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the outflow tract. The treatment of CHD has improved dur-
ing the last 50 years, and today 95 % of CHD patients sur-
vive to adulthood, which has resulted in a growing popula-
tion of adults living with CHD [3].

The etiology of CHD is complex and is associated with 
both environmental and genetic causes. Genetically, CHD 
is a very heterogeneous disease; 55 human disease genes 
have been identified so far (Table 1 and text below), how-
ever, experiments with targeted deletions in mice have 
revealed more than 500 genes which lead to heart defects 
when mutated (http://www.informatics.jax.org/). Thus it is 
likely that at least the same number of human CHD disease 
genes exist.

During the last two decades, linkage analysis has been 
used to successfully identify CHD disease genes in large 
families, segregating isolated CHD and genetic syndromes, 
where CHD is part of the phenotypic spectrum (syndromic 
CHD). Furthermore, fine-mapping of genomic copy num-
ber variants (CNVs) in patients with isolated CHD, or CHD 
in combination with additional birth defects, have been 
used to identify candidate disease genes. Follow-up studies 
of candidate genes in animal models, particularly in mice, 
have been very successful in validating the candidates, and 
to gain insight into the function of the gene products in 
heart development.

Identifying disease genes in CHD is critically impor-
tant to understand the disease. Identification of a novel 
disease gene or a causative pathway will enhance current 
knowledge of the molecular biology involved in human 
cardiac development, and the molecular pathology under-
lying CHD. Such knowledge may lead to new preventive 
strategies and perhaps new treatments. Furthermore, such 
knowledge may also increase our understanding of the 
factors involved in cardiomyogenic stem cell differentia-
tion, and may thus aid in the development of regenerative 

Abstract  Congenital heart disease (CHD) affects nearly 
1 % of the population. It is a complex disease, which may 
be caused by multiple genetic and environmental factors. 
Studies in human genetics have led to the identification of 
more than 50 human genes, involved in isolated CHD or 
genetic syndromes, where CHD is part of the phenotype. 
Furthermore, mapping of genomic copy number variants 
and exome sequencing of CHD patients have led to the 
identification of a large number of candidate disease genes. 
Experiments in animal models, particularly in mice, have 
been used to verify human disease genes and to gain fur-
ther insight into the molecular pathology behind CHD. The 
picture emerging from these studies suggest that genetic 
lesions associated with CHD affect a broad range of cel-
lular signaling components, from ligands and receptors, 
across down-stream effector molecules to transcription fac-
tors and co-factors, including chromatin modifiers.
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Introduction

Congenital heart disease (CHD) is the most prevalent birth 
defect, with a postnatal incidence of 0.8  % [1] and an 
approximately tenfold higher prenatal incidence [2]. CHD 
is a group of structural abnormalities of the heart, which 
include septal defects, valve defects and lesions affecting 
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Table 1   Genes associated with CHD via intragenic mutations

HCNG gene symbol  
(alternative symbol)

Protein functiona Type of CHDb Reference

Genes encoding transription factors

 CITED2 Transcriptional co-activator I [18]

 FOXH1 Forkhead box TF I [29]

 FOXP1 Forkhead box TF I [246]

 GATA4 GATA-binding TF I [89–91]

 GATA6 GATA-binding TF I [247, 248]

 IRX4 Iroquois homeobox TF I [249]

 MED13L Multiprotein coactivator subunit I [250]

 NKX2-5 Homeobox TF I [69–71]

 NKX2-6 Homeobox TF I [251]

 TBX1 T-box TF S (DiGeorge syndrome) [156]

 TBX5 T-box TF S (Holt–Oram syndrome) [102, 103]

 TBX20 T-box TF I [104]

 SALL4 Zinc finger TF I, S (Duane-radial ray syndrome) [252–255]

 TFAP2B AP-2 TF I, S (Char syndrome) [110–112]

 ZFPM2 Zinc finger TF I [255, 256]

 ZIC3 Zinc finger TF HTX [19]

Genes involved in cell signaling

 ACVR1 Activin receptor, type 1 I [257]

 ACVR2B Activin receptor 2B HTX [14]

 BRAF Serine/threonine protein kinase S (NS, LS, CFC) [56, 64]

 CBL E3 ubiquitin ligase S (NS-like) [66]

 CFC1 Ligand (EGF family) HTX [17]

 GDF1 Ligand (BMP/TGFbeta family) HTX [16]

 HRAS RAS GTPase S (Costello syndrome) [63]

 JAG1 NOTCH ligand S (Alagille syndrome) [37, 38]

 LEFTY2 (LEFTYA) Ligand (BMP/TGFbeta family) HTX [14]

 KRAS RAS GTPase S (NS, CFC) [56, 57]

 MAP2K1 (MEK1) MAP kinase kinase S (CFC) [64]

 MAP2K2 (MEK2) MAP kinase kinase S (CFC) [64]

 NF1 Negative regulator of RAS-MAPK signalling S (neurofibromatosis-NS) [67]

 NRAS RAS GTPase S (NS) [62]

 NODAL Ligand (BMP/TGFbeta family) HTX [12, 13]

 NOTCH1 NOTCH receptor I [45–47]

 NOTCH2 NOTCH receptor S (Alagille syndrome) [41, 42]

 PTGFRA PTGFRα receptor I [258]

 PTPN11 Protein tyrosine phosphatase S (NS) [55]

 RAF1 MAP kinase kinase kinase S (NS, LS) [60, 61]

 RIT1 Ras-related GTPase S (NS) [259]

 SHOC2 RAS-MAPK modulator S (NS) [65]

 SMAD6 BMP/TGFbeta modulator I [260]

 SOS1 Guanine nucleotide exchange factor  
(RAS-MAPK pathway)

S (NS) [58, 59]

 TAB2 Activator of MAP3K7 (TAK1) I [236]

 TDGF1 Co-receptor for TGF-β ligands I [29]

Genes encoding structural proteins

 ACTC1 Cardiac α-actinin I [124]

 ELN Elastin Ic [184]
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therapy for treatment of myocardial infarction. In familial 
cases of CHD, identification of disease genes will benefit 
the genetic counseling process for CHD-afflicted families. 
Such knowledge is particularly important for the growing 
population of adults with CHD, due to the high recurrence 
risk of certain forms of CHD [4].

In this review, we aim to summarize current knowledge 
in the molecular genetics of CHD, from the perspective of, 
disease gene identification efforts in humans, and func-
tional analyses of disease genes in animal models.

Part I: genes associated with congenital heart disease

Below we discuss genes associated with syndromic and 
isolated CHD, juxtaposing studies from multiple model 
systems to clarify why errors in the underlying molecu-
lar machinery manifests themselves as congenital heart 
defects.

Genes associated with laterality defects

The heart is the first organ to break the bilateral sym-
metry of the developing embryo. During early embryo-
genesis, left–right asymmetry of the body-axis is estab-
lished via intricate cross-talk amongst signaling pathways 
such as Notch, Nodal, Hedgehog, FGF and BMP, ulti-
mately restricting NODAL signaling to the left side of the 
embryo. The nodal cilia model is the predominant model 

to elucidate induction of embryonic asymmetry in the 
developing embryo, although other models have been pro-
posed [5]. Briefly, nodal cilia in the node of the primitive 
streak produce a directional fluid flow which induces left–
right asymmetry by delivering morphogens to the left side 
of the embryo and/or by acting on mechanosensory cilia 
[6–9]. Ultimately, laterality cues are relayed downstream 
to ensure left-sided expression of the PITX2 transcription 
factor in the lateral plate mesoderm [10], a critical  com-
ponent in determining organ laterality [11]. NODAL [12, 
13], LEFTY2 [14], ACVR2B [15], GDF1 [16] CFC1 [17], 
CITED2 [18] and ZIC3 [19] have all been localized to 
the laterality signaling pathway. Albeit human mutations 
in these genes show a wide range of heart malfunctions, 
many cluster around laterality defects such as heterotaxy 
and faulty looping of the heart. Interestingly, a recent study 
identified mutations in Nephronophthisis-4 (NPHP4), a 
cilia related gene, and linked them to a variety of cardiac 
laterality defects such as transposition of the great arter-
ies (TGA), atrioventricular septal defects (AVSD), double 
outlet right ventricle (DORV), dextrocardia and abnormal 
pulmonary venous return. Laterality defects of the abdomi-
nal organs were also observed. Morpholino knock down of 
nphp4 in zebrafish resulted in reverse orientation or faulty 
looping of the heart [20]. Previous studies have also con-
nected other NPHP family members to inborn heart defects 
and laterality deficiencies [21, 22].

The ZIC3 gene encodes a zinc finger transcription fac-
tor known to cause cardiovascular defects when mutated 

The list include genes, which have been associated with CHD by identification of mutations in two or more unrelated patient and/or genes where 
human genetic analyses are complemented with functional analyses
a  TF transcription factor, HC heavy chain
b  I isolated CHD, S syndromic CHD, HTX heterotaxy, NS Noonan syndrome, LS LEOPARD syndrome, CFC Cardiofaciocutaneous syndrome
c  Genomic deletions, which include ELN cause Williams–Beuren syndrome
d  Intragenic genomic duplication causing premature truncation at p.F697X

HCNG gene symbol  
(alternative symbol)

Protein functiona Type of CHDb Reference

 MYH6 Cardiac myosin HC I [118–120]

 MYH7 Cardiac myosin HC I [123]

 MYH11 Smooth muscle myosin HC I [125]

Genes encoding epigenetic regulators

 CHD7 Binding to H3K4Me3 S (CHARGE syndrome) [134, 135, 137]

 KMT2D (MLL2) H3K4 methyltransferase S (Kabuki syndrome) [132]

 EP300 Histone acetyltransferase S (Rubinstein–Taybi syndrome) [117]

 CREBBP Histone acetyltransferase S (Rubinstein–Taybi syndrome) [116]

 EHMT1 H3K9 methyltransferase S (Kleefstra syndrome) [205, 208]

Other genes

 CRELD1 Cell adhesion I [261]

 MCTP2d Possible role in Ca2+ signalling I [262]

 NPHP4 Ciliary protein I, HTX [20]

Table 1   continued
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in humans. Mutations in ZIC3 cause X-linked familial 
heterotaxy but are also found in sporadic cases of hetero-
taxy and isolated CHDs [19, 23, 24]. Null and heterozy-
gous Zic3 mice display a variety of cardiac defects such as 
TGA, interrupted aortic arch (IAA), atrial septum defect 
(ASD) and ventricular septal defect (VSD) in combination 
with various other developmental anomalies, thus resulting 
in a phenocopy of the clinical spectrum of malfunctions 
found in humans with heterotaxy [25]. How mutations in 
ZIC3 result in faulty heart looping is currently unknown. 
However, recent reports place ZIC3 upstream in the Nodal 
signal cascade [25, 26] with conditional loss-of-function 
studies showing that ZIC3 is required in the migrating mes-
oderm but not for heart progenitors and in the heart com-
partment [27].

Recently, the transcription factor FOXH1 was outlined 
as a possible signaling intersection between BMP and 
Nodal signaling to establish left/right asymmetry [28]. 
Mutations in FOXH1 have been linked to human heart 
defects [29], as well as the lack of outflow tract and right 
ventricle is seen in Foxh1−/− mouse embryos [30].

In humans, mutations in the transcriptional co-activator 
CITED2 (Cbp/p300-interacting transactivator, with Glu/
Asp-rich carboxy-terminal domain 2) are associated with 
laterality defects and cardiac anomalies such as septal 
defects and TGA [18]. Mice deficient in Cited2 die during 
gestation expressing partially penetrant laterality defects 
and fully penetrant heart defects [31, 32]. The heart anoma-
lies include ASD, VSD, common atrioventricular canal 
(CAVC), DORV and IAA type B [32, 33]. Recently, Lopes 
et al. [31] showed that specific deletions of Cited2 in heart 
progenitors do not produce heart defects and that the car-
diac malfunctions seen in Cited2−/− embryos arise during 
the early phases of establishing the left–right body axis in 
close relation to NODAL signaling.

Genes encoding components of signaling pathways

Animal models have illustrated that cardiac development 
involves spatial and temporal coordination of a number of 
signaling pathways [34, 35]. The identification of disease 
genes in syndromic and isolated CHD has confirmed the 
involvement of a subgroup of these pathways in human 
heart development, and has further contributed new infor-
mation about additional pathways.

The NOTCH signaling pathway acts locally as a cell-
fate regulator, and as a patterning signal effector in many 
developmental processes. Its activity includes left–right 
axis partitioning and heart morphogenesis. For an extensive 
review on Notch signaling in cardiac development see [36].

Identification of mutations in JAG1, encoding a NOTCH 
signaling ligand, in patients with Alagille syndrome pro-
vided the first link between NOTCH signaling and human 

CHD [37, 38]. Alagille syndrome (AGS, OMIM #118450) 
is a multisystem disorder, which involves the liver, heart, 
eyes, face and skeleton [39]. Approximately 90 % of these 
patients have cardiovascular anomalies, often presenting in 
the form of stenosis in the pulmonary artery branch, valvu-
lar pulmonary stenosis (PS) and tetralogy of Fallot (TOF) 
[40]. The majority (>90  %) of AGS cases are caused by 
mutations in JAG1, however select (<1 %) cases are caused 
by mutation in NOTCH2 [41, 42]. Mice homozygous for 
targeted deletion of Jag1 die during embryonic develop-
ment possibly due to vascular defects while heterozygous 
Jag1−/+ mice display ocular defects [43].

In contrast, doubly heterozygous Jag1+/−, Notch2+/− 
mice exhibit multiorgan abnormalities characteristic of 
AGS, supporting a genetic interaction between JAG1 and 
NOTCH2 in AGS [44].

Mutations in NOTCH1 have been identified in patients 
with isolated CHD [45–47]. Patients with NOTCH1 muta-
tions often present malfunctions of the aortic valve. 
NOTCH1 signaling has been linked to endothelial-to-mes-
enchymal transformation (EMT), a fundamental process in 
the early stages of cardiac valve formation, where endocar-
dial cells detach to become a migratory mesenchyme that 
forms endocardial cushions, precursors of cardiac valves. 
Notch1 mutant mice develop hypoplastic endocardial cush-
ions due to impaired EMT [48]. Recently, Luna-Zurita 
et al. and others [48–50] outlined that a NOTCH1, WNT4 
and BMP2 signal interplay between the endocardium and 
myocardium underlie valve morphogenesis. Furthermore, 
Bosse et al. [51] showed that compound mutant Notch+/−; 
Nos3−/− mice display an accelerated bicuspid aortic valve 
phenotype compared to Notch+/− and Nos3−/− alone, sug-
gesting an interaction between nitric oxide (NO) and 
NOTCH signaling in the development of the aortic valve. 
In the same paper, these data were further supported by in 
vitro data, suggesting that NO regulates Notch signaling in 
aortic valve interstitial cells.

Signal transduction through the RAS-mitogen activated 
protein kinase (MAPK) pathway can stimulate cell pro-
liferation, differentiation, survival and metabolism. Iden-
tification of disease genes in Noonan syndrome (OMIM 
#163950), Costello syndrome (OMIM #218040), LEOP-
ARD syndrome (OMIM #151100), Cardio-facio-cutaneous 
(CFC) syndrome (OMIM #115150) and a few other syn-
dromes with distinct but overlapping phenotypes, collec-
tively known as RASopathies (see [52] for review), have 
firmly established a link between the RAS-MAPK signal 
transduction pathway and human CHD. The RASopathies 
are manifested by a wide range of multisystem anoma-
lies, including CHD. In Noonan syndrome approximately 
85  % of patients have a variety of cardiac defects, most 
commonly including pulmonary valve stenosis, ASD and 
hypertrophic cardiomyopathy [53, 54].
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Linkage analysis and mutation screening has identi-
fied mutations in PTPN11 as the cause of approximately 
half of cases with Noonan syndrome [55]. Subsequently, 
mutations in KRAS [56, 57], SOS1 [58, 59], RAF1 [60, 
61], NRAS [62], HRAS [63], BRAF [56, 64], SHOC2 [65], 
MAP2K1 (MEK1) and MAP2K2 (MEK2) [64], CBL [66] 
and NF1 [67] have been associated with RASopathies in 
which CHD are observed (Table 1).

Genes encoding cardiac transcription factors

Cardiac developmental signals are conveyed to transcrip-
tional circuits that regulate gene expression during normal 
heart development. At the heart of these transcriptional net-
works lie a set of core transcription factors many of which 
are associated with isolated CHD (Table 1). Transcriptional 
focal points include NKX2-5, GATA4 and TBX5. These 
transcription factors interact at cardiac promoters in syner-
gistic fashions (see below). Their function and molecular 
signatures have been thoroughly described and excellently 
reviewed elsewhere, and will only be briefly mentioned 
here (see [68] for a recent review).

In humans, disease causing mutations in the homeodo-
main protein NKX2-5 result in a plethora of CHDs includ-
ing ASD, VSD, TOF and DORV [69–71] Septal defects and 
atrio-ventricular conduction defects are commonly seen in 
patients with a mutated NKX2-5 gene [70]. Disruption of 
Tinman, the homologue of NKX2-5 in Drosophila mela-
nogaster, results in a fruit fly devoid of the dorsal vessel, 
a structure analogous to the human heart [72]. Similarly, 
Nkx2-5 functionality is crucial in mice as homozygous muta-
tions cause embryonic lethality due to faulty cardiac looping 
and insufficient myocardial differentiation during cham-
ber formation [73, 74]. Mouse studies show that Nkx2-5  
gene dosage is critically important for properly regulated 
development of the cardiac conduction system as Nkx2-5  
null mice lack the primordium of the AV node and the 
conduction system of heterozygous mutant embryos only 
contain half the normal number of cells [75]. Additionally, 
Pashmforoush et  al. [76] generated ventricular-restricted 
Nkx2-5 knockout mice that display progressive complete 
heart block and massive trabecular muscle overgrowth.

NKX2-5 ranks high in the cardiac regulatory hierarchy 
and is expressed in both the first- and second heart field 
(SHF) [77]. Its expression is closely coordinated through 
GATA factors, SMAD proteins and by self-autoregulation 
[78–81]. Proliferation of the SHF and outflow tract (OFT) 
morphology is regulated by Nkx2-5 feedback repression of 
BMP2/SMAD1 signaling [82]. It was recently shown that 
JARID2, which is also implicated in OFT development, is 
a direct target of NKX2-5 regulation [83]. Furthermore, it 
has been demonstrated that Nkx2-5 interacts with Gata4 
within cardiac promoters, suggesting that the proteins 

cooperate in the transcriptional activation of cardiac tar-
get genes [84, 85]. Nkx2-5 interacts with Tbx5 in vitro and 
the two proteins were shown to activate a cardiac-specific 
Nppa promoter in a synergistic fashion [86] and Nkx2-5 
cooperates with Tbx5 in development of the cardiac con-
duction system in vivo [87].

GATA binding protein 4 (GATA4) plays a pivotal 
role near the top of the transcriptional cascades that con-
trol heart development (see [88] for a recent review). In 
humans, the cardiac defects found in patients with intersti-
tial deletions in 8p23.1 are attributed to haploinsufficiency 
of GATA4 (see below). Intragenic GATA4 mutations can 
also cause isolated CHDs, primarily cardiac septal defects, 
but PS, TOF and other defects have been reported [89–91]. 
In a recent paper human missense mutations in GATA4 
were shown to disrupt GATA4–SMAD4 interactions in the 
BMP/TGF-β signaling pathway, likely causing AVSD and 
valve abnormalities in the affected patients [92]. Embry-
onic development in Gata4 deficient mice is arrested at 
E10.5 with incorrect ventral folding, endodermal mal-
functions and an inability to establish a primitive heart 
tube [93, 94]. Correct Gata4 dosage is critically important 
for normal heart development, as mice homozygous for a 
hypomorphic allele develop CAVC, DORV and a hypo-
plastic ventricular myocardium [95]. Furthermore, it has 
also been shown that mice heterozygous for GATA4 muta-
tions develop septation and endocardial cushion defects 
[90]. Heterozygous knock-in mice harbouring a Gata4 
G296S mutation, previously identified in patients with sep-
tum defects and pulmonary valve stenosis, display ASD 
and semilunar valve stenosis [96].

GATA4 interacts with numerous transcription factors 
that promote cardiogenesis [88]. Direct downstream targets 
of GATA4 include HAND2 and MEF2C required for SHF 
development [97, 98]. GATA4 and TBX5 proteins physi-
cally interact and this interaction is disrupted by mutations 
in GATA4 [89]. Furthermore, Gata4 and Tbx5 double hete-
rozygous mice develop cardiovascular defects, which point 
towards a genetic interaction between the two [99].

The T-box transcription factors are important cardiac 
transcription factors. They are involved in fundamen-
tal cardiac developmental processes, including develop-
ment of the chamber myocardium, outflow tract and the 
conduction system [100]. TBX1 regulates proliferation of 
cardiac progenitors in the SHF and haploinsufficiency of 
TBX1 is considered the primary cause of CHD in patients 
with DiGeorge syndrome (see below). TBX5 participates 
in regulation of gene expression in the developing cham-
ber myocardium and conduction system [101]. Mutations 
in TBX5 cause Holt–Oram syndrome (OMIM #142900), 
a syndrome distinguished by upper limb defects and heart 
defects—primarily septal and conduction defects [102, 
103]. Tbx5 null mice possess a deformed linear heart tube 
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and underdeveloped atria while heterozygous Tbx5 mice 
model heart and limb abnormalities observed in Holt–
Oram syndrome, potentially explaining cardiac conduction 
system defects seen in these patients [101].

Human mutations in TBX20 cause aberrant valvulogen-
esis, septal defects, TOF and cardiomyopathy [104]. Dele-
tion of Tbx20 in mice generates a linear heart tube which 
fails to loop properly and exhibits insufficient chamber 
formation [105]. Heterozygous Tbx20 mice show onset of 
dilated cardiomyopathy recapitulating some of the human 
defects [106]. Recent papers by Cai and co-workers [107, 
108] place TXB20 in the formation of the cardiac atrio-
ventricular canal in a complex signaling network involving 
TBX20, TBX2 and BMP2.

In vitro, transcription factor AP-2gamma (TFAP2C) has 
been shown to bind the TBX20 promoter site and repress 
TBX20 expression [109]. Interestingly, mutations in 
TFAP2B causes Char syndrome (OMIM #169100) charac-
terized by facial dysmorphism, anomalies of the fifth finger 
and patent ductus arteriosus (PDA) [110]. Isolated PDA has 
also been linked to mutations in TFAP2B [111, 112] and a 
recent Tfap2B knock out study in mice reported phenotypes 
resembling the characteristics of Char syndrome [113]. 
TFAP2 isoforms form a complex with CITED2, CREBBP 
and EP300 [114, 115]. Mutations in the transcriptional co-
activators CREBBP and EP300 are associated with Rubin-
stein–Taybi syndrome (OMIM #180849) displaying mental 
retardation, broad thumbs and toes, facial abnormalities, 
and in some cases, CHD [116, 117].

Genes encoding components of the cardiac sarcomere

Mutations in genes encoding cardiac structural proteins 
have also been connected to CHD. Several studies link 
mutations in the cardiac sarcomeric protein MYH6 (myo-
sin heavy chain 6) to ASD [118–120]. Morpholino knock 
down of myh6 in the developing chicken heart implies that 
its functionality is required in the formation of the atrial 
septum [120]. Molecular regulation of MYH6 expression 
involves transcription factors such as GATA4 [121], TBX5 
and MEF2C [122].

Other members of the contractile units in cardiovas-
cular muscle include MYH7 and ACTC1. A mutation in 
MYH7 encoding myosin heavy chain 7 was shown to cause 
CHDs such as Ebstein’s anomaly and septal defects [123]. 
Mutations in ACTC1 encoding the human α-cardiac mus-
cle actin can cause ASD and morpholino knock down of 
Actc1 causes looping and atrial septal anomalies in chicken 
embryos [124].

Mutations in MYH11, encoding the major contractile pro-
tein of smooth muscle cells can cause thoracic aortic aneu-
rysm and/or aortic dissection and PDA [125]. Mice homozy-
gous for deletion of Myh11 show a delayed closure of the 

ductus arteriosus [126], which is connected to the shunting 
functions of smooth muscle cells upon birth [127, 128].

Genes encoding chromatin modifiers

Analysis of model organisms has shown that dynamic 
modification of chromatin structure serves as an impor-
tant regulator of gene expression during heart development 
(reviewed in [129]). Genes that encode proteins which 
modify or bind to histones have been implicated as disease 
genes in syndromes causing heart defects. This evidence 
supports a functional link between chromatin modification 
and human heart development and defects.

Kabuki syndrome (OMIM #147920) is characterized 
by intellectual disability, craniofacial anomalies, skeletal 
and hand malformations. Abnormal organ development is 
also recurrent and includes CHD in approximately 50 % of 
the cases [130]. Heart defects usually present in the form 
of septal defects and CoA [131]. Recently, Ng et al. [132] 
used exome sequencing to identify mutation of KMT2D 
(MLL2) as a major cause of Kabuki syndrome. KMT2D 
encodes a histone methyltransferase involved in di- and 
tri-methylation of the Lys-4 position of histone H3, which 
marks actively transcribed genes [133].

CHARGE syndrome (OMIM #214800) is characterized 
by growth retardation and malformation of eyes, ears, geni-
tals, choanae and heart defects—often in the form of out-
flow tract malformations [134–136]. Approximately two-
thirds of the cases are caused by mutation of CHD7, which 
encodes a member of the chromodomain helicase DNA 
binding (CHD) family [134, 135, 137]. In vitro studies 
have shown that CHD7 binds DNA regions which correlate 
closely to regions of H3K4 methylation and regions with 
characteristics of enhancer elements. This hints that the pro-
tein is involved in transcriptional activation [138]. Recently, 
it was shown that CHD7 controls core components of the 
transcriptional circuit of neural crest cells and that CHD7 is 
essential for neural crest cell migration [139]. This function 
may explain the high frequency of outflow tract defects in 
CHARGE syndrome, as neural crest cells are known to play 
a crucial role in septation of the cardiac outflow tract [140].

In a recent study, Zaidi et  al. [141] conducted a com-
prehensive screening of all protein coding genes in hun-
dreds of patients with severe forms of CHD. In this study, 
whole-exomes of 362 children with CHD and their healthy 
parents were screened for de novo nucleotide variants by 
next-generation sequencing (NGS). De novo variants from 
these parent-offspring trios were compared to de novo vari-
ants identified in 264 healthy parent-offspring trios. The 
authors performed transcriptome profiling experiments to 
identify genes with a high expression in mouse embryonic 
hearts (HHE genes). In the trio datasets, they compared the 
number of de novo variants in genes, homologous to HHE 
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genes. This comparison yielded a significant higher rate of 
de novo mutations in CHD patients compared to controls. 
When they compared the frequencies of damaging mutations 
(i.e. splice-site mutations, nonsense mutations and mutations 
introducing frameshift) between the two groups, the differ-
ences were even more pronounced, with an odds ratio of 7.5 
(p  =  0.001). Interestingly, GeneOntology analysis of 249 
de novo mutations identified in CHD patients revealed sig-
nificant enrichment for mutations in genes involved in H3K4 
methylation. Moreover, in CHD patients 27 % of the dam-
aging mutations within HHE genes were affecting proteins 
involved in H2K4 or H3K27 histone modification. These 
data suggest that genes involved in histone-modification are 
significant in the pathogenesis of isolated CHD.

Human genome analysis in combination with functional 
analysis of candidate genes in animal models has been 
instrumental in identifying the genes responsible for heart 
defects in several microdeletion syndromes (see below). 
Interestingly, several of these genes also encode chroma-
tin modifying proteins, which support the potentially sig-
nificant role of epigenetic mechanisms in both isolated and 
syndromic CHD.

Part II: chromosomal aberrations in congenital heart 
disease

Microscopically visible chromosomal aberrations are pre-
sent in 8–18 % of CHD patients [142–144]. Furthermore, 
CHD is a characteristic part of the clinical spectrum in a 
significant number of syndromes caused by a chromosome 
abnormality. The most common chromosome syndrome 
associated with CHD is Down syndrome [145]. Congenital 
heart defects are seen in 45  % of individuals with Down 
syndrome, with the majority of cardiac defects being 
AVSD, ASD and VSD [146]. Cardiac defects are also found 
at a high frequency in other aneuploidy syndromes, includ-
ing Turner syndrome (monosomy X), Edward syndrome 
(trisomy 18) and Patau syndrome (trisomy 13) [147–150].

CHD is a component of the clinical spectrum in a number 
of syndromes caused by submicroscopic chromosomal dele-
tions or duplications (listed in Table 2). Some of these syn-
dromes are well-studied microdeletion syndromes, for which 
the molecular defect has been known for many years. In addi-
tion, several novel microdeletion and microduplication syn-
dromes associated with CHD have recently been discovered 
due to the widespread use of molecular cytogenetic methods.

CHD candidate genes identified from microdeletion  
and microduplication syndromes

Genotype–phenotype comparisons in patients with micro-
deletion and microduplication syndromes have identified 

candidate CHD disease genes. Subsequent mutation 
screening of candidate genes in patients and studies of the 
genes and their product in animal models have substantially 
added to the understanding of CHD and cardiac develop-
mental biology.

The majority of DiGeorge syndrome (DGS, OMIM 
#188400, also known as 22q11.2 deletion syndrome and 
velocardiofacial syndrome) are caused by a 3 Mb deletion 
in 22q11.2 [151]. 22q11.2 duplication syndrome (OMIM 
#608363) is caused by duplication of genomic material 
in 22q11.2. Most of the 22q11.2 duplications that have 
been reported are reciprocal to the common 3 Mb deletion 
involved in DGS [152].

The common 3 Mb deletion affects more than 50 genes, 
including the gene encoding the T-box transcription fac-
tor TBX1. It is generally accepted that haploinsufficiency 
of TBX1 significantly contributes to the CHD phenotype in 
DGS patients. Tbx1−/− mice display similar cardiac phe-
notypes to individuals with 22q11.2 DS [153, 154]. Con-
ditional knock-out experiments in mice have shown that 
Tbx1 is required for proliferation of cardiac progenitors in 
the SHF—a cell population which contributes to the devel-
opment of the cardiac outflow tract [155]. Additionally, 
point mutations in TBX1 have been reported in patients 
without the 22q11.2 deletion, but exhibit a clinical presen-
tation similar to DGS [156, 157].

Transgenic mice overexpressing Tbx1 display phe-
notypic similarities consistent with 22q11 duplication 
patients, including cardiac outflow tract defects. This sug-
gests that correct gene-dosage of TBX1 is important for 
normal cardiac development [152, 158, 159].

Conversely, cases with cardiac defects carrying smaller 
(1.5  Mb) deletions within the common 3  Mb region, dis-
tal to TBX1 have also been reported [160–162], which 
implies that other genes in the 3 Mb region may contrib-
ute to the cardiac phenotype of DGS patients. An inter-
esting candidate gene within this region is CRKL, encod-
ing a protein kinase. Mice with targeted deletion of Crkl 
exhibit defective OFT development and VSDs [160, 163]. 
Furthermore, experiments with compound heterozygous 
Tbx1+/−, Crkl+/− mice indicate a possible genetic interac-
tion between the two genes, leading to the increased sever-
ity of the cardiac phenotypes in the double mutants [164]. 
A genetic interaction between Crkl and Fgf8 has also been 
shown [165], supporting a link among FGF8, TBX1 and 
CRKL in the pathogenesis of DGS (see below).

A high degree of phenotypic variability is a character-
istic feature of DGS and 22q11.2 duplication syndrome. 
Parts of this variation may perhaps be explained by vari-
ations in genes located within 22q11.2, with TBX1 as the 
most likely candidate. An alternative explanation involves 
epistasis, as TBX1 has been shown to regulate or inter-
act with several proteins and signaling networks. Gene 
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expression profiling of tissues in the pharyngeal region 
from mouse models with targeted deletion of Tbx1, have 
identified several Tbx1 target genes, which include genes 
involved in homeostasis of retinoic acid (RA) [166–168]. 
Interestingly, RA regulates Tbx1 expression [169], thus 
there seems to be a dual relationship between TBX1 
expression and RA signaling. During development of the 
pharyngeal arches TBX1 expression in the pharyngeal 
endoderm is regulated by the Hedgehog signaling pathway 
though the action of forkhead transcription factors [170, 
171]. TBX1 itself regulates the expression of FGF8 in the 
SHF and in the pharyngeal endoderm [172, 173]. A genetic 
interaction among Tbx1, Six1/Eya1 and Fgf8 was recently 
demonstrated in mouse models [174]. Further, TBX1 can 
act as a negative modulator of BMP signaling by binding 
SMAD1 and hereby interfere with the SMAD1/SMAD4 
interaction [175].

Williams–Beuren syndrome (WBS, OMIM #194050) is 
caused by deletion of genomic material in 7q11.23. Most 
patients with WBS are heterozygous for a 1.5–1.8 Mb dele-
tion encompassing ~28 genes [176–179]. Cardiovascular 
abnormalities are present in 75 % of individuals with WBS, 
predominantly in the form of supravalvular aortic stenosis 
(SVAS) and pulmonary arterial stenosis [180]. In 6–10 % 
of cases aortic or mitral valve defects are also seen, and 
other so-called “atypical” cardiac defects in the form of 
ASD, VSD and TOF are observed in a significant fraction 
of the patients [180, 181].

The ELN gene, encoding elastin, is believed to be the 
gene responsible for SVAS in WBS. Patients with atypi-
cal deletions including only ELN and LIMK1 genes and 
SVAS have been reported [182, 183]. In addition, point 
mutations in ELN are associated with familial and spo-
radic SVAS [184, 185]. Targeted deletion of the Eln 
gene in mice results in reduced aortic lumen diameter 
due to subendothelial accumulation of smooth muscle  
cells [186].

However, deletion of ELN does not explain the occur-
rence of the atypical heart defects in a proportion of WBS 
patients. Results gained from a recently reported mouse 
model with targeted deletion of Baz1b, indicate that dele-
tion of this gene may account for these defects. BAZ1B 
is located within the WBS common deleted region, and 
homozygous Baz1b−/− mice exhibit a range of cardio-
vascular defects, which include ASD, VSD, trabecula-
tion defects, coarctation of the aorta (COA), hypoplastic 
pharyngeal arch artery and a low frequency of DORV 
[187]. BAZ1B (also known as WSTF) acts as a subu-
nit in three ATP-dependent chromatin remodeling com-
plexes; the WSTF including nucleosome assembly com-
plex (WINAC) [188], the WICH complex (WSTF-ISWI 
chromatin remodeling complex) [189] and the B-WICH 
complex [190]. These complexes are important for gene 

regulation, DNA replication and DNA repair [189, 191]. 
Thus, the cardiac phenotypes of Baz1b knockout mice 
and the chromatin remodeling function of BAZ1B sug-
gests that some of the phenotypes involved in WBS, 
including “atypical” heart defects, may be caused by epi-
genetic effects.

Wolf–Hirschhorn syndrome (WHS, OMIM #194190) 
is caused by microdeletions in 4p16.3. Genotype–pheno-
type comparisons in patients with submicroscopic dele-
tions suggest that haploinsufficiency of the gene encod-
ing the histone lysine methyl transferase WHSC1 (also 
known as NSD2) contributes significantly to the WHS 
phenotype [152, 192]. A recently published investiga-
tion of mice with targeted deletion of the H3K36me3-
specific histone methyltransferase gene Whsc1 puts forth 
Whsc1as another component in heart development [193]. 
The Whsc1−/− mutant mice displayed ASD and VSD, 
and co-immunoprecipitation experiments with nuclear 
extracts prepared from embryonic hearts showed that 
Whsc1 interacts with the cardiac transcription factor 
Nkx2-5. Furthermore, ChIP assays demonstrated that 
Whsc1 cooperates with Nkx2-5 in the transcriptional 
regulation of target genes. Cross-breeding experiments 
with Whsc1−/+ and Nkx2-5−/+ mice suggested a genetic 
interaction between the two genes during cardiac sep-
tal formation. Another candidate gene for heart defects 
in WHS is the FGFRL1 gene, which encode a member 
of the fibroblast growth factor receptor family. During 
mouse development Fgfrl1 is expressed in the brain, 
cranial placodes, pharyngeal arches, somites and heart 
[194]. Targeted deletion of Fgfrl1 in mice can result in 
a range of developmental defects, including heart defects 
in the form of VSD, and both semilunar and atrioventric-
ular valve deformation [194].

Cardiac defects are observed in 94  % of cases with 
interstitial deletions in 8p23.1 [195]. The defects range 
from isolated septal defects to complex heart defects like 
TOF and hypoplastic left heart syndrome (HLHS). A pro-
portion of the patients carry a ~3.7 Mb recurrent deletion 
flanked by low copy repeats, although some patients have 
larger deletions that may extend to the 8p telomere. The 
gene encoding the cardiac zinc finger transcription fac-
tor GATA4 is located within the recurrent deletion, and it 
is well documented that this gene is associated with con-
genital heart defects. Mutations in GATA4 cause human 
CHD, often in the form of septal defects, but other defects 
have been reported [89, 91, 196] Mice homozygous for 
targeted deletion of Gata4 display early defects in cardio-
genesis [93, 94], and phenotypic characterization of mice 
homozygous for a hypomorphic allele of Gata4 supports 
that haploinsufficiency of GATA4 can cause CHD [95]. 
GATA4 interacts with several other transcription factors 
during cardiac development, including NKX2-5, TBX5, 
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ZFPM2 (FOG2), SMAD4 and HAND2 [34, 89, 92, 121] 
(see above). Therefore it is possible that the complex car-
diac phenotypes observed in a subset of 8p23 deletion 
patients are evoked by epistatic effects from genes encod-
ing GATA4 binding partners.

Other microdeletion and microduplication syndromes 
which comprise CHD

The widespread use of molecular cytogenetic methods 
like fluorescent in situ hybridization (FISH) and especially 
array comparative genome hybridization (array CGH) in 
clinical genetics laboratories has led to the recent deline-
ation of a number of microdeletion and microduplication 
syndromes, which incorporate CHD as a component of 
their clinical spectrum (Table 2).

The minimal deleted region in 1q21.1 deletion syndrome 
contains the GJA5 gene [197]. A recent screen of 807 TOF 
cases revealed significant enrichment of small duplications 
encompassing GJA5, thus providing convincing evidence 
for a link between GJA5 and CHD [152, 192, 198]. Cardiac 
defects have been reported in a proportion of mice with tar-
geted deletion of Gja5 [199, 200], suggesting that haploin-
sufficiency of GJA5 may be responsible for cardiac defects 
in some individuals with 1q21.1 deletions. GJA5 encodes 
the cardiac gap junction subunit Connexin 40, which is 
expressed in the atrial myocardium and the atrioventricular 
conduction system [201, 202]. Gap junctions are cell mem-
brane channels that interconnect the cytoplasm of neigh-
boring cells. In the heart, these channels contribute to the 
atrioventricular conduction [203, 204], but at present there 
is no proposed mechanism describing how GJA5 haploin-
sufficiency results in structural heart defects.

Molecular delineation of 9q34 microdeletions and map-
ping of the chromosomal breakpoints in a patient with a 
t(X;9) translocation suggested that the EHMT1 gene is 
responsible for Kleefstra syndrome (KS, OMIM #610253) 
[205–207]. Mutation screening in patients without dele-
tions in 9q34 subsequently confirmed that haploinsuffi-
ciency of EHMT1 causes KS [205, 208]. Approximately 
40 % of patients with KS and deletion of 9q34 have CHD, 
and the presence of CHD in five out of eleven KS patients 
with point mutations in EHMT1 confirm that this gene is 
responsible for CHD in KS. EHMT1 encodes euchro-
matic histone-lysine N-methyltransferase 1, which regu-
lates transcription by methylation of histone H3 lysine 9 
(H3K9Me2) in euchromatic DNA [209].

Koolen-De Vries syndrome (KDVS, OMIM #610443) 
is caused by recurrent deletions in 17q21.31. Between 27 
and 36 % of KDVS patients have CHD [210, 211]. Recent 
delineation of the critical region of 17q21.31 and muta-
tion screening of KDVS patients without deletion of 17q21 
revealed that KDVS is caused by haploinsufficiency of 

KANSL1 [212, 213]. One out of four patients with point 
mutations in KDVS has CHD, hinting that KANSL1 is a 
CHD disease gene, although further patient data is needed 
to confirm this link. KANSL1 encodes a member of the 
male specific lethal (MSL) complex initially described in 
Drosophila (reviewed in [214]). Within the MSL complex 
KANSL1 interacts with KAT8, a histone acetyltransferase 
which regulates gene expression through acetylation of H4 
lysine 16 (H4K16) [215].

Another interesting CHD candidate gene is TBX2, 
which is located within the deleted region in 17q23 dele-
tion syndrome [216]. TBX2 is expressed in non-chamber 
myocardium of the developing heart, and mice with tar-
geted mutation in Tbx2 have defects in the development of 
the atrioventricular canal (AVC) and the OFT [217]. It has 
been hypothesized that TBX2 is involved in cardiac cham-
ber development and functions as a local repressor of the 
chamber-specific gene program in non-chamber regions 
like the AVC and OFT [218, 219].

Pathogenic copy number variants identified in cohorts  
of CHD patients

Array CGH and similar methods have been used to screen 
cohorts of CHD patients for pathogenic CNVs in the form 
of duplications and deletions. Since 2007, 14 whole-
genome CNV screening studies have been reported, com-
prising more than 5,000 patients (Table 3, [220–234]). The 
reported studies show large differences, which include size 
and phenotypic composition of patient cohorts and the 
experimental and analytical setup, thus it is somewhat dif-
ficult to compare the results. Nevertheless, we find it safe to 
conclude that pathogenic CNVs are found among a signifi-
cant portion of CHD patients.

The highest frequency of pathogenic CNVs is found 
among patients with CHD and extra-cardiac anomalies. 
Based on the current reports [220, 224, 228, 230, 233, 234] 
we estimate that pathogenic CNVs are present in 15–20 % 
of patients with CHD and extra-cardiac anomalies.

Among patients with isolated CHD, the frequency of 
pathogenic CNVs is significantly lower. Here, we estimate 
the frequency to be between 4 and 14  % [221, 222, 225, 
231, 232]. However, this estimate should be treated with 
caution, due to the aforementioned large differences in 
study design.

Identification of disease genes and pathways from CNVs 
detected in cohorts of CHD patients

In principle, CNVs identified as pathogenic in CHD 
patients should contain one or more dosage sensitive car-
diac developmental genes. Thus, each pathogenic CNV, or 
at least overlapping CNVs should define a disease locus for 
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Table 3   CNV screens in patients with heart defects

Patients Phenotype of patientsd Microarray type Main results Candidate genes in CNVsg Reference

60 Congenital heart dis-
ease and extracar-
diac abnormalities

In-house-made microar-
ray containing BAC/
PACe clones. Average 
genomic distance of 
probes were 1 Mbp

CNVs considered to be 
causal were identified in 
10 (17 %) patients

EHMT1, NKX2-5, NOTCH1, NSD1 [233]

105 Congenital heart 
disease with and 
without extracar-
diac abnormalities. 
Subjects with docu-
mented syndromes 
were excluded

In-house-made microar-
ray containing 32 k 
overlapping BAC 
clones

Rare de novo or inherited 
CNVs (0.34–13.9 Mb in 
size) were detected in 18 
(17 %) patients

GJA5, LTBP1, TBX1 [222]

40 Congenital heart 
disease with and 
without extracar-
diac abnormalities

NimbleGen Systems, 
Inc. whole-genome 
385 K oligo array

Seven large CNVs were 
identified in 5 (12.5 %) 
patients

N/A [230]

114 Tetralogy of Fallot 
(TOF)

Affymetrix Genome-
Wide Human SNP 
Array 6.0

Eleven (9.6 %) rare de 
novo CNVs (>20 kb) 
were identified in 114 
TOF trios

JAG1, NOTCH1, RAB10, RAF1, 
TBX1

[225]

150a Congenital heart dis-
ease and extracar-
diac abnormalities

In-house-made microar-
ray containing BAC/
PAC clones. Average 
genomic distance of 
probes were 1 Mbp

CNVs considered to be 
causal were identified in 
26 (17.3 %) patients

ATRX, CREBBP, EHMT1, FOXC1, 
GATA4, NOTCH1, RAI, TBX1

[220]

46 Isolated congenital 
heart disease

Affymetrix Genome-
Wide Human SNP 
Array 6.0

De novo CNVs were 
identified in two (4 %) 
patients

GJA5, NOTCH1, PDGFRA, TBX1 [221]

58 Congenital heart dis-
ease and extracar-
diac abnormalities

Affymetrix GeneChip 
100 K microarray

Potentially pathogenic 
CNVs (0.2–9.6 Mb in 
size) were detected in 12 
(20.7 %) patients

ADAM19, HAND1, MESP1, NRP1, 
NTRK

[224]

53 Hypoplastic left heart 
syndrome (HLHS)

Agilent customized 
genome-wide 400 K 
array

Thirty-three rare non-
polymorphic CNVs 
(2–1,554 kb in size) 
were detected in 25 
(47 %) patients

BMPR2, ZNF423 [227]

262 Heterotaxy (patients 
with D-transposi-
tion of the great 
arteries were also 
included in the 
sample)

Illumina 610Quad 
Beadchip platform

Forty-five previously 
unrecorded genic CNVs 
(0.27–25 Mb in size) 
were identified in 39 
(14.5 %) patients. A sig-
nificant (p = 1.5e − 4) 
burden of rare genic 
CNVs were found in 
HTX cases (14.5 %) 
compared to controls 
(7.4 %)

GALNT11, NEK2, NUP188, 
ROCK2, TGFBR2

[223]

43 HLHS NimbleGen Systems, 
Inc. whole-genome 
385 K oligo array

A significant (p < 0.03) 
burden of CNVs were 
found in patients (4.6/
subject) compared to 
controls (2.94/subject). 
The burden of unique 
CNVs in CHD patients 
was not found to be 
significant

N/A [229]
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Patients Phenotype of patientsd Microarray type Main results Candidate genes in CNVsg Reference

67b Left-sided congenital 
heart disease (BAV, 
AS, COA, HLHS)

Affymetrix Human 
Genome-Wide SNP 
Array 6.0

A total of 73 unique inher-
ited or de novo CNVs 
(>20 kb) were identified 
in 54 individuals

ADORA2B, ANG, CACNA1C, 
COPS3, CRMP1, CTHRC1, 
ERCC5, EVC2, FLII, GRPEL1, 
HSD17B10, ITGA10, LIMS1, 
MAPK7, MFAP4, MSX1, 
MTHFD2, NCOR1, NGEF, 
PLA2G12A, PRPSAP2, RASD1, 
SBEBF1, SMC1A, ULK2

[226]

2,539 Isolated congenital 
heart disease (808 
TOF and 1,448 
other CHDs). 
Subjects with 
documented syn-
dromes known to 
cause CHD were 
excluded

Illumina 660 W-Quad 
SNP platform

A significant (p = 0.008) 
burden of rare genic 
CNVs were found in 
CHD cases (7.8 %) 
compared to controls 
(4.4 %)

CNOT6, EDIL3, GATA4, GJA5, 
HAND2, PPM1K and 13 genes 
in the WNT-signaling path-
way (CDH18, CDH2, CTBP1, 
CTNNB1, FAT1, LRP5L, NFATC1, 
PCDH15, PCDHB7, PCDHB8, 
PRKCB, PRKCQ, WNT7B)

[232]

203 + 511c Congenital heart dis-
ease and extracar-
diac abnormalities.

Customized 105 k 
oligonucleotide 
arrays manufactured 
by Agilent. Average 
resolution of 30 kb, 
with denser coverage 
at disease loci

A total of 55 rare CNVs 
(>50 kb) were identi-
fied in patients from the 
discovery cohort. Sixteen 
of these CNVs were 
identified in the second 
cohort

PDE1A, NALCN, ANKRD11, SOX7, 
GATA4, CRK, CAMTA2, CECR1

[228]

433 Tetralogy of Fallot-
pulmonary atresia 
or pulmonary atre-
sia and ventricular 
septal defect. 
Subjects with docu-
mented syndromes 
were excluded

Affymetrix Genome-
Wide Human SNP 
Array 6.0

47 large (>500 kb) rare 
CNVs were found in 43 
(9.9 %) patients

ANGPT2, ARHGEF10, ARH-
GEF4, BARD1, BBS9, C12oerf66, 
CASP1, CASP12, CASP4, CASP5, 
CCDC148, CDH19, CHL1, 
CHRM3, CHST8, CNDP2, CNN2, 
CRKL, DISP1, DNAH11, EDIL3, 
FGF10, FOXO3B, FSTL3, FSTL4, 
GJA5, GMDS, GNA11, HIRA, 
HNF1B, HRIP3, IDS, KCNB2, 
KIAA1609, LBH, MAPK3, NBEA, 
NFATC1, NXN, PARD6G, PDS5B, 
PLXNA2, PPM1K, PPP4C, 
PTBP1, RAF1, S1PR4, SEMA3D, 
SEMA3E, SFPQ, SLC25A46, 
SNX8, SOX4, SPG20, TBX1, 
TBX6, TNFSF11, VCAN, WDR18, 
WNK3, ZNF347

[231]

945 Congenital heart 
disease with and 
without extracar-
diac abnormalities

Affymetrix  
Genome-Wide  
Human SNP Array 
6.0

Known CHD-related  
chromosomal abnormali-
tiesf were identified in 
135 (14.3 %) patients. 
Large, rare CNVs 
(0.22–32.1 Mb  
in size) were identified  
in 35 (3.7 %) patients

FKBP6, ELN, GTF2IRD1, GATA4, 
CRKL, TBX1, ATRX, GPC3, 
BCOR, ZIC3, FLNA, MID1, 
PRKAB2, FMO5, CHD1L, BCL9, 
ACP6, GJA5, HRAS, GATA6, 
RUNX1

[234]

Table 3   continued

Genes known to cause CHD in humans are underlined, genes with reported cardiovascular system involvement (e.g., from targeted deletion in 
mice) are bold
a  Includes 60 patients from Thienpont et al. [233]
b  A total of 174 patients from 67 families
c  A discovery cohort of 203 patients and a second independent cohort of 511 patients were analyzed
d  AS aortic stenosis, BAV bicuspid aortic valve, COA coarctation of the aorta, HLHS hypoplastic left heart syndrome, TOF tetralogy of Fallot
e  BAC bacterial artificial chromosome, PAC P1-derived artificial chromosome
f  Trisomy 21 (n = 80), trisomy 18 (n = 1), 22qDS (n = 42), Turner syndrome (n = 8), William’s syndrome (n = 3), and Triple X syndrome 
(n = 1)
g  Candidate genes suggested by the authors
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CHD and it therefore should be possible to use CNVs to 
detect CHD disease genes. Several groups have reported 
identification of CNVs spanning genes, which span genes 
previously recognized to cause CHD in animal models 
(Table 3), thereby providing a plausible link between these 
genes and CHD in humans.

However, many of the identified CNVs do not contain a 
well-established cardiac developmental gene. These CNVs 
often contain several genes, although only one is likely to 
be the gene responsible for CHD. Three approaches have 
been utilized to identify the causal genes in such cases: (1) 
narrowing of the locus by comparison of multiple samples 
with overlapping CNVs, (2) in silico gene prioritization 
and (3) functional investigations of candidate genes within 
the CNVs.

Hitz et al. [226] used Endeavour [235] to test for enrich-
ment of angiogenesis-associated genes within 73 CNVs 
identified in patients with left-sided CHD. They also 
searched for genes with expression in the developing heart 
in serial analysis of gene expression (SAGE) and pub-
lic databases. By combining these prioritization methods, 
they identified 25 CHD candidate genes (Table 3). Soemedi 
et  al. [232] performed genomic region annotation enrich-
ment analysis on rare deletions and duplications identified 
in 2,256 CHD cases. They found enrichment of 13 genes 
encoding proteins involved in the WNT signaling pathway 
(Table  3). Silversides et  al. [231] performed a systematic 
review of genes within rare CNVs identified among 433 
cases with TOF and identified 62 CHD candidate genes 
(Table 3). They also assessed whether genes, in predefined 
gene-sets derived from GeneOntology (GO) annotations 
and pathway and protein domain databases, were signifi-
cantly overrepresented in CNVs detected in TOF cases 
compared to controls. They found enrichment of gene-sets 
belonging to five functional clusters: vasculature develop-
ment, chromosome organization, cell motility, chemot-
axis and neuron projection and development. Lalani et al. 
[228] identified eight candidate genes in CNVs identified 
in patients with CHD and extracardiac anomalies (Table 3). 
They grouped genes within enriched CNVs based on GO 
categories and found enrichment for genes encoding pro-
teins involved in G-protein coupled receptor internaliza-
tion, hemopoiesis and cytoskeleton organization. Further-
more they analyzed protein–protein interactions between 
proteins encoded by candidate genes in CNVs identified in 
patients and a set of 276 proteins from GO cardiac develop-
ment categories. They identified 11 proteins with at least 
one connection with a human cardiac-specific protein (sig-
nificant at p = 0.03).

Thienpont et al. [236] identified TAB2 as a dosage sen-
sitive CHD disease gene by comparing overlapping CNVs 
within 6q25. The overlapping region of seven CNVs iden-
tified in CHD patients revealed a CHD locus containing 

11 candidate genes, including TAB2. For prioritization of 
the candidate genes in the locus and surrounding genomic 
region, the authors performed in silico analyses of 105 
genes in 6q24–25, using an adapted version of Endeavour 
[235]. This analysis predicted TAB2 as the highest-ranking 
candidate gene in 6q24–25. Further functional analyses of 
TAB2 in human embryonic heart tissues and zebrafish sug-
gested that TAB2 is a cardiac developmental gene. Point 
mutations localized within TAB2 in two unrelated CHD 
patients and mapping of a translocation breakpoints within 
TAB2 in a CHD family segregating a t(2;6) translocation, 
further verified TAB2 as a CHD disease gene.

Fakhro et  al. [223] performed whole-genome CNV 
screening of 262 patients with Heterotaxy and isolated 
TGA. They identified 45 unrecorded gene-containing 
CNVs, including two different CNVs affecting TGFBR2. 
Evaluation of candidate genes using in situ hybridization 
and Morpholino-based gene knock-down in X. tropica-
lis showed that the genes tgfbr2, rock2, galnt11, nek2 and 
nup188 are involved in left–right patterning of the heart 
(Table 3). ROCK2 and NEK2 are ciliary proteins, thus this 
study confirmed the importance of cilia and TGF-β signal-
ing in LR patterning [237]. In addition, this study identified 
two novel genes (GALNT11 and NUP188) with unknown 
functions in LR development.

The molecular pathology of congenital heart disease

Cardiac development is controlled by a large number of 
signaling pathways, which are tightly regulated in time and 
space, and interact in complex developmental networks 
[34]. The CHD disease genes, which have been identified 
to date, suggest that all aspects of developmental signaling 
pathways may be involved in human CHD: from ligands 
(e.g. JAG1) and receptors (e.g. NOTCH, PDGFRA), across 
down-stream signaling effectors (e.g. PTPN11, SMAD6), 
to transcription factors (e.g. GATA4, NKX2-5) and targets 
(e.g. ACTC1, MYH6) (Fig.  1). Moreover, discoveries of 
disease genes encoding histone-modifying proteins (e.g. 
CHD7, KMT2D), suggest that epigenetic regulation of an 
unknown number of target genes, may add an additional 
layer of regulation on consensus cardiac developmental 
networks.

Lage et al. [238] have recently shown that a wide range 
of CHD risk factors, functionally converge in complex, 
yet discrete, protein networks driving heart development. 
These findings, combined with the potentially hundreds of 
CHD disease genes [141], suggest that CHD may be caused 
by a very large number of combinations of mutations and 
environmental risk factors.

Reduced penetrance of CHD are often observed in 
human pedigrees (e.g. [239], unpublished observations 
in Danish pedigrees) and in carriers of CNVs known to 



1340 T. A. Andersen et al.

1 3

cause CHD (see Table  2 and discussions in text). Some 
of the reduced penetrance may simply be due to unidenti-
fied asymptomatic heart defects in some carriers, but may 
also be caused by epistasis. Several examples of epistasis 
in mouse models are mentioned in the text above. Winston 
et al. [240] performed a systematic study of the influence 
of genetic background on the expression of heart defects 
in Nkx2-5+/− heterozygous mice. The authors compared 
Nkx2-5+/− heterozygous C57Bl/6 mice with Nkx2-5+/− het-
erozygous F1 progeny from crosses with two other mouse 
strains. The data showed that the F1 hybrid mice presented 
with a significantly lower incidence of septal defects com-
pared to mice with the original C57Bl/6 background.The 
authors suggest that modifying alleles can either direct the 
manifestation of a cardiac developmental defect or buffer 
the effect from perturbations. The latter situation, which 
was the case in the study, may ensure robustness of normal 
heart development.

How the large heterogeneity in CHD and potentially 
large epistatic effects translates into lesions in the personal 
genome of the individual patient remains to be investigated. 
One possible scenario could be that individual combina-
tions of several risk alleles may be the cause of CHD in 
part of the patients.

Future perspectives

It was recently demonstrated that exome-sequencing is 
a powerful tool for identification of de novo mutations in 
CHD [141]. It is very likely that more studies based on 
exome-sequencing will reveal new CHD disease genes in 

the near future. The high number of variants identified in 
exome-sequencing experiments is a big challenge in very 
heterogeneous disorders like CHD. Thus, it is likely that 
such studies will be performed on large numbers of parent-
offspring trios or on families with dominant or recessive 
inherited CHD.

The past 5  years have shown that analysis of genome 
rearrangements in the form of CNVs, translocations or 
inversions can lead to detection of new CHD disease genes 
or loci. The technology for mapping such rearrangements is 
continuously improving, and breakpoints in balanced trans-
locations and inversions can now be mapped within days 
using NGS [241].

Untreated, CHD is a disorder with a high mortality rate, 
therefore a large part of the disease causing mutations are 
likely rare in populations due to negative selection. How-
ever, it is also possible that some variants associated with 
CHD may escape negative selection. Such variants may be 
discovered through genome wide association studies, as 
has recently been demonstrated [242–244].

Interesting therapeutic opportunities could arise from 
the current knowledge of the molecular pathogenesis of 
CHD. A significant part of CHD seems to be caused by 
mutations which perturb complex developmental networks. 
These networks are characterized by extensive communica-
tion within and between specific signaling pathways, and 
with the environment. Thus, given the apparent epistatic 
effects observed in patients and animal models, it should be 
possible to manipulate the signaling pathways in the devel-
opmental networks with synthetic agonists or antagonists, 
and thereby alleviate effects from mutations or redirect 

Fig. 1   Schematic represen-
tation of the different cell 
signaling components affected 
by mutations in human CHD 
disease genes. These include 
ligands (L), receptors (R), 
down-stream effectors (E), 
transcription regulators, which 
include transcription factors 
(TF), transcription co-factors 
(co-TF) and histone modifying 
proteins (HM), and target genes. 
Known human CHD disease 
genes within the six groups are 
shown in the panel at the right. 
Colored figure are shown in the 
on-line version of the article
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signaling events towards normal heart development. A 
recent study suggests that this could be possible someday. 
Tian et al. [245] showed that defects in the cardiac inflow 
tract and AV canal (resembling complete CAVC in humans) 
in Wnt2−/− mice, could be rescued by transient pharmaco-
logical activation of Wnt signaling with LiCl.

Naturally, such therapeutic opportunities are pres-
ently very hypothetical, and to become reality, much more 
knowledge about the molecular genetics and the molecular 
pathology of CHD are needed. Combining human genetics/
genomics with functional studies in cell models or animal 
models like zebrafish, Xenopus frogs, chicken or mice are 
likely to have the greatest impact on our understanding of 
the molecular pathology in human CHD.
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