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Lossless integration of multiple electronic health
records for identifying pleiotropy using summary
statistics
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Increasingly, clinical phenotypes with matched genetic data from bio-bank linked electronic
health records (EHRs) have been used for pleiotropy analyses. Thus far, pleiotropy analysis
using individual-level EHR data has been limited to data from one site. However, it is desirable
to integrate EHR data from multiple sites to improve the detection power and generalizability
of the results. Due to privacy concerns, individual-level patients’ data are not easily shared
across institutions. As a result, we introduce Sum-Share, a method designed to efficiently
integrate EHR and genetic data from multiple sites to perform pleiotropy analysis. Sum-Share
requires only summary-level data and one round of communication from each site, yet it
produces identical test statistics compared with that of pooled individual-level data. Con-
sequently, Sum-Share can achieve lossless integration of multiple datasets. Using real EHR
data from eMERGE, Sum-Share is able to identify 1734 potential pleiotropic SNPs for five
cardiovascular diseases.
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comprehensive understanding of the underlying genetic

etiology. So far, numerous population-level genetic studies
have been carried out to understand the associations between
genetics and diseases. Notably, genome-wide association studies
(GWAS) have systematically identified thousands of genetic loci
associated with various human traits and diseases’:2. However,
not all of the disease-causing loci are strongly associated with the
phenotype, and thus a better understanding of the genetic etiol-
ogy underlying complex diseases requires complementary
approaches>*. For most complex diseases, the current paradigm
is that genes do not act in isolation. A growing body of genetic
research suggests genetic pleiotropy, where one genetic locus or
gene influences many phenotypes, is ubiquitous in complex
traits”~’. Compared with the individual genetic variant associa-
tion, analysis of pleiotropy can not only provide additional
insights into shared genetic mechanisms among seemingly
unrelated phenotypes8, but these connections could also be used
as therapeutic targets for drug repositioning. In addition, lever-
aging information from pleiotropy has been shown to boost the
statistical power to detect genetic associations and the predictive
power of genetic risk factors19,

Electronic Health Record (EHR) data have rapidly become a
promising data source for conducting genetic research due to the
growing availability of EHR linked genetic data!l. EHRs uniquely
offer a comprehensive set of patients’ disease diagnoses as well as
clinical measurements, which, in combination with genetic data,
enable investigation of the genotype and phenotype relationships
of multiple traits®. Indeed, many studies have utilized EHRs with
linked genetic data to carry out phenome-wide association studies
(PheWAS) to examine pleiotropy!?-14, In PheWAS studies,
association analysis of one or more single nucleotide poly-
morphisms (SNPs) can be used to identify pleiotropic effects on
multiple phenotypes. While PheWAS is conceptually straight-
forward, it does not model multiple phenotypes together in the
model. As a result, PheWAS may have a reduced power to detect
pleiotropy due to both computational cost and multiple testing
penalties. To alleviate the multiple testing burden, several meth-
ods have been developed to jointly model multiple phenotypes to
detect pleiotropy. However, many of the joint-model methods
suffer from limitations such as requiring phenotypes to be con-
tinuous. They also carry a high computational cost and may lack
proper covariate adjustments!®.

Recently, EHRs with linked genetic data have become
increasingly available under initiatives such as the Electronic
Medical Records and Genomics (eMERGE)16 and the UK Bio-
Bank!”. Typically, an EHR system covers a specific service region
and thus is representative of the patient population of the region.
Therefore, data in each EHR system is limited in size and is also
influenced by disease prevalence and demographic composi-
tion!8. As a result, research findings using data from one EHR
may not be generalizable to the whole population or reproducible
across different EHR systems. Thus, it would be advantageous to
integrate data from multiple EHRs to obtain generalizable results
for a larger population and to improve power by maximizing
sample size. When patients’ individual-level data are freely
shareable, genetic and clinical data from multiple EHRs can be
combined to perform a gold standard pleiotropy analysis. How-
ever, due to identifiability and privacy concerns, patients’ genetic
and clinical information is often heavily protected and rarely
shared across different EHRs. A potential solution is to utilize
summary statistics to transfer information across datasets. As an
example, the use of GWAS summary statistics has allowed low-
cost and privacy-preserving alternative access to individuals’
genetic data. Summary statistics have been used successfully to
perform single variant association tests, gene-based tests, fine-

P ersonalized prevention and treatment of diseases require a

mapping, analysis of pleiotropic effects!® as well as meta-
analyses?0-22 without accessing patient-level data. However,
analyses using summary statistics may introduce potential bias
due to differences in study populations?324. On the contrary,
lossless integration, where the analysis of multiple datasets pro-
duces identical results compared with that of the combined
individual-level data, could avoid this type of bias. Thus, methods
that enable lossless privacy-preserving information sharing across
EHRs are critically needed.

In this study, we developed Sum-Share (SUMmary Statistics
from multiple electronic HeAlth Records for plEiotropy) to detect
pleiotropy. This method allows for flexible covariate adjustment
for each phenotype, is computationally more efficient than tra-
ditional methods, and leads to mathematically identical results as
compared to analyses of pooled patient-level data from different
sites. Importantly, Sum-Share only relies on summary statistics
from different sites.

Using simulations, we show that Sum-Share is computationally
efficient and achieved better statistical power than PheWAS in
detecting pleiotropic effects. We apply Sum-Share to seven EHRs
in eMERGE phase 3 data to detect pleiotropic effects between five
cardiovascular-related phenotypes (obesity, hypothyroidism, type
2 diabetes, hypercholesterolemia, and hyperlipidemia). The inte-
grated analysis identifies 1734 SNPs that showed significant
pleiotropic associations compared with just 1 SNP when using
EHR data from an individual site. To further evaluate our results,
we re-analyze the significant SNPs using PheWAS in the UK
BioBank data. This analysis identifies known genes as well as
discovers new genes associated with cardiovascular diseases.

Results

Sum-Share. Figure 1 provides an overview of the Sum-Share
method. The goal of the method is to simultaneously identify
pleiotropic effects between single SNPs and multiple phenotypes
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Fig. 1 Schematic overview of the Sum-Share method. Sum-Share enables
the investigation of pleiotropy using EHR data from multiple sites. The

method involves three major steps. In step 1, each EHR will generate its own
summary statistics, such as the mean or the covariance matrix. In step 2, the
summary statistics from each EHR is transmitted to the central analyst and
the analyst will generate pooled summary statistics and return them to each
EHR. In step 3, each EHR will calculate test statistics using the pooled

summary statistics and the individual test statistics will be integrated via the
distributed score test to derive the final p value, denoted as p valuesym-share-
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using data from multiple EHRs. The gold standard approach
would be to pool individual-level patient data from multiple
EHRs and perform pleiotropy tests on the combined data, known
as individual patient-level data mega-analysis. However, this is
rarely feasible in the real-world setting, as patient data are pro-
tected for privacy concerns and thus not easily shareable across
EHRs. Sum-Share, which is based on the composite likelihood
approach, decomposes the desired overall test statistics of the
pleiotropic test into EHR specific test statistics. To obtain EHR
specific test statistics, the method requires only summary-level
information from each EHR. Importantly, the resulting p-value of
the pleiotropic test from Sum-Share is identical to that of the
gold-standard test (pooled data).

Sum-Share is well powered to detect pleiotropy. To our
knowledge, there are no methods that can losslessly perform
pleiotropic tests using data from multiple EHRs without pooling
individual-level data. Thus, our goal here is to demonstrate that
Sum-Share improves statistical power as compared to standard
PheWAS analysis under various simulation settings. To perform
PheWAS, ten simulated EHR datasets were pooled together and
standard PheWAS analysis was performed. The data pooling for
PheWAS was achieved through meta-analysis or mega-analysis.
In meta-analysis (PheWAS-meta), the summary statistics of each
dataset were combined using the inverse-variance-weighting
method. In contrast, mega-analysis (PheWAS- mega) pools the
individual-level data and the analysis was performed on the larger
pooled data. Sum-Share, as illustrated in Fig. 1, was also per-
formed distributively using summary-level information from ten
simulated datasets (Sum-Share-distributed). In addition, we also
applied Sum-Share to the pooled individual-level data (Sum-
Share-pooled) as a counterpart of the PheWAS-pooled analysis.
The results show that Sum-Share achieved greater power than
PheWAS in all settings, including scenarios in which SNPs
associated with ten phenotypes under opposite direction effects,
same direction effects, and sparse associations (Fig. 2). The per-
formance comparisons also held when there were correlations
among the phenotypes. Type 1 errors of the results were con-
trolled at 5%. In addition, Sum-Share distributed and Sum-Share
pooled have achieved identical power due to the lossless feature of
the method. Additional simulations for common SNPs are
included in Supplementary Fig. 1.

Sum-Share can generate exact p-values using only summary-
level data. As section ‘The Sum-Share algorithm’ and derivations
in the Supplementary Note show, Sum-Share produces the same
test statistics using summary statistics from multiple EHRs
compared with pooled data. To further validate this lossless
property using real data, randomly selected SNPs were analyzed
for associations with five cardiovascular phenotypes in six EHRs.
The SNPs were categorized by their minor allele frequencies
(MAF) into common (MAF = 0.3), low frequency (MAF = 0.05)
and rare (MAF=0.01) groups. P-values obtained from Sum-
Share showed perfect correlation with p-values using the pooled
data for all SNPs’ categories (Fig. 3).

Detecting pleiotropic effects in cardiovascular traits across
multiple EHRs. Genetic-linked EHR data from eight geo-
graphically distinct sites were used to detect pleiotropic effects
among five common cardiovascular-related diseases (obesity,
hypothyroidism, type 2 diabetes, hypercholesterolemia, and
hyperlipidemia). Patients’ individual-level data from the EHRs
can be combined through the eMERGE network. However, for
this analysis, we only analyzed the summary-level data from the
EHRs to demonstrate the method’s performance. The patients’

disease status was determined by the counts of the respective
ICD-9 codes. Figure 4 shows the prevalence of each disease in
eight EHRs.

To minimize population stratification, Sum-Share was only
applied to patients with European ancestry. For each SNP, Sum-
Share was used to evaluate associations between the SNP and five
cardiovascular diseases, adjusting for gender and age. Impor-
tantly, as diseases could have different ages of onsets, Sum-Share
was able to adjust for different ages for each disease. A current
limitation of Sum-Share is that it cannot adjust for continuous
covariates while maintaining the lossless property. Thus, the
principal components adjustment for ancestry was not included
in the analysis (see “Discussion”). In total, ~6.1 million SNPs
were analyzed and their p-values were Bonferroni adjusted to
account for multiple testing. As for comparisons, the analysis was
carried out using data from each individual site as well as
combined data from two of the largest sites (Mass General
Brigham and Vanderbilt University) or all eight sites. For site-
specific analyses, Sum-Share did not need to aggregate informa-
tion from other sites, thus no distributed analysis was carried out.
The combined eight sites analysis resulted in 1734 significantly
associated SNPs, and the two-site analysis yielded 171 significant
pleiotropic compared to only one SNP across the site-specific
analyses (Table 1).

The 1734 significantly associated SNPs (p < 8.19 x 10~°) were
displayed in Fig. 5. SNPs were mapped to 538 gene and gene
transcripts using the Ensembl Variant Effect Predictor?> (Sup-
plementary Data 1).

Common SNPs identified between Sum-Share and PheWAS in
UK BioBank data. Sum-Share and PheWAS differ in their
approach in detecting pleiotropy associations. However, there
can be commons SNPs that are identified by both approaches,
which can indicate robust pleiotropic association of the SNPs.
Thus, to further evaluate SNP associations from Sum-Share,
significant SNPs identified in eMERGE data were re-analyzed
using PheWAS analyses in the UK Biobank data. Out of
1734 significant SNPs found in the Sum-Share analysis of eight
EHRs, 1698 SNPs were present in the UK BioBank dataset.
Each SNP’s association with a disease was assessed using
logistic regression while adjusting for gender and age. In total,
8490 associations were evaluated. 50 SNPs showed significant
association (p < 5.89 x 107°) with at least one of the phenotypes
(Fig. 5). Many of the 50 SNPs were mapped to cardiovascular-
related genes, including BTNL2, FGFR3P1, HLA family, PRIM2,
and RPL32P1 (Supplementary Data 2). Similarly, the same set
of SNPs were re-analyzed using Sum-Share in the UK Biobank
data. 54 SNPs showed significant associations (p < 2.94 x 107°)
(Supplementary Data 3). Out of the union of significant SNPs
identified in the UK Biobank, 49 SNPs were shared by the two
methods.

Discussion
As many institutions and health systems have begun to utilize
healthcare data, such as bio-bank linked EHR data, for research,
integrating and exchanging information from multiple sites has
emerged as a way to achieve more generalizable and robust
research results. However, due to data privacy concerns,
individual-level patients’ data are generally protected from cross-
site transfers. As a result, we developed the method, Sum-Share,
which can achieve lossless integration of summary statistics
across multiple EHRs, while preserving the privacy of
patients’ data.

Sum-Share achieves lossless integration of summary statistics
through use of the composite likelihood method. As section ‘The
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Fig. 2 Power comparisons between Sum-Share and PheWAS. The phenotypes have ~40% prevalence and the SNP has a minor allele frequency of ~5%.
The phenotypes and the SNP could have one of the three types of associations: opposite direction, same direction, and sparse associations. The

phenotypes are independent (top panel) or correlated (bottom panel). Across beta values (association strength), power was compared between Sum-
Share and PheWAS. Power was calculated as the percentage of times a method identified true significant associations out of 1000 repetitions. (Note: the

blue line overlaps with the purple line).
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Fig. 3 Correlation plot of p-values between Sum-Share and gold-standard analysis. SNPs and phenotypes were randomly selected from the eMERGE
data to assess their associations. The SNPs were grouped into three categories according to their minor allele frequency (MAF =0.01, 0.05, or 0.3)
corresponding to left, middle, and right panels. P-values from the associations between each SNP and all phenotypes were obtained from either the
distributed analysis (Sum-Share) or from the pooled individual-level data analysis (combined). Three SNPs in each category were randomly selected to

display the corresponding p-values (up to the 10th significant digits).

Sum-Share algorithm’ shows, Sum-Share decomposes the like-
lihood function into summary-level statistics that can be calcu-
lated at each site. Each site then transfers the summary-level
statistics to the central analyst to calculate the overall likelihood.
To demonstrate the effectiveness of Sum-Share, we first con-
ducted simulation studies to compare the method’s power with
the widely used PheWAS method in detecting pleiotropic effects.
We simulated known pleiotropic signals under different direction
of effects, the strength of effect sizes, and phenotype correlations.
The simulation results showed that Sum-Share achieved greater
power than PheWAS in all settings (Fig. 2). Notably, our simu-
lation favored PheWAS by allowing it to pool individual-level
data from multiple EHRs, while our method only used summary-
level data from these sites. Similarly, other multivariate methods

to detect pleiotropy, such as MultiPhen?® and TATES?, also
require individual-level data and thus were not compared. Next,
we showed Sum-Share can losslessly integrate summary-level data
by comparing the p-values obtained using summary-level data
versus using pooled individual-level data. Figure 3 shows that the
two sets of p-values are identical, which indicates that Sum-Share
did not lose information by only using summary-level data. These
simulation results demonstrate that Sum-Share is well-powered to
detect pleiotropic effects.

To investigate the potential pleiotropy between cardiovascular-
related diseases, we applied Sum-Share to seven EHR sites from
eMERGE to detect potential pleiotropic SNPs for five cardio-
vascular diseases. The prevalence for the five diseases varied
across sites, but hyperlipidemia was the most frequent disease
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Fig. 4 Disease prevalence of cardiovascular traits in eight EHRs.

The patients’ case statuses were obtained using the following ICD-9 diagnosis codes:

Obesity (ICD-9 278.00), Hypothyroidism (ICD-9 244.9), Type 2 diabetes (ICD-9 250.00), Hypercholesterolemia (ICD-9 272.0), and Hyperlipidemia

(ICD-9 272.4). Each panel displays the disease prevalence for an EHR.

Table 1 Significant SNPs identified from individual and

combined EHR analyses.

EHRs Sample size Significant SNP
associations

Combined analysis using 59,136 1734

Sum-Share

Mass General Brigham + 36,272 17

Vanderbilt University

Mass General Brigham 19,329 0

Vanderbilt University 16,943 0

Mayo Clinic 8485 0

Northwestern University 4033 0

Marshfield Clinic 3801 1

Geisinger Health 2974 0

Kaiser Permanente/UW 2921 0

Mt Sinai 650 0

Across 6.1 million SNPs, each SNP was evaluated for its association to the five phenotypes. A

single p-value is returned for each SNP that determines its significance with all phenotypes. In

the individual EHR analysis, each site was analyzed separately. In the combined EHR analysis,

multiple sites’ summary-level data were jointly analyzed by Sum-Share.

diagnosis for all EHRs (Fig. 4). We identified 1734 significantly
associated SNPs when all EHRs were analyzed together and one
significant SNP in Marshfield Clinic EHR when EHRs were
analyzed separately. The increased number of significant asso-
ciations could be potentially explained in several ways. First, the
straightforward explanation is that the increase in total sample
size from the integration of seven EHRs led to an increased power
to detect signals. Using simulation study, we showed that Sum-
Share has higher power to detect signals using the integrated
dataset compared to using only individual datasets (Supplemen-
tary Fig. 2). Second, genotype allele frequencies are known to
influence the power to detect genetic associations. Rare or low-
frequency SNPs have a much lower power to be detected in the
presence of true signals. However, if a SNP is rare in some of the
datasets but common in the other datasets. An integrated dataset
may stabilize the allele frequencies of the SNPs. As simulation has
shown, Sum-Share can still achieve high power when a SNP is
common in only a portion of the datasets (Supplementary Fig. 3).
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We further evaluated the 1734 SNPs in the UK BioBank data
using the PheWAS approach with the goal of determining whe-
ther any of the significant SNPs could be independently identified
using an analogous method. 50 SNPs showed significant Phe WAS
associations with the five phenotypes. These SNPs mapped to
genes including BTNL2, HLA family, and PRIM2. The BTNL2
gene has been implicated in cardiac sarcoidosis*® and type 1
diabetes?®. The HLA family genes contain the most polymorphic
genetic regions in humans. Genes in this family are associated
with over 100 diseases such as type 1 diabetes and autoimmune
diseases0. The PRIM?2 gene was identified by a large-scale GWAS
study to be associated with coronary artery disease3!. Applying
the Sum-Share method to the same SNPs, 54 SNPs were found to
be significant. In addition, 49 out of the 50 SNPs were also
identified by Sum-Share. As these 49 SNPs were identified and
validated by two different methods in multiple datasets, these
results increase confidence that they have true genetic associa-
tions with multiple phenotypes. While the high number of
overlapping SNPs between Sum-Share and PheWAS identified in
the UK Biobank can increase the confidence about our proposed
method as well as the validity of the results. The relative low
number of significant SNPs identified overall in the UK Biobank
can be attributed to several potential factors. First, the eMERGE
data contains patients recruited from the health systems in the
United States, while the UK BioBank is a national biobank in the
United Kingdom. As a result, there are potential differences
between the two data in terms of the study design, demographics,
and others. For example, there are no participants with age over
75 in the UK Biobank data used in the analysis. In contrast, a
large number of participants in the eMERGE data are in that age
group. Second, the phenotypes in the eMERGE data were derived
from the ICD-9 diagnosis code, while ICD-10 codes were used in
the UK Biobank data. While we used the closest matching codes
in the two data, the codes were not completely the interchange-
able. Finally, the quality of the corresponding significant SNPs in
the UK Biobank data was low. As Supplementary Fig. 5 shows,
almost half of the SNPs have more than 5% missing rate, a
common threshold for genotyping quality.

Although we investigated genetic pleiotropy using multiple
EHRs, the Sum-Share method can be generalized to other data-
sets, where there are one or more outcomes and covariates.
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Fig. 5 Manhattan plot of significant SNPs' associations. The top Manhattan plot shows the association results of Sum-Share in eMERGE. Each p-value
displayed (y-axis) is obtained from the test between an SNP (x-axis) and five phenotypes. The straight crossing line indicates the Bonferroni adjusted
p-value threshold of 8.19 x 10~°. The middle Manhattan plot displays the significant SNPs identified in Sum-Share (orange dots in the top panel) analyzed
using PheWAS in the UK BioBank data. Each p-value displayed (y-axis) is the minimum p-values between an SNP (x-axis) and five phenotypes. The
straight-line indicates the Bonferroni adjusted p-value threshold of 0.05/(1698*5) = 5.89 x 10~¢. The bottom Manhattan plot shows the same SNPs
analyzed by Sum-Share in the UK BioBank data. The Bonferroni adjusted p-value threshold is 0.05/1698 = 2.94 x 10>,

Nevertheless, the method has several current limitations that
require further development and evaluation. To preserve the
lossless feature of Sum-Share, the method is only designed to
analyze categorical (including binary) outcomes and covariates.
Thus, it cannot adjust for continuous covariates such as principal
components in the pleiotropic analysis. We compared the power
of PheWAS with continuous covariates adjustment versus Sum-
Share with categorical covariates (discretized continuous covari-
ates). Sum-Share still has significantly higher power than Phe-
WAS (Supplementary Fig. 4). In addition, the type 1 error was
still maintained at 5%. In our analysis, we only analyzed unrelated
patients of European descent to minimize effects from population
stratification. We did, however, adjust for a different age for each
phenotype in the same model. We believe this adjustment is
important for analyses of pleiotropy, because different pheno-
types may have different ages of onset. To our knowledge, no
current multivariate method for pleiotropy analysis can adjust for
multiple age variables. In order to adjust for continuous covari-
ates, iterative distributed algorithms such as GLORE have been

proposed32. However, the requirement of iterative communica-
tion of summary statistics is less feasible in our biobank data
setting. Other recently proposed communication efficient dis-
tributed algorithms such as ODAL could be applied to adjust for
continuous covariates at the price of yielding a slightly different
estimate, compared to the pooled data base analysis?>34. Sum-
Share also assumes homogeneous effects across datasets (Eq. 1).
For genetic effects, we believe this assumption is justifiable when
multiple datasets consist of samples with the same ethnic popu-
lation because of the similar underlying biological mechanism.
For other covariates, such as age and gender, there could be
heterogeneous effects among different datasets. However, under
the hypothesis testing framework, assuming homogeneous effects
when heterogeneity exists is still useful because we can still detect
an averaged effect’®. In addition, while Sum-Share aims to pre-
serve patient’s privacy by utilizing summary statistics of the
dataset, there is still risk of identifiability with summary statistics
and other publicly available genetic information30-40. This is
especially problematic in smaller datasets or for rare events,

6 NATURE COMMUNICATIONS| (2021)12:168 | https://doi.org/10.1038/s41467-020-20211-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

where the summary statistics are not fully protective against
privacy. However, the current practice of sharing patients’ data is
that the data are shared within an established consortium or
between known collaborators. Thus, Sum-Share would have a
significantly reduced risk of exposing the patients’ privacy.

Methods

eMERGE EHR data. In this study, genotype data with linked EHR data was
obtained from the eMERGE network?!. Phase III of eMERGE includes 83,717
genotyped patients from 11 sites. The eight adult sites were included in the study:
Marshfield Clinic Research Foundation, Vanderbilt University Medical Center,
Kaiser Permanente Washington/University of Washington, Mayo Clinic, North-
western University, Geisinger, Mt.Sinai, and Mass General Brigham (formerly
Partners Healthcare). SNPs were imputed using the Haplotype Reference Con-
sortium 1.1 reference under genome build 37, which resulted in 39 million total
genetic variants*2. SNP genotypes were filtered and processed using the standard
pipeline®? so that the genotype and sample call rate were >99%, imputation score >
0.4, Hardy-Weinberg equilibrium p-value > 0.00001, and the MAF of the SNPs
were 20.05. To reduce the effect of population structures, only unrelated indivi-
duals of European ancestry were used. For related individuals (r-hat > 0.25,
identity-by-descent), one of each pair was removed. In total, 59,136 individuals and
6,106,952 SNPs were analyzed.

UK BioBank data. The UK Biobank publicly released phase 2 of deep genetic and
phenotypic data on ~500,000 individuals across the United Kingdom!”. Individuals
were genotyped on two related types of genotype arrays (UK BILEVE Axiom Array
or UK Biobank Axiom Array) across 106 batches and imputed using the merged
UKI10K and 1000 Genomes phase 3 reference panels*$. The UK Biobank data were
obtained under application # 32133.

For sample quality control, first, individuals with SNPs missing at a rate >5%
and high heterozygosity were removed due to poor quality. Second, one person
within each pair of related individuals was removed. The relatedness threshold was
set at second-degree relatives, which corresponds to the identity by descent n-hat
value >0.25. Third, individuals who had mismatched self-reported and genetic-
inferred sex were not included in the study. Genetic variants with imputation info
score <0.3 and MAF <0.01 were excluded. For genotype data, we extracted the
1734 significant SNPs identified by Sum-Share. Out of 1734 SNPs, 1698 SNPs were
also genotyped by the UK BioBank and passed the above quality control.

Because eMERGE’s phenotype data were derived from ICD-9 codes and UK
BioBank contains mostly ICD-10 codes, we manually curated the corresponding
ICD-10 codes for the five cardiovascular phenotypes. ICD-10 codes were E66.9 for
obesity, E03.9 for hypothyroidism, E11.9 for type 2 diabetes, E78.0 for
hypercholesterolemia, and E78.5 for hyperlipidemia.

The Sum-Share algorithm. Sum-Share jointly studies the association between one
SNP (denoted by X) with multiple phenotypes (Y1,...Y,). For each phenotype we
assume

log{Pr(Yj - 1) |X} = o +BX,

where § is the corresponding log odds ratio of the SNP. Denote & = (,...,) and
B = (B1-..By). To simultaneously model multiple phenotypes in multiple EHRs,
Sum-Share used an adapted composite likelihood approach. More specifically, it
assumed K clinical sites, and the sample size in the k-th site was ny. For the i-th
subject in the k-th site, dy = (¥, - , Vgix» %ix) Was observed. If the patient-level
data could be pooled together, the log composite likelihood function based on the

combined data was expressed as the following:

L(a, B) = kXK: f: Zq: [yjik (aj + xikﬁj> — log{l + exp ((xj + xikﬁj> }] (1)
=1 i=1 j=1

To investigate whether a given SNP had a pleiotropic effect, we proposed to
construct a score test, where we test Hy:3 = 0, against H,:; # 0. Denote y; =

(P1iks -+ +Ygit) to be a vector of all g phenotypes, y =

(ke 0 i/ o i 0% Y/ ) to be the sample mean y of the

combined dataset across all sites, = > x_, S/ x,; /n to be the sample mean of
the SNP. The score test statistic can be constructed as

T=8v'sT, (2)

where § is the score function which is obtained by taking the first derivative of the
likelihood function in (1), and V is the estimated variance of S. Through some
derivation, we have

(XY — %),
1

3
i—

K
s=>
k=1

and

R
=

K
V=
=

=X’ 0= 0a ="
1=1
Under the null hypothesis (Hy: = 0), the test statistic follows a y? distribution with
q degrees of freedom asymptotically. Therefore, the p-value of the test can be
calculated as

p=1- \Ijq(T)v

where ¥ (+) is the cumulative distribution function (CDF) of the centered X
distribution with g degrees of freedom.

With aggregated information ¥ and X, the two components of the test statistic T,
i.e., the g-dimensional score function $ and the g x g-dimensional matrix V can all
be calculated distributivity. Each site only needs to calculate and share

3)

3 3

S = Z(xikyik —xpy)and Vi = Z(xik -’ = w -9,

i=1 i=1

4)

which are all summary-level information.

We can generalize this method to adjust for potential confounding factors such
as gender and age (see Supplementary Note).

The pseudo-code for obtaining the test statistic T distributivity is provided in
Box 1.

PheWAS. In PheWAS analysis, a logistic regression is applied between an SNP and
each phenotype to determine its association. Each p-value from the SNP-phenotype
association was Bonferroni adjusted by the number of phenotypes to obtain an
adjusted p-value. The minimum adjusted p-value of all phenotypes was used to
determine the power of PheWAS®.

Power comparison with PheWAS in multiple EHRs. Various pleiotropic models
were simulated to compare Sum-Share with PheWAS. As Sum-Share is able to
integrate summary-level information from multiple EHRs, ten datasets under each
pleiotropic model were simulated to mimic ten EHRs. Two types of data inte-
gration were performed for PheWAS: meta-analysis and mega-analysis. For meta-
analysis, PheWAS analysis was performed on each dataset and the resulting
association coefficients were integrated using inverse-variance-weighting. In mega-

Box 1. Pseudo-code of the Sum-Share algorithm

1. Insite k =1..K do
03 3
Calculate and share y, = > v /N, X = D Xi /N, and sample size ny
i= i=
end
for k =1,.K do

K K
Obtain the overall mean y = >" n,¥,/n, and X = >_ nXx./n
k=1 k=1

Calculate and share Sy and V using (4)
end

K K
Calculates S=>"5,, and V =3V,
k=1 k=1

0 0 N ;W N

Obtain the test statistic T by (2) and obtain the p-value by (3).
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analysis, individual-level data from the ten datasets were pooled together to create a
combined dataset, which was used for a PheWAS analysis. Similarly, Sum-Share
was used to analyze these datasets distributively, through the integration of sum-
mary statistics from the ten datasets, or in a pooled analysis, which used the
combined individual-level data. The procedure was repeated 1000 times. Power was
calculated as the percentage of times a method identified significant pleiotropic
associations out of 1000 repetitions.

Pleiotropic effects were generated from the following logistic model.

P(Y = 1])
log<m> =By +XB, (5)

with n patients and g phenotypes, Y is a n x g matrix of phenotypes, X is an nx 1
vector of SNP €{0,1,2} and following the Hardy-Weinberg equilibrium, isa 1x g
coefficient vector, and P, is the n x g intercept matrix of constant numbers. The
SNP was simulated either as common, with MAF = 0.3, or low frequency, with
MAF = 0.05. Ten phenotypes were simulated with binary disease status y; € {0,1}4
for each individual i. For each EHR, we simulated n = 100 patients, thus there were
a total of 1000 patients in ten EHRs.

An SNP was simulated to exhibit different pleiotropic patterns with the ten
phenotypes including: same direction, opposite direction, and sparse effects.

Same direction of effects. Under this model, an SNP was simulated to be associated
with the ten phenotypes under the same effect, i.e, f = (8, =, = ... =f;,) and
Bo=—0.5.

Opposite direction of effects. Under this model, an SNP was simulated to be asso-
ciated with the first five phenotypes under one effect and the other five phenotypes
under the opposite direction of effect, i.e., = (B, =B, =5 =P, =Pfs = —fs =

—p; = —Ps = =Py = —Py,) and Po=—0.5.

Sparse effects. Under the sparsity model, not all phenotypes were associated with
the SNP. A decaying model was used to simulate the genotype and phenotype
associations. The model was = 27"*B, withi = 1... 10, and B, = —0.5. Intui-
tively, the SNP was strongly associated with the first phenotype, but gradually
decreased its association with the other phenotypes.

Correlation between phenotypes. The above models assumed independence between
the phenotypes. However, phenotypes could also be correlated while exhibiting
pleiotropic associations. Thus, another set of simulation data was created that had
the same pleiotropic effects, namely, same direction, opposite direction, and
sparsity, at the same time the phenotypes were also made to be correlated. The
correlation matrix for the phenotypes is shown in Fig. 6.

The rmvnorm function in the mvtnorm package was used to generate binary
phenotypes from the correlation matrix*.

The impact of sample size, allele frequency, and covariates adjustment on
power. To evaluate the impact of sample size on the power of Sum-Share, three
datasets with sample size n = 2000, 6000, and 12,000 were simulated as previously
outlined (Section ‘Power comparison with PheWAS in multiple EHRs’, same
direction of effects). Sum-Share was used to analyze the three data separately to
obtain the power in each dataset. Then, Sum-Share was used to integrate the
datasets to evaluate the power in the integrated dataset.

When integrating multiple genetic datasets, it is possible that the same SNP
could have different allele frequencies across datasets, e.g., common in one dataset
and rare in another. By integrating multiple datasets, an SNP will have an averaged
allele frequency that is reflective of all data. The impact of the averaged allele
frequency on power is evaluated as follows. Three equally sized (n =2000) datasets
were simulated as in Section ‘Power comparison with PheWAS in multiple EHRS’,
same direction of effects. The MAFs of the SNP in the three datasets are: 0.05, 0.1,
and 0.4. Sum-Share was used to integrate the three datasets and its power was
evaluated. The power of Sum-Share using the integrated data was then compared to
three additional datasets (1 = 6000) that have the same underlying genetic model,
but homogeneous in MAF = 0.05, 0.1, or 0.4. In summary, Sum-Share was used to

compare the power using the integrated datasets (heterogenous in allele
frequencies) and three individual datasets (homogeneous in allele frequency).
Due to the lossless characteristic of Sum-Share, it is currently not possible for
Sum-Share to adjust for continuous covariates. As a result, the impact of
continuous covariates adjustment is evaluated through the following simulation.

The pleiotropic effects’ simulation was slightly modified based on Eq. (5)
P(Y =1]X)
1 alkSullnilel i X )
<I—P(Y=1\X)> By +X = B+ gender x y+ age * &, (6)

with gender; €{0,1}4 generated from the Bernoulli distribution with p = 0.5 and
age; ~ Normal(mean = 65, sd = 20). In order to adjust for age, the continuous age
was discretized as follows

age < 50, 0

age>50andage<75, 1

age> 75, 2

A8C discretized

Ten datasets were generated using the “same direction of effects” model

(Section ‘Power comparison with PheWAS in multiple EHRs’). The effects of
gender and age were set as $ = 0.1 and J = 0.05, respectively. The value of § was set
so that it is equal to the average of the genetic effect size. Sum-Share was used to
analyze the data adjusting for gender and agegiscretizea- Similarly, PheWAS was used
to analyze the same data adjusting for gender and the continuous age.

P-values from Sum-Share and pooled analysis. To demonstrate that Sum-Share
can produce the same p-values compared with the pooled EHR data (gold stan-
dard), we randomly selected sets of SNPs and phenotypes from six EHR sites
(Table 2) to perform the comparison. To avoid bias due to MAF, rare (MAF = 0.01,
low frequency (MAF = 0.05) and common (MAF = 0.3) SNPs were used in the
comparison.

The phenotype definition from eMERGE was used*®%7. Case status was
determined by having >3 instances of the ICD-9 diagnosis code, and control status
was determined by the absence of the ICD-9 code. Patients with one or two
instances of the diagnosis codes were deemed as NA. In this analysis, NAs were
imputed based on disease prevalence.

For each SNP, its association p-value with the five phenotypes was assessed
using only summary statistics as implemented in Sum-Share or using the pooled
patient-level data from all six sites.

Application of Sum-Share to multiple EHRs. Adult patients with European
ancestries in EHRs from Geisinger Health, Mass General Brigham, Kaiser Per-
manente, Marshfield Clinic, Mayo Clinic, Mt Sinai, Northwestern University, and

V10
V9 -
V8 1

Correlation

V74 0
V6 o1
V54 03
V4 A
V31 . 1
V24
V1

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
Fig. 6 Correlation matrix for the correlated phenotypes. The phenotypes
were simulated to exhibit two correlated clusters. The phenotypes within

each cluster are correlated with each other. Phenotypes outside of the
cluster are not correlated.

Table 2 Simulation using multiple eMERGE sites.

SNPs per set 50
MAF of SNPs in each set 0.01, 0.05, 0.3
Phenotypes

(ICD-9 414.00)
eMERGE sites
University, Mass General Brigham

Malignant hypertension (ICD-9 401.0), Paroxysmal atrial tachycardia (ICD-9 427.0), Congestive heart failure (unspecified)
(ICD-9 428.0), mitral valve disorder (ICD-9 424.0), Coronary atherosclerosis of unspecified type of vessel, native or graft

Marshfield Clinic, Vanderbilt University, Kaiser Permanente/University of Washington Mayo Clinic, Northwestern
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Vanderbilt University were used. The prevalence of cardiovascular-related diseases
was highest among the EHRs, thus five common cardiovascular diseases were
selected to detect pleiotropic effects: obesity (ICD-9 278.00), hypothyroidism (ICD-
9 244.9), Type 2 diabetes (ICD-9 250.00), Hypercholesterolemia (ICD-9 272.0), and
Hyperlipidemia (ICD-9 272.4).

For each SNP, its association with the five phenotypes was evaluated using Sum-
Share, adjusting for gender and age. For controls, age was determined as the age of
patients’ last visit recorded in the EHR. For cases, each patient and disease
diagnosis were associated with an age, which was calculated as the median age of
the ICD-9 code assignments of a particular disease. The age was discretized into
three nearly equal-sized bins: low (age < 50), medium (50 < age < 75), or high (age
>75). The discretization was necessary to preserve data privacy and to reduce
computational cost. Without discretization, patients’ information could be exposed
if, for example, only one patient at the age of 90 had a certain disease. Because the
minimum p-value output by R was 2.22 x 10716, p-values smaller than this
threshold were reported as 2.22 x 1016, This conversion did not affect the final
results.

SNPs were deemed significant if they passed the Bonferroni adjusted p-value
threshold 0.05/6106952 = 8.19 x 10~°. Significant SNPs were re-analyzed in the
UK BioBank using PheWAS to identify any SNPs that can also be discovered using
the standard approach. Similarly, the SNPs were also analyzed using the Sum-Share
method. All of the significant SNPs as well as the subset of significant SNPs that
were identified in the UK BioBank were annotated using the Ensembl Variant
Effect Predictor to identify the corresponding genes?’.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The eMERGE EHR data are not publicly accessible due to restricted user agreement. The
UK biobank data is available through application (https://www.ukbiobank.ac.uk/). The
UK biobank data used in this manuscript were obtained under application # 32133.

Code availability
The code for Sum-Share is available on github (https://github.com/ruowangli/Sum-
Share). The code is written in R.
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