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Abstract

For species which bear unique markings, such as natural spot patterning, field

work has become increasingly more reliant on visual identification to recognize

and catalog particular specimens or to monitor individuals within populations.

While many species of interest exhibit characteristic markings that in principle

allow individuals to be identified from photographs, scientists are often faced

with the task of matching observations against databases of hundreds or thou-

sands of images. We present a novel technique for automated identification of

manta rays (Manta alfredi and Manta birostris) by means of a pattern-matching

algorithm applied to images of their ventral surface area. Automated visual

identification has recently been developed for several species. However, such

methods are typically limited to animals that can be photographed above water,

or whose markings exhibit high contrast and appear in regular constellations.

While manta rays bear natural patterning across their ventral surface, these

patterns vary greatly in their size, shape, contrast, and spatial distribution. Our

method is the first to have proven successful at achieving high matching

accuracies on a large corpus of manta ray images taken under challenging under-

water conditions. Our method is based on automated extraction and matching

of keypoint features using the Scale-Invariant Feature Transform (SIFT) algo-

rithm. In order to cope with the considerable variation in quality of underwater

photographs, we also incorporate preprocessing and image enhancement steps.

Furthermore, we use a novel pattern-matching approach that results in better

accuracy than the standard SIFT approach and other alternative methods. We

present quantitative evaluation results on a data set of 720 images of manta rays

taken under widely different conditions. We describe a novel automated pattern

representation and matching method that can be used to identify individual

manta rays from photographs. The method has been incorporated into a website

(mantamatcher.org) which will serve as a global resource for ecological and con-

servation research. It will allow researchers to manage and track sightings data

to establish important life-history parameters as well as determine other ecologi-

cal data such as abundance, range, movement patterns, and structure of manta

ray populations across the world.

Introduction

The identification of individuals of a particular species is a

vital requirement for many aspects of ecological research

and conservation (Couturier et al. 2012). Tagging of ani-

mals is often infeasible on a large scale due to costs, effort

required for tag application, low probability of tag return,

and the risk of disturbing local study populations (Reisser

et al. 2008). An increasingly popular alternative is visual

identification, which has become an established technique

employed to study animals exhibiting natural markings

that are sufficiently stable over time to allow individuals to

be distinguished (Hammond et al. 1990; Marshall and

Pierce 2012).
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However, the complexity and subtleties of many such

markings, combined with the desire for ever larger study

populations, mean that there is a growing need for auto-

mated visual identification techniques to aid researchers

and minimize the increasing effort and chance of errors

(Morrison et al. 2011; Chesser 2012) arising from manual

pairwise comparisons across large image corpora. Unfortu-

nately, whereas good accuracies have been achieved in

automated photographic identification systems for many

species observed on land or at the surface of the sea (Burg-

hardt and Campbell 2007; Mortensen et al. 2007; Buonan-

tony 2008; Gamble et al. 2008; Kniest et al. 2010; de Zeeuw

et al. 2010; Hoque et al. 2011; Morrison et al. 2011; Bolger

et al. 2012; Thornycroft and Booth 2012), recognition of

animals underwater poses significant additional challenges.

The problems of visual identification are therefore exacer-

bated in the case of purely aquatic animals such as elasmo-

branchs (Marshall and Pierce 2012), as photographs of

such animals are taken under challenging underwater

imaging conditions exhibiting highly variable lighting and

visibility, as well as variation in pose angle, distance from

the subject, flexion of the ray’s body, and occlusions (part

of the animal being obscured by other fish).

Various computer-aided tools have been devised to

help marine scientists and conservationists with visual

identification. Generally, they take a candidate image of

an animal as input and produce a ranked list of possible

matching individuals. A number of such systems have

been shown to work well for species which frequently

exhibit fairly regular or high-contrast spot patterns such

as whale sharks Rhincodon typus (Holmberg et al. 2008,

2009; Brooks et al. 2010), ragged-tooth sharks Carcharias

taurus (Tienhoven et al. 2007), and coelacanths Latimeria

spp. (Thornycroft and Booth 2012).

One of the most popular tools is the I3S system1 (Speed

et al. 2007; Tienhoven et al. 2007). It requires the user to

perform many initial manipulations in the preprocessing

stages to select reference points and identify the most distinc-

tive spots.2 After that, the pattern-matching method is done

by using a 2D affine transformation on the reference points

to transform two images into a commonly defined plane and

then compute distances between user-selected spots on two

images in this plane to calculate a similarity score.

However, none of the existing tools have achieved satis-

factory performance on manta ray (Manta alfredi and

M. birostris) images due to the generally low contrast and

high variation in size and shape exhibited by their charac-

teristic ventral body markings, which typically consist of

amorphously shaped spots and patches (Marshall and

Pierce 2012). Recently an extension called I3S manta was

proposed to deal with species such as manta rays with

irregular spot patterns, but no large-scale evaluation data

on its performance are currently available, and the high

degree of user effort combined with unproven accuracy

have hampered its adoption by scientists. Manual marker

identification significantly aids automated pattern match-

ing, but is very cumbersome and hence does not easily

scale to larger data sets such as those considered in this

study. For example, the application of I3S to coelacanth

images (Thornycroft and Booth 2012) required 60 diag-

nostic spots to be manually defined on each of 29 images.

Furthermore, many methods assume that the region of

interest (ROI) containing the characteristic spot patterns

are on a near-planar or generalized cylindrical surface and

only the relative position of the spots to one another is

important, whereas their size is not. Unlike many bony

fishes and sharks whose ROI is fairly rigid and exhibits a

regular pattern, manta rays’ ROI often encompasses their

highly flexible wing-like pectoral fins and the pattern shows

wide variation from small regular spots to frayed blotches.

Whereas tools such as I3S require very substantial user

effort, the “mantamatcher” method described in this

study is highly automated: images can be inducted in a

few seconds and image matching queries are fast (a few

seconds for hundreds of images on a single laptop

computer). Manual image preprocessing is minimal, char-

acteristic features are extracted automatically, and matching

speed is orders of magnitude faster than comparable sys-

tems such as that proposed by (Arzoumanian et al. 2005).

Our method employs the Scale-Invariant Feature

Transform (SIFT) (Lowe 2004), an algorithm to detect

and describe local image features. These features are

defined such that they are robust to changes in location,

scale and rotation, and partially invariant to changes in

illumination, noise, and minor changes in 3D camera

viewpoint. Furthermore, they are also highly distinctive in

the sense that a single feature can be correctly matched

against a large number of features with high probability.

SIFT has previously been applied in ecological research,

for example, de Zeeuw et al. (2010) have designed a sys-

tem based on the SIFT algorithm to assist land photo

identification of leatherback sea turtles using the unique

pink spots on their heads. Their preprocessing step

involves manual cropping and automatic highlighting of

the spots so as to reduce the effects of varying illumina-

tion, resolution, and viewing angle. The SIFT algorithm is

then applied to the resulting image to get representative

features that are then matched against each image in the

database in turn. Similar approaches have been applied to

match images of insects (Mortensen et al. 2007) and but-

terflies (Hao et al. 2009).

1http://www.reijns.com/i3s.
2It relies on human judgment in distinguishing pigment marks
and artifacts such as reflections, shadows, and particles in the
water.
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However, all these approaches require the ROI to be

almost parallel to the optical plane of the camera and do

not consider underwater images. The performance of

standard SIFT can degrade badly in the presence of noise,

occlusions, and large changes to 3D viewpoint, all of

which are common in underwater images of manta rays.

We therefore propose a number of modifications and

enhancements of the SIFT algorithm. Moreover, we show

how the accuracy and robustness of the resulting “manta-

matcher” algorithm outperforms very recently proposed

state-of-the-art computer vision algorithms such as

Speeded Up Robust Features (SURF) (Bay et al. 2006)

and ORB (Oriented FAST and Rotated BRIEF) (Rublee

et al. 2011). Finally, we discuss how the mantamatcher

(MM) method is driving development of a global collabo-

rative resource for research into manta ray ecology.

Materials and Methods

Data sets

We present quantitative evaluation results on a data set of

720 images of 265 different manta rays taken under widely

different conditions. The images were taken by members

and associates of the Manta Ray & Whale Shark Research

Centre, Marine Megafauna Foundation, Tofo Beach,

Inhambane, Mozambique. Most of the images (581 photos

of 214 individuals) depict reef manta rays M. alfredi (Mar-

shall et al. 2011), and the remainder (139 photos of 51

individuals) depict giant manta rays M. birostris. Of the

214 reef mantas, 161 were visually assessed as being female

and 51 as being male (there were two rays for which sex

could not be determined), and of the 51 giant mantas, 38

were visually assessed as being female and 6 as being male

(with the remaining 7 being indeterminable).

Algorithm overview

Our MM method consists of the following main stages:

● Image preprocessing: This is a simple alignment pro-

cess in which the user normalizes the 2D orientation

of the ray within the image and selects a rectangular

ROI containing the spot pattern.

● Image enhancement: The image is automatically

enhanced through noise removal and adaptive contrast

equalization.

● Feature extraction: Characteristic features of the spot

pattern are automatically identified and encoded with-

out any need for user input.

● Feature matching: Given an image of an unknown speci-

men and a database of manta ray sightings, the system

automatically produces a ranked list of previously

identified manta rays that best match it, and also provides

similarity and confidence scores to allow the user to

assess whether the specimen has previously been sighted.

Image preprocessing and enhancement

The preprocessing step consists of normalizing the

in-plane orientation of the manta ray within the image

(the user simply performs two mouse clicks to identify

the orientation of the medial axis line), followed by selec-

tion of a ROI encompassing the characteristic markings

on the ventral surface (Marshall et al. 2011) of the ray

(this requires a further two mouse clicks to select the two

opposite corners of a rectangle). Preprocessing is cur-

rently done manually, although an automated approach

using image segmentation is under development. Figure 1

shows an orientation normalized manta ray image with

rectangular spot pattern region.

An automated image enhancement step is then applied

to the ROI image. Underwater images exhibit enormous

variation in lighting depending upon factors such as

depth, clarity of the water, use of flash (which often leads

to backscatter caused by suspended particles), and the rel-

ative position of the sun (manta rays are frequently

photographed swimming overhead with the sun behind

them, causing glare and a “corona effect”). As noted in

Schettini and Corchs (2010), this leads to limited visibility,

low contrast, nonuniform lighting, blurring, lack of colora-

tion, and various noise artifacts.

Given the heterogeneity of photographic conditions

and equipment used in acquiring manta ray photo ID

images, and the lack of usable calibration information,

automated image restoration or illumination correction

methods such as those proposed in Schettini and Corchs

(2010) are not applicable. We therefore investigated a

Figure 1. Image preprocessing: The manta ray orientation is

normalized, and a candidate region encompassing the spot pattern is

selected.
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large number of generic and robust techniques for auto-

mated image enhancement that would be universally

applicable to deal with the most commonly encountered

image degradations without negatively impacting images

that were already of a high quality.

Best overall results were achieved by a combination of

median filtering and histogram equalization (Gonzalez

and Woods 2008). Images are first converted into gray-

scale and then size normalized such that their maximal

dimension does not exceed 800 pixels. We then calculate

the standard deviation to assess noise levels and apply a

3 9 3 (for less noisy images) or 5 9 5 (for images with

high noise levels) median filter to reduce noise. To

improve fidelity and enhance the contrast of characteristic

spot patterns, we then apply contrast-limited adaptive

histogram equalization (CLAHE). The CLAHE algorithm

performs local rather than global contrast adjustment,

which is especially important when different parts of a

manta ray in a given image exhibit widely different illu-

mination levels, for example, due to rapid attenuation of

flash lighting causing significant differences in white

balance between areas of the ray that are proximate to

the camera and those that are further away.

An example of the effects of image enhancement is

shown in Figure 2.

Feature extraction and representation

In order to encode the characteristic information contained

within the natural body markings of manta rays, we make

use of the Scale-Invariant Feature Transform (SIFT) (Lowe

2004). We also implemented and evaluated two other

recent feature extraction algorithms, namely SURF (Bay

et al. 2006) and ORB (Rublee et al. 2011). Our implemen-

tation makes use of the OpenCV3 Computer Vision library

(Bradski and Kaehler 2008), and we have adapted SIFT

code originally written by Hess (Hess 2010).

All three algorithms detect distinctive features at

keypoints in the image, and then represent those features

in terms of a parametric description of the local image

variation in the vicinity of the keypoints at a carefully

chosen scale of analysis. The algorithms were chosen due to

their ability to extract and match features in a way which is

robust to changes in size and 2D rotation, and also resilient

to changes in 3D viewpoint, addition of noise, and change

in illumination. As we achieved best results using SIFT, and

as we developed various novel improvements to the origi-

nal SIFT algorithm to enhance matching performance on

manta ray images, we will briefly describe some key aspects

of our SIFT implementation.

To find stable features that are invariant to size, SIFT

detects features using a scale-space approach. This is

achieved by convolving the image with Gaussian filters

G at different scales of analysis r and differencing the

resulting blurred images at neighboring scales to find

local minima and maxima. Formally, the scale space L of

an image is created by convolving the input image I with

Gaussian filters G at different scales r:

Lðx; y; rÞ ¼ Gðx; y; rÞ � Iðx; yÞ:
Neighboring scales (r and kr for some constant k) are

then subtracted from each other to produce the Differ-

ence-of-Gaussian images D:

Dðx; y; rÞ ¼ Lðx; y; krÞ � Lðx; y; rÞ
Only scale-space extrema of D(x, y, r) that have strong

contrast are chosen as keypoints. We also reject keypoints

that are closely spaced along an edge as these are unstable

and not useful for identification.

In order to achieve invariance to 2D orientation, a key-

point descriptor based on local gradient directions and

magnitudes is used. The descriptor is invariant to image

Figure 2. Top row, left to right: Original

image; grayscale candidate region; enhanced

image after noise filtering and contrast

adjustment. Bottom row: Visualization of

features extracted using SIFT (left), SURF

(middle), and ORB (right).

3http://opencv.willowgarage.com/wiki/.
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rotations as the bins of the orientation histograms are

normalized relative to the dominant gradient direction in

the vicinity of the keypoint. The scale of analysis, and

hence the size of the local region whose features are being

represented, corresponds to the scale at which the given

keypoint was found to be a stable extremum (subject to

constraints on local contrast and contour membership).

In terms of the characteristic patterns present on the

ventral surface of manta rays, SIFT keypoints are typically

localized at significant spots and other markings. Infor-

mation on the shape, contrast, and dominant orientation

of markings is represented by the feature descriptors.

Figure 2 illustrates image enhancement and features

extraction using an example manta ray image. SIFT

features are marked by arrows whose length and direction

illustrate the scale and dominant orientation of the given

keypoint feature (note that some keypoint features may

be localized at or near the same pixel coordinates in the

image, but will differ in their scale or orientation). SURF

and ORB features are indicated by small circles.

Pattern matching for automated
identification in ecological databases

In order to identify a manta ray automatically from an

image, it needs to be matched against all images in a data-

base. If other images of the given individual ray are already

present in the database, then the software should rank that

individual highly in the list of search results. If the image rep-

resents an as-yet-unidentified individual, then the matching

algorithm should return very low matching scores and indi-

cate a low confidence of having achieved a successful match.

Matching therefore requires the software to efficiently com-

pute all possible pairwise matches between the features repre-

senting the query image and each image in the database.

Configurations of SIFT keypoints from different images can

be compared via a distance metric to find correspondences

between instances of objects in different poses. Most

approaches to matching of SIFT features are designed for tasks

such as image stitching or detection of man-made objects. In

these cases it is usually straightforward to identify subsets of

features representing similar or identical image structures. To

achieve partial pose invariance, a candidate match can be con-

firmed or rejected by establishing a projective mapping of one

(sub)image to another via homographies.

However, our experiments showed that this approach

does not yield usable results in the case of manta ray

images. The diffuse nature of their natural body mark-

ings, especially when photographed underwater, typically

results in relatively low numbers of matching features,

and the much greater variation in appearance caused by

the factors mentioned in previous sections makes it very

difficult to automatically recover the 3D pose of the ray.

We therefore developed a novel image-to-image match-

ing method which is more akin to methods for comput-

ing similarity of visual textures as opposed to rigid

transformations of geometrical or strongly patterned

objects. The overall similarity score between the unknown

query image I and another image J is computed as

scoreðI; JÞ ¼
PNFi ;Fj

n¼1 wn

maxð Fij j; Fj
�� ��Þ

where Fi and Fj represent the sets of SIFT features for I and

J, respectively. In Lowe’s original algorithm (henceforth

referred to as “classic SIFT”), score(I, J) is simply com-

puted as the number of features that are deemed to match

NFi;Fj �maxð Fij j; Fj
�� ��Þ divided by the larger of the number

of features in the two images. Our MM algorithm refines

this by weighting each matched pair of features based on

their significance and the strength of the match, as will be

explained below. The final score is normalized based on the

maximum possible value of
PNFi ;Fj

n¼1 wn in order to ensure

that scores range from 0 (worst score) to 1 (perfect match).

First, our tool considers all possible pairings of individual

features from the unknown query image and all the

images it is to be compared against. As each image may

have hundreds of features and the database may contain

thousands of images, matching feature pairs are identified

efficiently using a “Best-Bin-First” (BBF) k-d-tree approx-

imation (Beis and Lowe 1997) to the nearest neighbor

Euclidean distance between feature vectors, resulting in a

significant (1009) speedup.

In keeping with classic SIFT, we only consider features

to be matched if their nearest neighbor to second-nearest

neighbor feature distance ratio is greater than a threshold

(in this case, a threshold of 0.75 was empirically chosen).

This ensures that chosen features are sufficiently distinc-

tive relative to the overall feature set.

In addition, candidate matching feature pairs are

rejected if the ratio of their absolute-scale difference

divided by the greater of the two scales exceeds a thresh-

old of 0.5. This ensures that features must not differ

greatly in size (i.e., by no more than one scale-space

octave) to be considered to be matched. As features at a

very fine scale are less likely to be significant, we ignore

features with a very low scale (a scale-space value of 1.1

was empirically selected as a good cut-off) and weight the

contribution (see wn above) of matching keypoint pairs

based on their absolute and relative scales:

wnðfi; fjÞ ¼ ffiffiffi
l

p
1:0þ scaleðfiÞ � scaleðfjÞ

�� ��
maxðscaleðfiÞ; scaleðfjÞÞ

� �p

where fi ∊ Fi and fj ∊ Fj are the candidate features in images

I and J, l ¼ scaleðfiÞþscaleðfjÞ
2:0 is their mean scale, and a value

of P = 0.10 yielded best results on an evaluation set.
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The crucial factor which is captured by this algorithm

is that the distinctiveness (discriminability) of features is

the most important factor in finding good matches, rather

than just the number of similar features. Images with a

fairly random distribution of features could lead to many

incidentally matching features, but these may not be

considered as useful matches unless they are also relatively

distinctive (as determined using the nearest neighbor

distance ratio), and even if they pass the test for distinc-

tiveness, their contribution to the overall matching score

is normalized based on scale and the overall number of

features in both images.

We also ensure that keypoint matches are unique, that

is, the same feature in one image can only be “paired”

with a feature in another image once. Furthermore, the

image-to-image feature comparison is computed bidirec-

tionally, with the lowest of the two directional scores

being used as the final matching score:

ScoreðI; JÞ ¼ minðscoreðI; JÞ; scoreðJ; IÞÞ ¼ ScoreðJ; IÞ
This removes bias that might otherwise result if the two

images differ greatly in their feature complexity (due to the

BBF approximation when computing feature distances),

and also ensures that the final scores are symmetric.

In practice we are interested in matching an image

I depicting an unknown manta ray against a set of labeled

images J to establish whether I shows one of the M manta

rays in J or whether it is a “new” (as-yet-unidentified)

ray. Hence, J is effectively partitioned into subsets Jm for

each manta ray m ∊ M, as there are likely to be multiple

images of most rays (i.e., each Jm usually contains more

than one image) in an ecological database. Our MM algo-

rithm exploits this fact by first computing the pairwise

(bidirectional, as above) comparisons between I and all

the elements of each set Jm. We then combine the result-

ing image-to-image scores for Jm by computing their

mean, and use this as the overall similarity score between

image I and manta ray m:

ScoreðI;MantamÞ ¼ meanðfScoreðI; JmÞgÞ
In our experiments we considered using the mean,

median, maximum, and minimum as the score combina-

tion criterion, but consistently achieved best results using

the mean.

We then sort these scores and output a ranked list of

manta rays in decreasing order of how well they match

the query. Consequently, the image I is then deemed to

be best matched to the manta ray m with the highest sim-

ilarity score, but by outputting a ranked list of results we

allow the user to make the final decision as to which

manta ray (if any) is the “correct” match. Figure 3 shows

two examples of this: in each case, an unknown manta

ray is used as the “query image” and the system displays

a ranked list of the best matching manta ray images from

a database (only the top three matches are shown in the

figure). In order to give the user some indication of how

reliable the system’s rankings are likely to be, it also com-

putes a “confidence score” based on the ratio of the

scores between the first and second ranked results:

confidence ¼ 1� ð2nd highest score)/(highest score)

A high confidence number is an indication that the

best matching image is significantly more similar to the

query than any other image. If the confidence is low, then

the user may need to inspect a larger number of matching

results to ascertain which (if any) of them actually

matches the query image.

Results

Quantitative and qualitative evaluation

The performance of the automated manta ray–matching

methods presented in this study was evaluated using the

images described in the section entitled Data sets. To

assess how effective our algorithms are for automatically

identifying images of manta rays, we iterate through all

the images in each data set and for every such image we

automatically match it (the “query image”) against all the

other images in that data set. As our data sets contain at

least two different images (corresponding to separate

encounters) of every manta ray, we record the rank at

which our algorithm matches each query image against

the other images that show the same manta ray (as deter-

mined using the “mean score” criterion described above).

A perfect match would correspond to the correct

manta ray being returned as the top-ranked matching

result in every case. If the match is not perfect, then man-

ual inspection of results (see Fig. 3) still makes it fairly

straightforward to identify the correct manta ray as long

as it appears within the first few dozen results. In that

case the system is of clear value as an automated visual

identification tool. Even if several top-ranked images had

to be visually inspected, our system would substantially

reduce the manual effort currently required by ecologists

preforming exhaustive searches of entire databases (e.g.,

hundreds or thousands of individuals).

We therefore quantify the performance of different

algorithms by analyzing and plotting the cumulative dis-

tribution of retrieval ranks for all the images in our data

sets. Results on the complete data set of 720 manta ray

images are shown in Figure 4. The graph contrasts the

performance of six different matching algorithms:

(1) MM: This is our new “mantamatcher” algorithm

using SIFT features and the enhanced matching algo-

rithm detailed in the previous sections.
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(2) SIFT: This method also uses SIFT features, but with

default parameters and the standard SIFT matching

method (but not using homographies) as described

in Lowe (2004).

(3) SURF and ORB: These use SURF and ORB features,

respectively. Features are extracted using parameters

as described in the literature (Bay et al. 2006; Rublee

et al. 2011) and compared using “brute-force” matching

(i.e., not using the BBF speedup used for the MM

and SIFT methods) with the distance criterion being

the Euclidean norm.

(4) SURF enh. andORB enh.: These methods are customized

variants of the SURF andORBmethods described above.

They make use of the same features, but performance has

Figure 3. Example retrieval results (only top three candidate matches are shown).

100%

100

MM
SURF enh.
ORB enh.
SIFT

90%

90

80%
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70%

70

60%

60

50%

50

40%
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30%
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10
0%

0
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Figure 4. Graphs showing the cumulative

distribution of successful retrieval ranks using

different matching algorithms for all the images

in a data sets of 720 manta ray photos. The

graphs plot the cumulative proportion of

correctly retrieved images against the rank at

which such images are correctly matched by

each algorithm (see text for details).
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been enhanced by implementing a variant of our new

matching algorithm to match those features (the main

differences being that feature distances are computed

using the Hamming distance as implemented using Op-

enCV and are not weighted by features scale).

Figure 4 clearly shows that theMM algorithm outperforms

all the other methods. The default ORB method performs

poorly, as do the default SIFT and SURF approaches. How-

ever, the SURF enh. and ORB enh. methods work relatively

well, which again demonstrates the effectiveness of the new

matching algorithm introduced in this study.

In order to more precisely quantify and contrast these

performance differences, we also tabulate the cumulative

percentages for the number of images that are correctly

matched at different ranks. As Table 1 shows, MM

perfectly matches most of the 720 images at top rank,

whereas over three quarters are correctly matched within

the top 25 results and over 84% within the top 72 (corre-

sponding to 10% of the total number of images, which is

sometimes used as a performance metric in related research

publications). By contrast, the standard SIFT, SURF, and

ORB methods achieve <50% accuracy in the top 25 results.

Another approach to evaluation is to view visual identi-

fication as a classification problem and focus on the simi-

larity scores rather than the ranking distribution. A good

classifier needs to achieve high discriminability (decidability)

between images that belong to the same class (manta ray)

and those that do not, assigning high scores to the former

and relatively low scores to the latter. One common sta-

tistical tool for quantifying discriminability is Cohen’s D

coefficient, which we compute from the full distribution

of similarity scores for all subsets of images of the same

manta ray as opposed to all the other images:

d0 ¼ jl2 � l1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ðr22 þ r21Þ

q

where the two distributions are characterized by means l1
and l2 and standard deviations r1 and r2. When used as

a descriptive statistic to quantify effect size, a value of

d′ < 0.2 is usually regarded as low, whereas values of

d′ > 0.8 are considered high. Table 1 shows that our pro-

posed MM method yields a very high value of d′ = 1.34.

We next consider the impact of the automated image

enhancement steps described above. As the graph in

Figure 5 clearly shows, the automated noise removal and

contrast enhancement greatly improve matching perfor-

mance. Without them the performance of all of the algo-

rithms degrades badly, although the SURF enh. method is

somewhat less affected by this than the others.

Another factor we wish to analyze is database size and

composition. In practice it may be possible to restrict the

subset of the database that needs to be searched (either

manually or with help of an automated system) by

Table 1. Performance statistics of different matching algorithms for all the images in a data sets of 720 manta ray photos.

Algorithm

Cumulative proportion of correctly matched manta ray images by retrieval rank

Cohen’s DTop 1 (%) Top 10 (%) Top 25 (%) Top 50 (%) Top 72 (%) Top 100 (%)

MM 50.97 67.64 75.14 81.94 84.44 87.36 1.340

SURF enh. 46.94 63.06 69.58 76.11 80.83 85.00 0.896

ORB enh. 38.61 53.19 59.86 67.22 72.50 76.67 0.587

SURF 23.19 39.86 49.17 58.75 64.03 70.69 0.618

SIFT 20.42 35.97 47.22 57.64 64.72 72.08 0.727

ORB 11.53 21.53 29.17 41.39 49.17 57.36 0.365
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Figure 5. Graphs of matching accuracy using

the same methodology and data set as in

Figure 4, but without using any of the

proposed image enhancements.
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utilizing other factors such as the sex, species, or other

physical attributes (e.g., size or bite mark scars caused by

sharks) of an unknown manta ray.

Figure 6 show rank-based matching performance on a sub-

set consisting of 139 photos of giant manta rays, and Figure 7

shows performance on the remaining 581 reef manta ray

images in our data set. As before, the MM algorithm outper-

forms all the other methods. As expected, performance on the

smaller giant manta data set is significantly better.

Surprisingly, results on the reef manta ray images are less

accurate than on the full data set of 720 images. This may be

due to giant manta rays having more distinctive spot patterns,

or reef mantas having greater variability in markings.

We also evaluated the performance of our matching

method on images of subsets consisting of only male or

female reef manta rays, respectively. The sex of mature

mantas can be easily assessed by visual inspection of the

pelvic fin region in most cases, and ecological databases

of mantas often exhibit a female sex bias. There is also

some evidence for sexual segregation among manta rays

(Marshall and Bennett 2010). Table 2 shows cumulative

percentages for the number of images that are correctly

matched at different ranks using the MM algorithm, and

also the Cohen’s D coefficient. It can be seen that accuracy

for the set of giant mantas is substantially better than for

the set of male reef mantas, even though both sets con-

tain very similar numbers of images. Allowing for differ-

ences in data set size, there are no significant differences

in accuracy on the male-only and female-only data sets:

both have similar values of d′, and the cumulative retrie-

val achieved at a rank corresponding to 10% of the total

number of images is also similar (about 80%).

We have also qualitatively analyzed the matching

behavior of our algorithm in especially challenging cases.

Figure 8 shows some examples where some of the SIFT

features were matched incorrectly, but the manta rays

were still identified correctly. On the other hand, as

shows in Figure 9, our algorithm successfully copes with

a wide variation in viewing conditions, poses, lighting,

and noise. Images can in some cases be correctly matched

on the basis of a very small subset of their features.

Discussion

Utility of automated visual identification

As noted in Marshall and Pierce (2012) and Speed et al.

(2007), photographic identification has become an

important tool in the study of population ecology; to

assess biological variables such as size at maturity, gesta-

tion periods and reproductive periodicity, survivorship,

growth, and longevity; and to investigate aspects of

behavioral ecology including predation, social interac-

tions, group feeding, visits to cleaning stations, and

mating behavior.

Unlike human observers, automated matching tech-

niques are consistent, free from subjective bias, and unaf-

fected by fatigue. They allow researcher to harness much
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Figure 6. Graphs of matching accuracy on a

data set of 139 photos of giant manta rays.

Table 2. Performance statistics of the mantamatcher (MM) matching algorithm for different subsets of the set of 720 manta ray photos.

Image subset

Cumulative proportion of correctly matched manta ray images by retrieval rank

Cohen’s DTop 1 (%) Top 10 (%) Top 25 (%) Top 50 (%) Top 100 (%)

Giant mantas (139 images) 73.38 89.21 94.24 99.28 100.00 1.732

Reef mantas (581 images) 46.82 65.06 73.67 80.90 86.92 1.232

Male reef mantas (119 images) 57.14 82.35 89.08 99.16 100.00 1.394

Female reef mantas (457 images) 47.26 66.30 75.49 81.40 90.59 1.191
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larger data sets than can feasibly be processed manually

by enabling rapid automated identification of images with

far less user effort. This is especially important for collab-

orative efforts that seek to bring together data sets from

different research groups across the world: individual

researchers may be sufficiently familiar with their own

data, but large-scale global ecological data sets and the

desire to incorporate sightings submitted by nonexperts

clearly necessitate automated identification.

Collaborative research on population
ecology

The MM algorithm is being used as an important tool for

a new global ecological database of manta ray sightings.

Inspired by the success of the ECOCEAN4 Whale Shark

Photo-identification Library, we have created a website5

which will serve as a global repository and collaborative

tool for manta ray sightings. We are actively collating

manta ray images from Mozambique, South Africa, Aus-

tralia, Brazil, Ecuador, Thailand, Myanmar, Indonesia,

Palau, Japan, Mexico, Hawaii, the Maldives, Peru, and

New Zealand.

The website will serve as an important aid for research

into manta ray ecology and biology, and we believe that

the automated feature identification and matching

Figure 8. Examples of challenging matches

where some features are matched incorrectly.

Matched pairs of features are indicated by

green lines drawn between them. Lack of

visible high-contrast spot patterns, presence of

occlusions, and extreme image noise can result

in incorrect feature matches.
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Figure 7. Graphs of matching accuracy on a

data set of 581 photos of reef manta rays.

4http://www.whaleshark.org.
5http://www.mantamatcher.org.
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methods described in this study will significantly contri-

bute to its utility and efficacy. Moreover, increased auto-

mation will facilitate upload of photographic encounters

by “citizen scientists”, thereby improving the scope and

granularity of global sightings data and enhancing aware-

ness for conservation efforts among the wider public.

Summary

In this study we have described a new technique for auto-

mated identification of manta rays. Our method enhances

images to remove noise and improve contrast to ameliorate

the many problems affecting underwater photography. The

characteristic markings on the ventral surface area of manta

rays are then encoded through parameterized features, and

a novel image-to-image comparison algorithm is capable of

matching different images of the same ray. The method is

robust to changes in viewpoint, scale, lighting conditions,

pose, and occlusions. Unlike many other automated

matching techniques, our approach requires only minimal

user effort. In particular, users do not need to manually

identify reference points on the images or perform elabo-

rate image filtering in order to achieve good results. We

have shown that our MM method correctly identifies over

84% of manta rays within the top 10% of ranked results in

a data set of 720 manta ray images, with the majority of

rays being correctly identified in the top-ranked image.

Our method has been deployed as the matching algo-

rithm underlying a new global collaborative ecological

database of manta ray sightings. In doing so we have

demonstrated that modern pattern recognition techniques

are powerful tools for ecological research. The ability to

track individual animals can provide fine-grained infor-

mation for fisheries management, and visually assessable

parameters such as anthropogenic scarring provide vital

information for ecological impact assessments and action

planning.

Our research demonstrates that even species such as

manta rays, whose characteristic markings are often indis-

tinct and show substantial variability, can successfully be

matched using automated photographic identification

techniques, provided that the methods are sophisticated

enough to deal with the highly diffuse nature of the spot

patterns and the challenges of underwater imagery.

Future Work

Our ongoing research seeks to further refine our MM

method and investigate its suitability for other species.

We are working on using automated segmentation algo-

rithms to eliminate any need for manual image prepro-

cessing, and we are also investigating the use of ancillary

identifying information such as sex, maturity, color

morphism (melanism or leucism), or scars.

In order to facilitate greater involvement by “citizen

scientists”, we are planning to enable submission of

manta ray sightings by amateur divers, and we are work-

ing on using our feature extraction techniques to define

automated image fidelity assessments to maintain data

quality and further improve the resilience of our MM

algorithms in light of the large numbers of images we

aim to process in future.

Figure 9. Examples of correct matches. Matching is robust to changes in viewing conditions and presence of occlusions.
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