolution than the vHPC (Kjelstrup et al., 2008). Moreover, the
dHPC encodes highly precise spatial information irrespective
of positive or negative motivational valence, whereas the vHPC

more strongly represents non-spatial information (Jung et al.,
1994). For example, Royer et al. (2010) found that, although
vHPC neurons do not form continuous spatial representations
like the dHPC, they do differentiate open and closed arms of
a radial maze and display similar encoding of reward locations
despite varying reward locations and trajectories. Oscillations in
the dHPC and vHPC are similar and often tightly correlated,
however they can diverge under a range of conditions (Schmidt
et al., 2013; Sosa et al., 2020). In addition, the vHPC is the primary
route by which the hippocampus projects to the amygdala
(McDonald and Mott, 2017), ventral striatum (Friedman et al.,
2002), and medial prefrontal cortex (Hoover and Vertes, 2007).

Amygdala Inputs to the Ventral
Hippocampus Transmit Motivationally
Relevant Information
The vHPC receives dense inputs from the amygdala that
likely contribute to the binding of spatial information with
motivational salience (Yang and Wang, 2017). The amygdala
plays a crucial role in processing both fear and reward and
has thus been proposed to play a role of assigning emotional
valence to motivationally relevant stimuli. In line with this, a
subset of neurons in the basolateral complex of the amygdala
(BLA) increases firing in the anxiogenic areas of the OF
and EPM tasks (Wang et al., 2011). In addition, optogenetic
excitation and inhibition of BLA→vHPC projections increases
and reduces, respectively, anxiety-like behavior (Tye et al., 2011;
Felix-Ortiz et al., 2013; Yang et al., 2016). Moreover, BLA
theta preferentially synchronizes with the vHPC during states of
anxiety (Jacinto et al., 2016). Although these findings may suggest
that BLA→vHPC interactions preferentially drive anxiogenic
states, other work shows that a subset of molecularly defined
BLA→vHPC neurons exert anxiolytic effects (Pi et al., 2020),
suggesting that BLA cell-type heterogeneity may underlie the
differential transmission of positive and negative valence to the
vHPC for emotional regulation and motivated navigation.

The Hippocampus Transmits Negatively
Valanced Spatial Information to the
Prefrontal Cortex
Because hippocampal projections to the mPFC primarily arise
from the vHPC, we might expect the mPFC to preferentially
synchronize with vHPC oscillations. Indeed, researchers studying
anxiety-like behavior using the EPM and OF discovered that
the mPFC and vHPC (but not dHPC) display synchronized
theta oscillations during exploration. Importantly, mPFC-HPC
synchronization increases in the open arms of the EPM and
the center area of OF (Adhikari et al., 2010). Remarkably,
they found that the firing patterns of individual neurons in
the mPFC become entrained to the phase of vHPC theta
oscillations (Adhikari et al., 2010). In particular, theta-entrained
mPFC neurons showed stronger modulation in the open arms
of the EPM (Adhikari et al., 2011). Changes in vHPC theta
oscillations are also predictive of changes in mPFC theta
oscillations, suggestive of a vHPC→mPFC directionality that
mirrors the underlying dense projections from vHPC to the
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mPFC (Adhikari et al., 2010). Optogenetic inhibition of the
vHPC→mPFC projection disrupted mPFC unit-entrainment
and produced an anxiolytic effect in the EPM and OF (Padilla-
Coreano et al., 2016). This work suggests that vHPC theta
synchronization preferentially conveys motivationally relevant
spatial information to the mPFC and this may regulate navigation
in potentially dangerous environments.

Although this work suggests that oscillatory coupling between
the vHPC and mPFC is critical for anxiety-related behavior,
it is unknown if vHPC theta oscillations play a causal role.
Padilla-Coreano et al. (2019) elegantly addressed this question
by testing if theta-paced (8 Hz), sine-wave stimulation of
vHPC→mPFC projections was superior to standard square-wave
(non-theta-paced) stimulation using optogenetics. They found
that 8 Hz, but not 2 or 20 Hz, oscillatory stimulation of vHPC-
mPFC pathways facilitated neural transmission, increased theta
synchrony between vHPC and mPFC, and decreased time spent
in the anxiogenic open arms (Padilla-Coreano et al., 2019). This
work provides strong evidence that interregional theta synchrony
enables long-range neural communication.

The vHPC does not uniformly transmit information to all
downstream structures but instead selectively sends information
via distinct channels to appropriate receiver networks. Ciocchi
et al. (2015) recorded optogenetically identified vHPC neurons
projecting to either the mPFC, amygdala, or the striatum during
EPM, OF, and goal-directed navigation. Like previous work,
they found that the anxiety-like behavior in the EPM and OF
was encoded by mPFC-projecting neurons, whereas rewarded
locations in a goal-directed navigation task were encoded by
striatal-projecting neurons. Although they did not examine the
relationship of striatal neurons to neural oscillations, others
have shown that they are preferentially entrained to vHPC
theta oscillations during goal-directed behaviors (Goodroe et al.,
2018). This selective routing of information transmission is likely
achieved by local microcircuitry within the vHPC that form
functionally distinct motifs (Krook-Magnuson et al., 2012; Lee
et al., 2014). Interestingly, amygdala-projecting neurons were not
found to preferentially encode either appetitive or aversive spatial
information (Ciocchi et al., 2015; Jimenez et al., 2018). This raises
the question of what information this population does encode?
Given the role of the amygdala in the storage of appetitive
and aversive memories, we speculate that this pathway may
preferentially act to engage BLA networks during the encoding
and retrieval of context-dependent fear (Maren and Fanselow,
1995; Bazelot et al., 2015; Kim and Cho, 2017, 2020).

THETA-RANGE OSCILLATIONS IN THE
ENCODING, RETRIEVAL, AND
EXPRESSION OF FEAR MEMORIES

Amygdala Synchronization Enables Fear
Memory Retrieval
Over the past three decades, there has been considerable
progress understanding the role for network oscillations in
aversive learning and memory. It was first discovered that

neurons in the lateral amygdala (LA) display intrinsic theta
rhythms after Pavlovian fear conditioning (Paré et al., 1995;
Pape and Driesang, 1998; Pape et al., 1998). These rhythms
were hypothesized to synchronize with the HPC to facilitate the
retrieval of fear memories (Paré et al., 1995). It was subsequently
shown that indeed the LA and dHPC synchronize at theta
frequencies (4–12 Hz) during the retrieval of fear memories
after both cued and contextual fear conditioning (Seidenbecher
et al., 2003). One potentially confounding factor in this study
was the different behavioral states of rats in the conditioned
(freezing) and non-conditioned (locomoting) groups. It was
therefore unclear if synchronization reflected memory retrieval
or behavioral performance. However, in a subsequent experiment
the investigators only observed LA-dHPC synchronization 24 h
after conditioning, but not minutes to hours after conditioning,
despite similar levels of freezing and theta activity at these time
points (Pape et al., 2005; Narayanan et al., 2007b). Subsequent
work in rodents has shown that amygdala theta also synchronizes
with the mPFC during fear memory retrieval (Lesting et al., 2011;
Likhtik et al., 2014; Stujenske et al., 2014; Davis et al., 2017; Ozawa
et al., 2020), and similar findings have recently been observed
using intracranial recordings in both humans (Zheng et al., 2019;
Chen et al., 2021) and non-human primates (Taub et al., 2018).

Many decades of work have established that fear memories
are initially encoded by a network of brain regions, including
the amygdala, hippocampus, and prefrontal cortex (Maren and
Quirk, 2004; Kim and Jung, 2006; Orsini and Maren, 2012;
Herry and Johansen, 2014). Although the amygdala maintains
long-term fear memory storage (Kim and Davis, 1993; Maren
and Fanselow, 1996; Gale et al., 2004; Liu et al., 2022), the
standard model of systems consolidation of memory posits that
as memories age, their storage and retrieval become independent
of hippocampal activity (Frankland and Bontempi, 2005). If
true, this suggests the amygdala theta synchronization should
shift to regions that are responsible for storing remote fear
memories over time. In line with this, Narayanan et al. (2007a,b)
found that LA-dHPC theta synchrony is not observed at remote
timepoints despite similar freezing levels. However, LA-dHPC
synchrony can be reinstated merely by context re-exposure,
which is interpreted as a reflection of systems level memory
reconsolidation (Narayanan et al., 2007a,b).

Indeed, it appears that the brain regions mediating fear
memories shift over time, and the precise structures encoding
these memories likely depends on sensory modality underlying
the association. For example, Sacco and Sacchetti (2010) found
that lesions of the secondary auditory, visual, and olfactory
cortices impaired the recall of remote (but not recent) auditory,
visual, and olfactory conditioned stimuli, respectively (Sacco and
Sacchetti, 2010). These manipulations were modality specific,
insofar as lesioning one of the sensory areas (i.e., the piriform
cortex governing olfactory memory) did not affect memories of
other modalities (i.e., auditory or visual) (Sacco and Sacchetti,
2010). Expanding on this, the authors showed that the BLA
and secondary auditory cortex synchronize at theta frequency
during the retrieval of remote, but not recent, auditory fear
memories (Cambiaghi et al., 2016, 2017). Although memories
may become less dependent on the HPC over time, there are
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instances where the HPC is still recruited at remote time points.
For example, the remote retrieval of contextual fear memories is
associated with increased synchrony between the hippocampus
and anterior cingulate cortex (Wirt and Hyman, 2017, 2019;
Makino et al., 2019). Collectively, these data reveal that theta
synchrony accurately reflects memory retrieval processes across
memory age and transformations.

Respiratory-Related Oscillations Entrain
Limbic-Wide Networks to Enable Fear
Expression
Many of the early investigations into prefrontal and amygdala
theta oscillations underlying aversively motivated behavior did
not consider the possibility of distinct sub-bands of theta, but
instead holistically grouped theta rhythms as 4–12 Hz. Recent
work has now shown that respiratory-related rhythms exist
within this frequency range and have functional significance
to motivated behaviors. Respiratory-related oscillations (RROs)
are slow rhythms that accompany breathing. These oscillations
were discovered seven decades ago when Edgar Douglas Adrian
found that LFPs in the olfactory cortex of hedgehogs and cats
are synchronized to breathing patterns (Adrian, 1942). It is now
clear that respiration organizes network dynamics across many
limbic structures (Karalis and Sirota, 2022). Breathing patterns
change with a variety of emotions (Homma and Masaoka, 2008),
however it was only recently discovered that RROs are a major
oscillatory correlate of fear expression in rodents (Tort et al.,
2018a; Folschweiller and Sauer, 2021). Importantly, RROs and
theta rhythms are dissociable, particularly during fear expression
(Nguyen Chi et al., 2016; Tort et al., 2018b; Srikanth et al.,
2021). For example, locomotor-related theta oscillations of the
hippocampus typically occur with a peak frequency of ∼8 Hz,
depending on movement speed and acceleration. However, fear-
related immobility (i.e., freezing behavior) is tightly correlated
to a prominent ∼4 Hz rhythm observed in the mPFC and BLA
(Karalis et al., 2016). Although breathing frequency in rodents
can range anyway from ∼1 to 15 Hz, they tend to breath at
a frequency of approximately four inhalation/exhalation cycles
per second (i.e., 4 Hz) during freezing behavior. This 4-Hz
breathing pattern results in a synchronized 4-Hz oscillation in
the olfactory bulb which then acts to entrain mPFC neurons
for the maintenance of fear expression (Bagur et al., 2021).
More specifically, 4-Hz RROs act to organize mPFC neurons
into functional cell assemblies (Dejean et al., 2016) that likely
control freezing behavior by synchronizing with the BLA (Karalis
et al., 2016). Given the clear distinction of these rhythms from
locomotor-related hippocampal theta oscillations, we will classify
3–6 and 6–12 Hz oscillations in the PFC and amygdala as RROs
and theta oscillations, respectively.

The majority of work investigating oscillatory dynamics
in aversive learning and memory has used Pavlovian fear
conditioning procedures that elicit high levels of freezing
behavior as the primary behavior output of fear. However, it
should be noted that there is a wide range of fear-related
behavior other than freezing (Gruene et al., 2015; Fadok et al.,
2017; Mobbs et al., 2020; Jercog et al., 2021; Totty et al., 2021).

Considering that locomotion is associated with 8-Hz theta
rhythms in the hippocampus and amygdala, we might predict
that active forms of fear expression, such as active avoidance,
flight, or escape, might also be associated with 8-Hz theta
rhythms, compared to freezing-related 4-Hz RROs. Indeed, a
recent study using an active avoidance paradigm found that
successful avoidance behavior was associated with increased 8-
Hz theta power and reduced 4-Hz power, whereas unsuccessful
avoidance trials dominated by freezing behavior instead showed
increase 4-Hz power (Jercog et al., 2021). Similarly, Dupin
et al. (2019) found that escape-like behavior during an odor
fear conditioning paradigm were associated with increased 8-
Hz theta power in the mPFC, BLA, and olfactory piriform
cortex compared to freezing epochs. Although this suggests that
8-Hz theta rhythms are involved in the expression of active
fear behaviors, it is currently unclear how these rhythms might
differentially organize networks driving mobile fear states vs.
mobile, non-fear-related states, such as exploratory behavior.

Intrinsic Resonance Enables Selective,
Pathway-Specific Information Routing
Given the stark contrast between fear related RROs and theta,
it appears likely that ∼4-Hz RROs and ∼8-Hz theta rhythms
represent orthogonal networks underlying these opposing
behavioral states. We speculate that fear memory retrieval
acts in part to reactivate these oscillatory network states.
Evidence for this comes from a recent investigation into the
relationship between memory engrams and oscillations in the
BLA. Because parvalbumin-expressing (PV+) interneurons are
heavily implicated in generating network oscillations, Davis
et al. (2017) expressed “designer receptor exclusively activated
by designer drugs” (DREADDs) exclusively in BLA PV+
interneurons that originally encoded fear memory formation (i.e.,
engram cells). Reactivation of PV+ BLA fear engrams increased
freezing and drove ∼3–6 Hz BLA rhythms, whereas inactivation
of this ensemble decreased freezing and drove∼6–12 Hz rhythms
(Davis et al., 2017). They further showed that distinct populations
of BLA neurons display 4- or 8-Hz resonance in an experience-
dependent fashion. Consistent with this, optogenetic stimulation
of the BLA at 4 vs. 8-Hz bidirectionally regulated freezing
behavior. Moreover, applying simultaneous 4-Hz stimulation to
the mPFC and BLA increased freezing behavior only if this
stimulation was in-phase (Ozawa et al., 2020). These findings
support the notion that 4-Hz RROs and 8-Hz theta rhythms act
to engage distinct BLA ensembles, and aligns with other work
suggesting that positive- and negative-valance are encoded by
independent subsets of BLA neurons (Paton et al., 2006; Belova
et al., 2007; Redondo et al., 2014; Gore et al., 2015; Namburi et al.,
2015; Beyeler et al., 2016, 2018; Kim et al., 2016; Lee et al., 2017;
O’Neill et al., 2018; Zhang et al., 2020).

Given that fear and non-fear-related behaviors are driven by
distinct anatomical pathways, it is possible that the resonance of
BLA neurons may be predicted by their downstream projection
targets. Amir et al. (2018) recorded BLA activity during a
naturalistic foraging task and found high-gamma (75–95 Hz)
was associated with apprehensive behavior and preferentially
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entrained neurons projecting to the mPFC over the NAc, which
aligns with other work demonstrating increased high-gamma
synchrony during fear retrieval (Stujenske et al., 2014). Moreover,
it is also interesting to consider that hippocampal locomotor-
related Type-1 (7–12 Hz) and fear-related Type-2 (4–7 Hz) theta
appear to be analogous to BLA theta and RROs. We speculate
that changes in HPC-BLA synchrony between Type-1 and Type-
2 theta may be an efficient means for the context-dependent
retrieval of fear memories (Maren et al., 2013). Future work
should investigate these possibilities.

GAMMA OSCILLATIONS IN AVERSIVE
LEARNING AND MEMORY

Gamma oscillations have long been implicated in emotional
learning and memory (Miltner et al., 1999; Keil et al., 2007;
Headley and Paré, 2013; Luther et al., 2022). One of the first
discoveries linking gamma rhythms to associative learning came
when Miltner et al. (1999) found that ∼20–70 Hz gamma
rhythms developed across occipital and parietal electrode sites
in a Pavlovian conditioning procedure in humans. Interestingly,
gamma coherence developed between visual and pericentral
cortices, which represent CS and US information, respectively.
This demonstrates an oscillatory correlate associative memory
(Miltner et al., 1999). Similar to the hippocampus, gamma
oscillations in neocortical and other cortical-like regions are
thought to play a role in synchronizing groups of functionally
connected neurons via precise periods of inhibition and
excitation (Buzsáki and Wang, 2012; Sohal, 2016).

In the amygdala, gamma rhythms are generated by reciprocal
interactions between inhibitory interneurons and excitatory
pyramidal cells (Randall et al., 2011; Feng et al., 2019; Headley
et al., 2021), and are most prominent in the basolateral (BL)
nucleus, rather than LA, likely due to higher numbers of PV+
interneurons in BL (Headley et al., 2021). Gamma oscillations in
the amygdala are associated with a wide range of behaviors and
cognitive process. In relation to aversive learning and memory,
gamma rhythms develop across conditioning (Bauer et al., 2007;
Popescu et al., 2009; Courtin et al., 2014; Stujenske et al., 2014),
emerge with retrieval (Bauer et al., 2007; Courtin et al., 2014;
Stujenske et al., 2014), and are predictive of persistent fear
memory (Courtin et al., 2014). BLA gamma oscillations are also
pronounced during states of increased vigilance (Amir et al.,
2018) and the expression of conditioned responses (Headley et al.,
2021). Interestingly, a recent report found that activation of BLA
PV+ interneurons via norepinephrine drives fear expression and
reduces BLA gamma power in the BLA (Fu et al., 2022). This is in
line with previous reports show that the release of norepinephrine
in the BLA drives freezing behavior (Giustino et al., 2020) and
that freezing behavior is associated with decreased gamma power
(Stujenske et al., 2014).

Using Pavlovian fear conditioning paradigms, Headley and
Weinberger (2011) found oscillatory correlates of auditory fear
conditioning in the primary auditory cortex of rats. Specifically,
they found that the amplitude of conditioning-driven gamma-
band activation predicted associative memory strength 24 h later

(Headley and Weinberger, 2011) and that conditioning-induced
receptive field plasticity increased phase-locking of auditory
cortical neurons to gamma rhythms (Headley and Weinberger,
2013, 2011). This suggests that learning-induced plasticity
increases gamma frequency resonance in neurons that encode the
initial experience, and in turn would allow these neurons to more
easily be entrained by gamma rhythms for future memory recall.
Expanding on this, the primary auditory cortex (Concina et al.,
2018) and amygdala (Stujenske et al., 2014, 2022) synchronize
with the mPFC at gamma frequencies during successful auditory
fear discrimination. Stujenske et al. (2014) found that fast
gamma (70–120 Hz) power and synchrony in BLA-mPFC-vHPC
networks underly auditory fear discrimination, and that fast
gamma oscillations are negatively correlated to freezing behavior.
They further found that BLA fast gamma power increased with
extinction learning and was associated with a mPFC→BLA lead,
suggesting that fast gamma rhythms in the amygdala may reflect
a safety-related signal (Stujenske et al., 2014). Conversely, it
appears that slow gamma (40–70 Hz) rhythms in the amygdala
may be associated with high fear and poor retention of extinction.
Unfortunately, there is relatively little work examining gamma
oscillations in the mPFC and HPC during aversive learning and
memory which should be a focus of future investigations.

Gamma oscillations are also involved in memory
consolidation (Huff et al., 2013; Kanta et al., 2019). In an
eloquent study, Kanta et al. (2019) detected and modulated
endogenous gamma oscillations in the amygdala using closed-
loop optogenetics to probe their role in the consolidation of
inhibitory avoidance memory. They found that boosting or
diminishing gamma oscillations following learning significantly
enhanced or impaired subsequent memory strength the next
day, demonstrating a causal role of BLA gamma oscillations
in the consolidation of contextual-based fear memories (Kanta
et al., 2019). In summary, gamma oscillations are inextricably
linked to a wide range of behaviors and cognitive functions in
aversive learning and memory (Headley and Paré, 2013). Future
investigations should focus on causal manipulations to determine
specific functions of gamma oscillations across brain structures.

PREFRONTAL TOP-DOWN THETA
SYNCHRONY REGULATES FEAR
EXTINCTION

After fear conditioning, repeated presentations of the CS without
the US will lead to extinction, which is manifest as a reduction
in conditioned fear responses. During this procedure, animals
learn that the CS no longer predicts the occurrence of the
US. Interestingly, the suppression of fear is labile, and animals
show a return of conditioned fear under a variety of conditions
(Bouton et al., 2021). This reveals that extinction learning does
not result in the erasure of the original fear memory but instead
forms a new memory trace that competes with and inhibits the
fear memory. Importantly, extinction learning is the basis of
commonly employed cognitive-behavioral therapies for reducing
fear and anxiety in anxiety- and trauma-related disorders (Milad
and Quirk, 2012; Ressler et al., 2022). Although the oscillatory
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correlates of conditioned fear have been well described, much less
is known about the role for oscillations in extinction learning and
retrieval (Trenado et al., 2018).

Extensive work suggests that the prelimbic (PL) and
infralimbic (IL) subregions of the mPFC are functionally
dissociable such that the PL enables fear expression and the
IL is critical for extinction (Laurent and Westbrook, 2009;
Peters et al., 2010; Sierra-Mercado et al., 2011; Do-Monte et al.,
2015; Giustino and Maren, 2015; Bloodgood et al., 2018). The
IL has extensive connections with both the hippocampus and
amygdala, two brain areas that exhibit oscillatory entrainment
during Pavlovian fear conditioning. To explore the role for this
network in extinction, Lesting et al. (2011) recorded from the
LA, dHPC, and IL across fear conditioning and extinction. They
found that the LA-dHPC-IL network displayed theta (4–12 Hz)
synchrony early in extinction training (high fear) but displayed
low synchrony late in extinction (low fear). The following day,
IL-LA and IL-dHPC, but not LA-dHPC, showed high theta
synchrony during extinction retrieval (low fear). Interestingly,
these results hold true even when cross-correlation analyses were
restricted to freezing epochs during extinction retrieval (Lesting
et al., 2011). It is currently unclear if the rhythms observed in
this experiment were 3–6 Hz RROs or 6–12 Hz theta rhythms.
However, considering that the retrieval of extinction memories
is associated with low levels of freezing we might speculate that
mPFC-HPC oscillations underlying extinction retrieval are likely
to be 6–12 Hz theta rhythms.

In subsequent work, Lesting et al. (2013) showed that the
LA-dHPC-IL network displays no lead-lag relationship during
fear memory retrieval, but the IL leads both the LA and
dHPC during extinction retrieval. This mirrors anatomical work
showing that extinction recall is associated with IL projections
to LA, whereas fear recall is associated with prelimbic mPFC
and hippocampal input (Knapska et al., 2012). This work
reveals that the retrieval of fear extinction is associated with
top-down theta synchrony such that mPFC leads dHPC theta.
Although it has long been assumed that the mPFC does not
project to the dHPC (Vertes et al., 2007), a recent report
discovered for the first time that a population of mPFC long-
range inhibitory neurons directly project to the dHPC and
play a critical role in increasing hippocampal signal-to-noise
ratio for spatial encoding by driving feedforward inhibition
and increasing mPFC-dHPC gamma synchrony (Malik et al.,
2022). Conversely, the mPFC has been proposed to interface
with the dHPC via a disynaptic circuit through the nucleus
reuniens of the thalamus (Vertes et al., 2007; Jin and Maren,
2015), which is also critical to fear extinction (Ramanathan et al.,
2018a,b).

Does the Ventral Midline Thalamus
Enable Fear Extinction by Synchronizing
Prefrontal-Hippocampal Theta
Interactions?
The midline thalamus, comprised of in part the paraventricular
nucleus (PVT), and nucleus reuniens (RE), has gained recent
attention as key node in emotional regulation (Vertes et al., 2015;

Dolleman-van der Weel et al., 2019; Cassel et al., 2021; Penzo
and Gao, 2021). The PVT is suggested to guide adaptive
selection of both positive and negatively motivated behaviors
via projections to the nucleus accumbens and amygdala
(Vertes et al., 2015; Choi and McNally, 2017; Penzo and
Gao, 2021), whereas the RE is critical for navigation, spatial
working memory, and episodic memory (Dolleman-van der
Weel et al., 2019) via bidirectional connections with the
hippocampus and prefrontal cortex (Vertes et al., 2007). It
is widely believed that the RE is a critical node facilitating
mPFC→HPC communication by serving as a hub in a mPFC-
RE-HPC circuit (Xu and Südhof, 2013; Jin and Maren, 2015;
Ferraris et al., 2018; Ito et al., 2018; Ramanathan et al.,
2018a,b; Dolleman-van der Weel et al., 2019; Lin et al., 2020;
Robinson and Brandon, 2021). Indeed, the RE (Ramanathan
et al., 2018a; Silva et al., 2021) and incoming mPFC afferent
neurons were recently shown to critical to the retrieval of
extinction memories (Ramanathan et al., 2018a,b; Silva et al.,
2021).

Given the extensive literature implicating mPFC-HPC theta
in episodic memory processes (Eichenbaum, 2017), it has
also been hypothesized that the RE may facilitate mPFC-
HPC communication by synchronizing oscillatory activity in
this network (Angulo-Garcia et al., 2018; Ferraris et al., 2018;
Hauer et al., 2019, 2021; Cassel et al., 2021; Robinson and
Brandon, 2021). For example, Hallock et al. (2016) found that
pharmacological inactivation of the RE resulted in impaired
mPFC-HPC coherence and working memory performance.
They specifically found that mPFC→HPC directionality was
impaired when animals entered the choice point of the
T-maze task, a decision point that is known to be mPFC-
dependent (Hallock et al., 2016). However, it is currently
unclear how the RE mediates mPFC-HPC theta synchrony. It
seems unlikely that the RE increases mPFC-HPC synchrony
by directly driving theta and gamma rhythms, because RE
inactivation selectively impairs mPFC oscillations, leaving HPC
theta and gamma rhythms intact (Ferraris et al., 2018).
Instead, it appears that the RE acts to coordinate the timing
of synaptic and oscillatory events in the mPFC and HPC.
For example, Ferraris et al. (2018) found that chemogenetic
inactivation of the RE abolished mPFC-HPC gamma burst
synchrony in anesthetized rats. It is also important to note
that upstream regions that project to the mPFC, RE, and
HPC may play a critical role in synchronizing all three
structures. It was recently shown that the supramammillary
nucleus (SUM) of the hypothalamus, a key structure in the
generation and pace-making of hippocampal theta rhythms,
is also critical for the transfer of information through the
mPFC→RE→HPC circuit (Ito et al., 2018). Specifically, these
authors found that SUM inactivation decreases the coherence
of mPFC and RE neurons to CA1 theta at the decision
point of a T-maze task (Ito et al., 2018). Although the RE
was shown to be necessary for mPFC-HPC synchrony, this
work suggests that synchronization of the entire mPFC-RE-
HPC circuit may be coordinated by the SUM. Although we
are currently unaware of any studies examining the potential
involvement of the SUM in fear extinction, this seems likely
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given its role in coordinating mPFC→HPC theta oscillations
via the RE.

CONCLUSION

In summary, neural synchronization is an intrinsic aspect of
neural computation that underlies various cognitive functions
and behavior. Prefrontal theta synchronization via the vHPC
mediates increases anxiety-like behavior via the transmission of
motivationally salient spatial information. The retrieval of both
recent and remote fear memories is characterized by theta and/or
RRO synchronization with the amygdala, and the synchronized
regions shifts with memory age. Oscillatory correlates of fear
extinction match anatomical data suggesting that the mPFC
provides top-down control of fear memories encoded in the

amygdala and HPC. Although the mPFC does not project directly
to the HPC, the nucleus reuniens of the thalamus appears to
be a critical node in synchronizing prefrontal-hippocampal theta
interactions for fear suppression.
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