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ABSTRACT The outer membrane (OM) of Gram-negative bacteria poses a barrier to
antibiotic entry due to its high impermeability. Thus, there is an urgent need to
study the function and biogenesis of the OM. In Enterobacterales, an order of bacte-
ria with many pathogenic members, one of the components of the OM is enterobac-
terial common antigen (ECA). We have known of the presence of ECA on the cell
surface of Enterobacterales for many years, but its properties have only more re-
cently begun to be unraveled. ECA is a carbohydrate antigen built of repeating units
of three amino sugars, the structure of which is conserved throughout Enterobacte-
rales. There are three forms of ECA, two of which (ECAPG and ECALPS) are located on
the cell surface, while one (ECACYC) is located in the periplasm. Awareness of the im-
portance of ECA has increased due to studies of its function that show it plays a vi-
tal role in bacterial physiology and interaction with the environment. Here, we re-
view the discovery of ECA, the pathways for the biosynthesis of ECA, and the
interactions of its various forms. In addition, we consider the role of ECA in the host
immune response, as well as its potential roles in host-pathogen interaction. Further-
more, we explore recent work that offers insights into the cellular function of
ECA. This review provides a glimpse of the biological significance of this enig-
matic molecule.

KEYWORDS O-antigen, cross-reactivity, enterobacterial common antigen, outer
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Diverse environmental conditions on Earth (e.g., heat, pH, salinity, pressure, and
osmotic activity) immensely affect the function of the cell, necessitating adapta-

tion through structural modification. Gram-negative bacteria have an impermeable and
strengthened outer membrane (OM) that allows them to withstand stress brought
about by environmental factors, including other bacteria, antibiotics, and chemical
stresses. The cell envelope structure of Gram-negative bacteria consists of the inner
membrane, the periplasm containing the peptidoglycan cell wall, and the OM (1). The
lipids of the OM form a barrier that is impermeable to large hydrophilic and hydro-
phobic molecules (2). Lipopolysaccharide (LPS) facilitates the formation of this barrier
though (i) the high number of fatty acyl substituents per lipid molecule, which form a
gel-like structure enhancing the rigidity of membrane (3, 4), (ii) strong lateral interaction
between LPS molecules mediated by salt bridges with divalent cations (5), and (iii)
modification of LPS structure in response to different environmental conditions (6). For
example, in Salmonella, the PhoPQ two-component system causes antimicrobial pep-
tide resistance after induction by divalent cation starvation by activating PagP (7). PagP
facilitates the addition of palmitate chain to lipid A, altering the fluidity of the LPS
molecules in the OM (7).

OM proteins (OMPs) are integral membrane proteins present in the membranes of
Gram-negative bacteria, mitochondria, and chloroplasts. These proteins adopt a
�-barrel architecture arranged in the membrane in anti-parallel patterns (8). Some of
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these proteins (porins) can form pores in the OM (2). These OMPs regulate the
movement of small hydrophilic molecules across the outer membrane, such as nutri-
ents, water, ions, and some small hydrophilic antibiotics (2). In fact, in Escherichia coli,
�-lactam antibiotics, tetracyclines, chloramphenicol, and fluoroquinolones quickly dif-
fuse through OmpF (9–12). Specific porins can also transport amphipathic substrates.
For instance, transportation of long-chain fatty acid is facilitated by the lipid transporter
FadL (13). Beyond its role controlling the entry of molecules into the cell, the OM plays
a structural role, providing protection against mechanical and osmotic stresses (14, 15).

The Gram-negative OM is coated in highly variable molecules that can cause
immune activation, known as antigens. Bacteria are divided into serotypes based on
different antigen combinations (16). The three major types of antigens present on the
cell surface are O (somatic), K (capsular), and H (flagellar) (17, 18). These antigens can
play roles in motility (H-antigen), protection from a hostile environment (K-antigens
and O-antigen), interaction with the environment (K-antigens and O-antigen), and
increasing the ability of the OM to provide structural support to the cell (O-antigen) (15,
19–21). The outer leaflet of the OM is made mainly of lipopolysaccharide (LPS), which
consists of lipid-A, the core polysaccharide, and O-antigen (1). O-antigen is a highly
variable chain of carbohydrates and thus is serotype specific. K-antigens are the
capsule, a coat on the surface of bacteria outside the cell envelope. They generally
consist of high-molecular-weight polysaccharides with some exceptions (e.g., K-88 and
K-99 of E. coli, which are protein antigens) (22–24). The H-antigen is a protein antigen
based on flagellar structure (25). Enterobacterales is a bacterial order that is defined in
part by the presence of an antigen known as enterobacterial common antigen (ECA)
(26). ECA, a carbohydrate antigen, is located in the outer leaflet of the OM and in the
periplasm (27–30). Although Enterobacterales express various antigens (e.g., K, O, and H)
(31, 32), ECA is unique in that it is restricted to one order and in which it is invariant
(Fig. 1A) allowing cross-reactivity among the members of Enterobacterales (33).
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FIG 1 The structure of ECA. (A) The structure of the repeating unit (R) of ECA is made up of amino sugars
(G, N-acetylglucosamine; Ma; N-acetyl-D-mannosaminuronic acid; Gt, 4-acetamido-4,6-dideoxy-D-
galactose). (B) Structural differences between the three ECA forms. ECAPG, phospholipid-linked ECA;
ECALPS, lipopolysaccharide-linked ECA; ECACYC, cyclic form of ECA. In the ECAPG structure, R1 (-CH2OH
group), and R2 (-CHOH group) indicate acyl chains. In the ECALPS structure, “core” represents the core
polysaccharide of LPS, which is attached to lipid A, a hydrophobic lipid section that anchors LPS to the
outer membrane. In the core region, the common tetrasaccharide structure is substituted for R1
(�-glucose) and R4 (�-galactose) compared to the K-12 core. n, a variable number of ECA repeating units.
ECACYC generally consists of 4 to 6 repeating units (R) depending on the species. For example, in E. coli,
4 repeating units are present.
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Calvin M. Kunin and colleagues first discovered ECA in 1962 (33). The discovery of
ECA was a result of studying strains of E. coli causing urinary tract infections and
observing the reaction between rabbit antisera generated against the strains and 102
homologous and heterologous E. coli strains. The authors used a standard procedure
(passive hemagglutination) to detect O-antigen found in the LPS of the E. coli (33).
While carrying out these experiments, they realized there was a cross-reacting speci-
ficity between the antisera and many strains of E. coli. Although various antisera
demonstrated differing reactivities, anti-E. coli O14 sera reacted with a remarkable
range of strains: anti-O14 serum had antibodies recognizing an antigen common to
various E. coli strains. However, this antigen was not the LPS-attached O-antigen that
Kunin and colleagues had been investigating (33). Furthermore, this cross-reacting
antigen was also observed in most other enteric bacteria (33, 34). The antigen was,
therefore, named enterobacterial common antigen (ECA) (35).

After the discovery of ECA, research was conducted to ascertain the dissemination
of the new antigen among species, eventually aided by a monoclonal ECA antibody
that enhanced ECA detection (36). ECA is present in wild-type strains of Enterobacterales
and absent in both other Gram-negative bacteria and Gram-positive bacteria (Table 1).
More studies need to be carried out on the unusual presence of enterobacterial
common antigen in Aeromonas hydrophila 209A, as it is not present in the other strains
belonging to the same species (37) and may be the result of horizontal gene transfer.
Few exceptions to the ubiquitous expression of ECA in Enterobacterales exist. These
species, which appear to have lost ECA expression, are the endosymbiotic members of
Enterobacterales, which have a reduced genome size due to the loss of many genes
rendered unnecessary by their obligate symbiotic life style (38, 39).

Antigens that are highly variable between strains of bacteria have served as the
foundation for serological naming and grouping. For example, the Kauffmann-Perch
scheme is used for Proteus, while the Kauffmann-White-Le Minor scheme is used for
Salmonella (40–42). However, the importance of common antigens has often been
overlooked. In recent times, the study of these antigens has increased given their
potential significance in vaccine development, determination of phylogeny, and diag-
nosis. Furthermore, the invariance of common antigens suggests that they have
important functions that do not allow for variability. ECA is a perfect example of an
antigen that has undergone a recent resurgence of research despite its discovery many
years ago. In this review, we explore the history of ECA, its interaction with the immune
system, its isolation and biosynthesis, and finally its biological significance.

THE IMMUNOGENICITY OF ECA
Interactions of ECA with the immune response. ECA has a complex interaction

with the immune response. Initial studies elucidated that, while the antigen occurred
across Enterobacterales, just a few sera had antibodies to ECA, for example, E. coli O14
(33, 43). Thus, all strains possessed antigenic ECA but very few possessed immunogenic
ECA. The variance in immunogenicity of the strains studied could not be accounted for
by differences in the amounts of ECA expressed (35, 44, 45). Therefore, something else
must differentiate these types of ECAs. The elucidation of this difference came by
separating ECA extracts with ethanol, in which LPS is not soluble, exposing a dissimi-
larity in the immunogenic types: an ethanol-insoluble immunogenic form and an
ethanol-soluble nonimmunogenic form. The ethanol-insoluble form is not separable
from LPS and signifies the immunogenic form of the enterobacterial common antigen
(46). This form of ECA has ECA bound to the LPS core (ECALPS) (Fig. 1B). The ethanol-
soluble form of ECA is not associated with LPS and, instead, consists of the ECA
polysaccharide chain covalently linked to diacylglycerol through phosphodiester link-
age (ECAPG) (47). There is a third form of ECA, cyclic ECA (ECACYC); however, this
molecule is found in the periplasm and is not exposed to the environment (48, 49).

Still, why some strains made immunogenic ECALPS while others did not remained
unclear, in part because of the classification of the traditional ECA immunogenic strain,
E. coli O14, as an O-antigen-positive strain (50). In fact, the strain is an irregular type of
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TABLE 1 Distribution of ECA in Gram-negative bacteria

Family ECA positive ECA negative

Enterobacterales (194)
Budviciaceae Leminorella

Pragia
Enterobacteriaceae Atlantibacter “Candidatus”

Buttiauxella
Cedecea
Citrobacter
Cronobacter
Enterobacter
Escherichia
Gibbsiella
Izhakiella
Klebsiella
Kluyvera
Kosakonia
Leclercia
Lelliottia
Limnobaculum
Metakosakonia
Pluralibacter
Raoultella
Salmonella
Shigella
Shimwellia

Erwiniaceae Erwinia Buchnera, Wigglesworthia
Mixta
Pantoea
Tatumella

Hafniaceae Edwardsiella
Hafnia
Obesumbacterium

Morganellaceae Arsenophonus “Candidatus Arsenophonus
lipoptenae”

Morganella
Photorhabdus
Proteus
Providencia
Xenorhabdus

Pectobacteriaceae Brenneria
Dickeya
Lonsdalea
Pectobacterium
Sodalis

Yersiniaceae “Candidatus Fukatsuia”
Chania
Rahnella
Serratia Serratia symbiotica
Yersinia

Unclassified Phytobacter
Plesiomonas

Vibrionales
Vibrionaceae Aeromonas hydrophila 209A Vibrio

Other Gram-negative bacteria
Acidiferrobacter
Actinobacillus
Aeromonas
Alcaligenes
Bordetella
Campylobacter
Cardiobacterium
Chromatiaceae
Chromobacterium
Colwellia

(Continued on next page)
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the rough R4 strain disguised by the production of K7 capsular antigen (51). In
combination with the production of immunogenic ECALPS by the R1, R4, and K-12
strains with rough LPS (43), this clarified that ECALPS is produced in significant amounts
only by rough strains that do not make O-antigen. In nonimmunogenic strains, includ-
ing O-antigen-producing smooth strains and rough strains with incomplete LPS cores
or mutations in waaL, the O-antigen ligase, ethanol-soluble ECAPG is the predominant
form of ECA on the cell surface (35). While some early studies suggested purified ECAPG

could induce an antibody response (52), this was only true in strains that also produced
significant amounts of ECALPS (53), suggesting that the antibody production may have
resulted from contaminating ECALPS.

With our current knowledge of immunology, it can now be appreciated how the
differences in structure between ECALPS and ECAPG would lead to differences in their
immunogenicity. Antibody production is not efficiently stimulated without innate
immune signaling (54). ECALPS possesses an intrinsic adjuvant to stimulate antibody
production, as LPS is recognized by toll-like receptor 4 (TLR4), leading to the production
of proinflammatory cytokines (55). Nevertheless, as a carbohydrate antigen, ECALPS

mainly stimulates the production of IgM low-affinity, high-avidity antibodies (56). In
contrast, the production of high-affinity IgG antibodies requires a protein antigen (57).
As a proof of concept of the potential immunogenicity of ECAPG, purified ECAPG that
contains proteins in addition to ECA can generate an immune response (52). Likewise,
a conjugate of ECA and tetanus toxoid, a classic adjuvant, produces ECA antibodies
mainly of the IgG isoform (56). Many of the initial studies on ECA immunogenicity were
carried out with heat-killed bacteria (50). The difference in immunogenicity of ECALPS

and ECAPG is less in live bacteria (50), likely because of the many pathogen-associated
molecular patterns (PAMPs) linked with an active infection and an increased production
of proinflammatory cytokines (58).

Prevalence of ECA antibodies. Many early studies have reported a low titer of ECA
antibodies present in human serum (33, 59, 60), with the caveat that these studies were
conducted before the availability of an ECA knockout strain and so may report the
combined titer of both ECA antibodies and antibodies to protein antigens shared
among Enterobacterales (e.g., OmpA). These antibodies have been found in both
healthy donors and, at higher levels, in patients with chronic urinary tract infections
(61). The titers of ECA antibodies present in the blood have been reported to increase
with age (62). A maternal vaccination study reported that the cord blood of a child has
lower amounts of ECA antibodies than maternal serum, showing some low level of
maternal transfer (61). In other mammals such as cats, dogs, horses, pigs, and mice, ECA
antibodies have been reported in blood sera with the exception of rabbits, where no
ECA antibody is found. The likely reason for this is due to the high colonization of
rabbits by Gram-positive bacteria and low prevalence of E. coli (60). Among several
strains of mice, C57B1/6HA mice have ample ECA antibody titers after responding to
ECALPS immunogens (63–65).

TABLE 1 (Continued)

Family ECA positive ECA negative

Eikenella
Ferrimonas
Flavobacterium
Gardnerella
Haemophilus
Kingella
Moraxella
Moritella
Shewanella
Nitrobacteriaceae
Pasteurella
Pseudomonas
Rhodospirillaceae
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Estimates of ECA antibody prevalence in various types of infections have indicated
variable titers of ECA antibodies (35). In a few diseases such as enteritis, bacteremia, and
acute urinary tract infections, low titers of ECA antibodies were detected. However,
higher ECA antibody titers were found in shigellosis (61, 66), peritonitis (53, 67), and
chronic urinary tract infections (61, 68, 69). Surprisingly consistent levels of ECA
antibodies were observed in a rabbit pyelonephritis model immunized by ECALPS,
irrespective of the route of infection and diagnosis (70–72).

The presence of ECA antibodies has been detected in human serum after infection
from pathogenic bacteria such as E. coli, Yersinia enterocolitica O3 strains (26, 73–75),
and in humans suffering from arthritis associated with Proteus mirabilis strains (76). The
ECA immunogenicity is mainly due to ECALPS (26), with exception to the Rc mutant
R4/O28 of P. mirabilis in which ECAPG provides immunogenicity. Therefore, the ECA can
be used as a tool for serodetection in various infections caused by the members of the
Enterobacterales order (77).

Role of ECA antibodies in host-pathogen interactions. Several studies have
attempted to determine whether ECA antibodies play a role, either protective or
pathogenic, in various disease contexts. Under experimental conditions, an appreciable
amount of ECA antibodies was found in mice immunized by E. coli O-antigen-negative
strains and later challenged by pathogenic bacteria (63–65, 78), except in Swiss albino
mice (65). However, protection from these immunizations was partial and temporary.
The same partial protection was also observed in mice by passive immunization with
serum from rabbits inoculated with E. coli O14 (63). Furthermore, a clinical study has
demonstrated that passive immunization with a human monoclonal ECA antibody had
no protective effect during sepsis caused by Enterobacterales (79).

Bridge et al. (80) reported that, in a mouse model of salmonellosis, infection with the
ΔwecA strain of Salmonella enterica serovar Typhimurium SL1344 via the oral or
intraperitoneal route provided cross-protection against this infection by the production
of IgG antibodies. In addition, Huang et al. (81) reported cross-protection against
heterologous Salmonella strains in mice by downregulating the expression of O-antigen
(rmlB [rfbB]) and ECA (rmlBECA [rffG]) biosynthesis genes, allowing production of protein-
recognizing antibodies. These studies suggest that, at least for Salmonella, ECA anti-
bodies may not be protective and that ECA may “distract” the immune system from
more efficacious targets. It should be mentioned that some studies have correlated the
presence of antibodies to Enterobacterales, including to ECA, with rheumatoid arthritis
(82–84); however, the causal relationships leading to the antibody production remains
unclear.

FORMS AND BIOSYNTHESIS OF ECA

Over the years, several researchers have developed methods for isolating ECA
(Table 2). However, the chemical composition of the antigen was initially difficult to
identify, due in part to the existence of ECA in three forms (26) (Fig. 1B). These forms
are ECA linked to diacylglycerol through phosphodiester linkage (ECAPG), LPS-linked
ECA (ECALPS), and periplasmic cyclized ECA (ECACYC) (43, 47, 48). Observations made by
Kunin, Neter, and Suzuki initially demonstrated that ECA occurred in two forms in the
immunogenic E. coli O14. One of the forms was soluble in aqueous ethanol and was
able to be separated from the LPS (ECAPG), while the other did not dissolve in ethanol
and could not be separated from LPS (ECALPS) (35, 37). ECAPG is the predominant
surface-exposed form of ECA, while ECALPS, the immunogenic form that allows anti-
body production, is predominantly found in rough mutants that do not make
O-antigen (35). Later studies identified a third form of ECA, ECACYC (48), which is now
thought to be present in all species that make ECA (48, 85–88). Initial studies done by
Männel and Mayer in 1978 (89) reported that ECA consists of N-acetyl-D-glucosamine
(GlcNAc) and N-acetyl-D-mannosaminuronic acid (ManNAcA). But in 1983, another
component of ECA, 4-acetamido-4,6-dideoxy-D-galactose (Fuc4NAc), was identified in
Shigella by Lugowski et al. (56), demonstrating that ECA consists of a trisaccharide
repeating unit (Fig. 1A).
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TABLE 2 Methods used for study of ECA

Methods useda

Representative species and
strain(s) Type of ECA

Representative
reference(s)

Representative purification methods
ECALPS

Hot phenol-water extraction (water phase); dialysis;
90% ethanol precipitation (pellet); anion exchange
chromatography

Escherichia coli O1, O14, O55;
Shigella flexneri

ECALPS 52

LPS extraction and purification for analysis of ECALPS

and other LPS forms
Yersinia enterocolitica O:3;

Shigella sonnei phase II
ECALPS with LPS 141, 195

ECAPG

Lysis in boiling PBS (supernatant); 85% ethanol
precipitation (supernatant)

Salmonella enterica serovar
Typhimurium, Salmonella
choleraesuis, Salmonella
enteritidis, S. flexneri, E. coli
O111, O55, O6, O75

ECAPG 44, 72

Bacteria killed and dried with acetone; room
temperature water extraction; picric acid
precipitation (supernatant); acetone precipitation
(pellet); Sephadex G200 column chromatography;
preparative gel electrophoresis

Salmonella typhosa O901 ECAPG 196

Hot phenol-water extraction (water phase); phenol-
chloroform-petroleum ether extraction (phenol
phase); ultracentrifugation (supernatant); anion
exchange chromatography

S. Montevideo SH94, S.
Typhimurium, S. sonnei
phase I, Plesiomonas
shigelloides

ECAPG 81, 85, 89, 149,
197

ECACYC

Sonication in EDTA and lysozyme; boiling water
extraction; 85% ethanol precipitation (supernatant);
acetone precipitation; column chromatography on
silica gel and Sephadex LH-20

S. sonnei ECACYC 48, 56, 140

Cold trichloroacetic acid extraction; Sephadex G-50
chromatography; anion exchange chromatography

Yersinia pestis EV ECACYC 86

Sonication in MgSO4; ultracentrifugation (supernatant);
75% ethanol precipitation (supernatant); drying and
resuspension in ddH2O; desalting with ZipTipC18

E. coli K-12 ECACYC 88, 111, 145

Hot phenol-water extraction (water phase); DNase,
RNase, and protease treatment; ultracentrifugation
(supernatant); size exclusion chromatography;
Biogel P-100 chromatography

E. coli O157:H� ECACYC (no O-acetylation) 198

Common detection methods
Passive HA; detection of antigen (whole cell, cell lysates,

purified) by coating erythrocytes and assaying
agglutination caused by reacting antibodies

E. coli O6, O75, OS:K27, K-12; S.
Typhimurium TV149 (Ra); S.
Montevideo SH94 (S); S.
sonnei; P. shigelloides;
Plesiomonas rettgeri

ECALPS; ECAPG; ECACYC;
O-acetylation required
for strong reactivity of
serum with ECA

72, 85, 88, 89,
140, 197,
199

HA inhibition; detection by supernatant antigen
prevention of agglutination of antigen-coated
erythrocytes in the presence of antigen-specific
antibody

E. coli O14, O6, O75, K-12; S.
Typhimurium TV149 (Ra); S.
Montevideo SH94 (S); S.
sonnei

ECALPS; ECAPG; ECACYC;
O-acetylation required
for strong reactivity of
serum with ECA

52, 72, 89, 111,
140, 199,
200

Immunodiffusion precipitation; identifies antigens after
gel electrophoresis through precipitation caused by
reaction with antibodies

S. typhosa O901; S. Montevideo
SH94 (S); S. sonnei

ECALPS; ECAPG 89, 140, 196

ELISA; quantification of antigens based on their reaction
with antibodies

S. sonnei; S. Montevideo; P.
shigelloides; E. coli OS:K27�,
K-12; P. rettgeri

ECALPS; ECAPG 85, 140, 197

Immunoblot; including SDS-PAGE or dot blot followed
by immunoblot analysis

S. Montevideo SH94; S.
Typhimurium; E. coli R1, R4,
OS:K27�, K-12; S. sonnei; P.
shigelloides; P. rettgeri; Y.
enterocolitica O:3

ECALPS; ECAPG 81, 141, 145,
197, 201

LC; including liquid-gas chromatography, HPLC, reverse-
phase HPLC

S. sonnei; Y. pestis; E. coli K-12 ECALPS; ECAPG; ECACYC 56, 86–88, 140

(Continued on next page)
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Biosynthesis of the ECA polymer. The synthesis of ECA is intricate, involving
several phases (Fig. 2). The genes necessary for many steps in the synthesis of ECA are
located within an operon known as the wec operon. The wec operon begins at position
85.4 centisomes on the E. coli K-12 chromosome (90), and the functions of each gene
of the operon have been analyzed (90–98).

As for many other extracytoplasmic glycans (99), the assembly of the ECA trisac-
charide repeat unit is carried out on an isoprenoid lipid carrier, undecaprenyl-
phosphate (Und-P), a 55-carbon molecule made of isoprenoid units (93, 100–102). The
assembly occurs on the inner side of the plasma membrane (103–107). The first step
involves the formation of GlcNAc-pyrophosphoryl-undecaprenol, which is also known
as lipid IECA (108). This step uses UDP-GlcNAc as a substrate to attach GlcNAc-1-
phosphate to Und-P and is catalyzed by WecA (93, 101, 102). In silico predictions,

TABLE 2 (Continued)

Methods useda

Representative species and
strain(s) Type of ECA

Representative
reference(s)

NMR spectroscopy; including 1H, 13C, and 31P S. sonnei; P. shigelloides; Y.
pestis; S. Typhimurium LT2; E.
coli K-12, O157:H

ECALPS; ECAPG; ECACYC 56, 85–87, 149,
195, 198

MS; including gas-LC-MS, gas chromatography-MS,
matrix-assisted laser desorption–ionization time of
flight

P. shigelloides; E. coli K-12,
O157:H�; S. sonnei

ECALPS; ECAPG; ECACYC 85, 88, 145,
195, 198

addH2O, double-distilled water; ELISA, enzyme-linked immunosorbent assay; HA, hemagglutination; HPLC, high-pressure liquid chromatography; LC, liquid
chromatography; MS, mass spectroscopy; PBS, phosphate-buffered saline.

FIG 2 Schematic representation of ECA biogenesis in E. coli. ECA biogenesis begins with synthesis of amino sugars and their attachment to an
isoprenoid carrier (Und-P). After a complete subunit is made by series of enzymes namely, WecA, WecB, WecC, WecD, WecE, WecF, WecG, RmlAECA,
and RmlBECA, the precursor is flipped across the inner membrane by WzxE, and the subunits are polymerized on the isoprenoid carrier by WzyE
with the chain length controlled by WzzE. Three forms of ECA are made from the polymerized subunits: ECAPG, attached to diacylglycerol through
phosphodiester linkage and surface exposed; ECACYC, which is periplasmic; and ECALPS, attached to LPS and surface exposed. This figure is
adapted and modified from Mitchell et al. (145).
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cysteine accessibility experiments, and fusion-protein expression experiments have
demonstrated that WecA has 11 transmembrane segments, with the N terminus in the
periplasm and the C terminus in the cytoplasm (109, 110). Furthermore, mutational
studies have shown that several conserved aspartate residues in cytoplasmic loops 2
and 3 are important for WecA catalytic activity and divalent cation binding (110).
Fluorescence microscopy for green fluorescent protein (GFP)-tagged WecA revealed
that it is localized to punctate regions on the cell surface (110). The punctate localiza-
tion of WecA suggests that ECA and/or O-antigen biosynthesis is localized to discrete
cellular regions. The GlcNAc residue of ECA is nonstoichiometrically O-acetylated by
WecH, an inner membrane O-acetylase (111).

WecB and WecC are responsible for synthesizing UDP-ManNAcA from UDP-GlcNAc
(103, 112, 113). Specifically, WecB (UDP-N-acetylglucosamine 2-epimerase) reversibly
epimerizes at carbon position 2 between UDP-GlcNAc and UDP-N-acetylmannosamine
(112, 113). Campbell et al. (114) solved the structure of WecB at a 2.4-Å resolution. This
homodimeric enzyme is comprised of two similar sandwich domains with the active
site located in the deep cleft at the domain interface. Several basic residues in the active
site may have a role in proton transfer at the C-2 position or stabilization of the
oxy-carbonium ions in the transition state (114). Residues in the active site have been
found to be important for allosteric regulation of WecB as well as for binding and
catalysis (115). WecC oxidizes UDP-N-acetylmannosamine in the presence of NAD� to
form UDP-ManNAcA (116). The UDP-ManNAcA is the substrate to attach ManNAcA to
the lipid IECA, a reaction carried out by WecG (101, 117). This process results in
ManNAcA-GlcNAc-pyrophosphoryl-undecaprenol, also known as lipid IIECA.

RmlAECA (RffH), RmlBECA (RffG), WecE, and WecD are responsible for synthesizing
dTDP-Fuc4NAc from glucose-1-phosphate (103, 118, 119). The first reaction, carried out
by RmlAECA (dTDP-glucose pyrophosphorylase 2), forms dTDP-glucose from glucose-1-
phosphate, dTTP, and H� (118, 120). Sivaraman et al. (120) solved the RmlAECA crystal
structure in the presence of dTTP and Mg2� ions at a 2.6-Å resolution. This enzyme is
tetrameric with each monomer composed of an �/� fold with nucleotide-binding and
sugar-binding domains. The active site was identified at the interface of two domains
(120).

TDP-glucose acts as a substrate for second enzyme, RmlBECA (dTDP-glucose 4,6-
dehydratase 2). RmlBECA converts dTDP-glucose to dTDP-4-keto-6-deoxy-D-glucose.
This second reaction is a complex reaction that involves dehydrogenation, dehydration,
and rereduction in the presence of cofactor NAD� (121). Several active-site residues
important for the function of RmlBECA have been identified based on similarity to
UDP-galactose-4-epimerase and mutational analysis (122, 123).

The third reaction is catalyzed by WecE (dTDP-4-dehydro-6-deoxy-D-glucose
transaminase), which converts dTDP-4-keto-6-deoxy-D-glucose to dTDP-4-amino-4,6-
dideoxy-a-D-galactose (dTDP-Fuc4N) using glutamate as the amino donor (103, 124). A
WecE crystal structure has been solved at a resolution of 2.24 Å (125). The structure
indicates a homodimeric protein; however, a previous gel filtration experiment sug-
gested a homotetrameric conformation (124). As is common for sugar aminotrans-
ferases, the WecE active site contains a conserved lysine that binds the catalytic
cofactor, 5=-pyridoxal phosphate, an aspartate important for cofactor activation, and a
conserved glutamine (125).

The last reaction is catalyzed by WecD (dTDP-fucosamine acetyltransferase) which
uses acetyl coenzyme A (acetyl-CoA) as a cofactor to form dTDP-Fuc4NAc from dTDP-
Fuc4N (103, 126). WecD has been crystalized at a resolution of 1.95 Å in its apo form and
1.66 Å in complex with acetyl-CoA (126). The structure shows a dimeric protein with
each monomer adopting a GCN5-related N-acetyltransferase fold. WecF uses dTDP-
Fuc4NAc to transfer Fuc4NAc to lipid IIECA, forming Fuc4NAc-ManNAcA-GlcNAc-
pyrophosphoryl-undecaprenol (lipid IIIECA) (103).

The synthesis of lipid IIIECA occurs on the inner leaflet of the cytoplasmic membrane
facing the cytosol (103); however, polymerization of the trisaccharide repeat unit to
form polysaccharide chains occurs on the outer leaflet of the cytoplasmic membrane
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(127, 128). The flipping of lipid IIIECA to the periplasmic face of the membrane is
mediated by a “flippase,” WzxE (127, 128). WzxE is a member of the polysaccharide-
specific transporter family of proteins, which flip polysaccharides, including some
O-antigens and capsular polysaccharides, across the inner membrane (IM) (128, 129).
After translocation across the membrane, the ECA chain is polymerized by WzyE. The
final chain length of the ECA polymer is determined by WzzE, the chain length regulator
(91). These steps result in the formation of an ECA polymer attached to the isoprenoid
carrier (Fig. 2).

Several studies have offered insights into the mechanism through which WzzE
might control the chain length of ECA. Genetic evidence and cross-linking data support
the notion that the flippase, polymerase, and chain length regulator work together as
a complex (130, 131). Several structural studies have been performed with WzzE and
other members of the class 1 polysaccharide copolymerase family (PCP-1) (132). A
crystal structure of the periplasmic domain of WzzE, solved at 2.4 Å, revealed a
bell-shaped homo-octameric structure (133); however, reports have suggested various
oligomeric states for other PCP-1 family members depending on whether full-length
protein was used and the method of analysis (134–137).

This structural inconsistent may be due to the lack of interactions with other
complex members (i.e., WzyE). However, recent studies have again suggested octameric
structure for both WzzE and WzzB (an E. coli O-antigen PCP-1) (136). The most recent
structural data for PCP-1 proteins suggest a mechanism for PCP-1 chain length regu-
lation where polymerization begins when the polymerase and PCP-1 form a complex
with the growing polysaccharide chain wrapping either over the surface or through
the cavity of the PCP-1 (137). The polymerization could then be terminated either when
the PCP-1 and polymerase disassociate (a “stop-watch” mechanism) or when the
polysaccharide-binding capacity of the PCP-1 is reached (a “molecular ruler” mecha-
nism) (138–140).

Synthesis of the three forms of ECA. The three forms of ECA are made from the
ECA polymer. ECAPG is the dominant membrane-associated form of ECA and constitutes
about 0.2% of the cellular dry weight of E. coli K-12 (26, 76, 140). This form is present
in all Enterobacterales (26). The polysaccharide chain is transferred from the isoprenoid
carrier to an unidentified lipid to form ECA linked to diacylglycerol through phosphodi-
ester linkage (ECAPG) (47). In this molecule, ECA is the head group of the phospholipid
(47). The newly synthesized ECAPG is then translocated to the outer membrane (27, 29).
The genes and mechanisms involved in the synthesis and translocation of ECAPG

remain unknown (87). ECALPS is synthesized by transferring the linear ECA polysaccha-
ride chain to the core oligosaccharide of LPS (26, 46). This step is catalyzed by WaaL,
which is also responsible for attaching O-antigen to the core of LPS (43, 51). However,
data suggest that the method for attaching ECA to LPS in Yersinia enterocolitica may be
different, allowing ECA and O-antigen to coexist (141). The last form of ECA, ECACYC, is
a cyclic molecule consisting of polymerized ECA trisaccharide repeat units, and it is
water soluble (26, 48). The ECACYC is localized in the periplasm (88). This polymer has
a variable number of repeat units (4–6) depending on the species (91), and the chain
length regulator, WzzE, is necessary for its synthesis (48, 87, 88). A cyclase has not been
identified. In-depth structural analysis by crystallography, nuclear magnetic resonance
(NMR), and molecular dynamics have suggested that ECACYC can exist in two three-
dimensional conformations (142–144). In contrast to ECACYC, ECAPG and ECALPS consist
of 1 to 14 repeat units, with a modal value of 5 to 7 units in E. coli K-12 (91). In addition,
different modal chain lengths have been observed depending on the growth temper-
ature (145).

Interactions with other biosynthetic pathways. The use of isoprenoid carriers,
such as Und-P, for the synthesis of extracytoplasmic glycans is highly conserved across
the domains of life (99, 146, 147). Furthermore, these carriers are often utilized for the
synthesis of multiple glycans in the same species. For instance, in E. coli, Und-P is used
for the production of ECA, O-antigen, peptidoglycan, and the colanic acid capsule (43,
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148–151). Thus, Und-P is a universal lipid carrier required for the synthesis of numerous
glycan polymers (152), and this can lead to complex interactions between biosynthetic
pathways.

Disruption of one Und-P pathway may lead to indirect consequences on other
glycans by altering the amount of Und-P and other precursors available for their
synthesis. For example, obstructing the O-antigen pathway in E. coli compromises
peptidoglycan biosynthesis by sequestering Und-P (153). In relation to ECA, it was first
observed that disruption of later steps in ECA biosynthesis that lead to the accumula-
tion of lipid IIECA causes detergent sensitivity (154) and bile salt sensitivity (155). It was
then found that these mutations also lead to the activation of extracytoplasmic stress
responses, including Cpx, �E, and Rcs (156–158). Interestingly, in E. coli and Salmonella
enterica, these stress responses are only activated with mutations that cause lipid IIECA

accumulation (147, 156), but in Serratia marcescens, Rcs activation has been reported
even in strains with mutations early in ECA biosynthesis (158). The link of detergent
sensitivity and stress response activation to defects in peptidoglycan biosynthesis was
conclusively established by the observation that mutations leading to the accumulation
of lipid IIECA cause changes in cell shape due to sequestering of Und-P (159). While the
accumulation of lipid IIECA is deleterious to the cell, in E. coli, the accumulation of lipid
IIIECA has been shown to be lethal (88, 128). This has been observed with both loss of
WzyE, the ECA polymerase, and loss of the capacity to flip lipid IIIECA across the inner
membrane (see below) (88, 128). Avoiding lipid IIIECA accumulation by disrupting an
earlier step in ECA biosynthesis prevents this lethality (88).

The ECA and O-antigen biosynthesis pathways are homologous in Enterobacterales.
All members of Enterobacterales utilize the wec locus for the biosynthesis of ECA (102,
160). However, many Enterobacterales with GlcNAc as their first O-antigen residue (e.g.,
Salmonella enterica serovar Minnesota [161], Salmonella enterica serovar Montevideo
[162], and E. coli [43]) also utilize wecA (rfe), the first gene in ECA biosynthesis, for the
production of O-antigen chains (163). Therefore, disruptions of wecA result in loss of
both O-antigen and ECA biosynthesis (43, 164). In addition, the functions of RmlAECA

and RmlBECA, which function in the synthesis of dTDP-Fuc4NAc for ECA biosynthesis,
are at least partially redundant with RmlA and RmlB, respectively, two enzymes
involved in the synthesis of dTDP-L-rhamnose for O-antigen biosynthesis (118).

The absence of all Wzx family flippases (WzxO16, WzxC, and WzxE) in E. coli K-12 leads
to a lethal accumulation of lipid IIIECA, which can be prevented by the expression of any
of the flippases or by prevention of ECA synthesis at an earlier step (88, 128). However,
with wild-type expression of wzxO16 and wzxC, deletion of wzxE is not lethal, and
approximately wild-type levels of ECACYC are produced (88). These data can be ex-
plained by the complex specificity of Wzx family flippases, which has recently been
thoroughly reviewed (165). Recent work from Liu et al. (166) suggests “structure-specific
triggering,” where flipping is triggered by recognition of specific structural element(s)
and other “incorrect” O-antigens may trigger flipping at low frequency when the
“correct” substrate is absent (166).

Under normal conditions, the expression of Wzx flippases is low (167), and these
flippases show specificity to their canonical substrates (166, 168–172). With various Wzx
proteins, the specificity that triggers flipping has been found to be the first sugar
residue attached to the Und-PP carrier (168, 169), the presence of terminal side branch
residues (170, 171), or the identity or linkage of the terminal residue of the oligosac-
charide (166, 171, 172). In the absence of their canonical substrate, the flippases can
transport other Und-PP-linked oligosaccharides with various degrees of efficiency
depending on their structural similarity, and this transport can be increased by over-
expression (166, 170, 171). Thus, in E. coli K-12, which is O-antigen negative but would
produce O-antigen with an initial GlcNAc and which does not produce colanic acid
unless stressed, the O-antigen and colanic acid Wzx proteins can be utilized with
enough efficiency by ECA to prevent a lethal accumulation of lipid IIIECA and to produce
a measurable accumulation of ECA (88), although the process may be inefficient.
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Finally, WaaL, the O-antigen ligase, is responsible for attaching both O-antigen and
ECA to LPS (43). Thus, the level of ECALPS greatly depends on the presence or absence
of O-antigen, with very little ECALPS produced in O-antigen plus strains in E. coli (35).
However, Yersinia enterocolitica and Proteus mirabilis produce significant amounts of
ECALPS even in the presence of O-antigen (76, 105). Thus, the interactions between ECA
biosynthesis, O-antigen, and peptidoglycan biosynthesis pathways are highly complex.
One consequence of these complex interactions is that it confounds the interpretation
of high-throughput genetic screens identifying functions of genes in ECA biosynthesis
(173–176).

BIOLOGICAL SIGNIFICANCE OF ECA

The order Enterobacterales contains many pathogens important to living organisms,
including human beings. Early studies showed that when bacteria are subcultured for
prolonged periods under laboratory conditions, the capability to synthesize O-chains
diminishes, but there are no effects on the stability of ECA (37). Thus, ECA must have
a vital role in Enterobacterales (Table 3). However, efforts to clarify the specific biological
role of ECA for the enterobacterial cell have failed, partially because of the many
interactions between the O-antigen, peptidoglycan (PG), and ECA biosynthesis path-
ways (43, 144, 156–159). Due to this, very few unambiguously assigned functions have
been ascribed to ECA.

There has been no difference observed in both the autolysis and the viability in cells
having ECA and their counterparts lacking the antigen (177). Barua et al. (178) have
shown in the Shiga-toxin-producing E. coli strain O157:H7 that mutants in wecA and
wecB resulting in the loss of ECA and O-antigen or ECA alone, respectively, are sensitive
to acetic acid. In addition, there is an increased sensitivity to some antibiotics in
mutants lacking ECA, especially aminoglycosides, for example, kanamycin and genta-
micin (177). A similar observation was made in E. coli where a wecE mutant was found
to be sensitive to gentamicin (179). In addition, Girgis et al. (180) observed that a wzxE
mutant has no phenotype in neutral agar media but, in the presence of nalidixic acid
and amikacin, the mutant is sensitive compared to the wild type. A large-scale chemical
genetics screen suggested that a wecA mutant of E. coli K-12 lacking all ECAs was
sensitive to azidothymidine, CHIR-90, minocycline, procaine, puromycin, triclosan, and
trimethoprim and resistant to fusidic acid, isoniazid, amdinocillin, vancomycin, and
polymyxin (181). A comparison between the ECAPG and the lipopolysaccharide of
Salmonella Montevideo showed that the ECAPG has a higher Ca2�-to-Mg2� ratio than
lipopolysaccharide, hence the suggestion that enterobacterial common antigen is
important for the supply of calcium ions in the cell (52). Random-transposon mutagen-
esis experiments performed in Salmonella enterica revealed that disruption of six of the
ECA operon genes (wecB, wecC, wecD, wecE, wecG, and wzxE) led to increased speed of
lysis by bacteriophage P22 (176). As no effect was observed for disruption of wecA, it
is possible that this effect is due to the peptidoglycan stress caused by these mutations.

TABLE 3 Biological significance of ECA in Enterobacterales

Function Type of ECA Associated gene(s) Reference(s)

Inhibition of P22 lysis in Salmonella enterica Complete biosynthesis disruption,
possible peptidoglycan stress

wecB, wecC, wecD, wecE,
wecG, and wzxE

176

Virulence in S. Typhimurium Loss of all forms of ECA wecA, wecD 147, 162
Resistance to toxic molecules (e.g., bile salt,

acetic acid, serum, and antibiotics)
Complete loss of ECA, loss O-

antigen in some species
wecA 150, 160, 178,

181, 182
Resistance to gentamycin Accumulation of lipid IIECA;

peptidoglycan stress
wecE 179

Resistance to nalidixic and amikacin Accumulation of lipid IIIECA;
peptidoglycan stress

wzxE 180

Maintenance of OM permeability barrier
and resistance to detergent and bile salt

ECACYC 111, 145

Proposed regulation of Ca2� ions in the cell ECAPG 52
Maintenance of cell membrane integrity in

S. marcescens
Loss of all forms of ECA 183
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One of the critical roles of ECA is the pathogenicity of Enterobacterales, which has
been found in some studies. For instance, Salmonella enterica lacking ECA (with
mutations in either wecD or wecA) becomes less virulent and more sensitive to bile salts
(147), although it does not use the wecA gene for O-antigen biosynthesis, as do many
Enterobacterales. The phenotype of the wecD mutant was more severe than that for the
wecA mutation, likely due to an accumulation of a Und-P-linked ECA precursor disrupt-
ing peptidoglycan synthesis. Gilbreath et al. (182) further validated this result. In vitro
they found that a wecA null mutant of S. Typhimurium is deficient in ECA production
but fully competent for O-antigen production and lacks stress response activation
caused by peptidoglycan biosynthesis disruption. This mutant was highly attenuated in
mice, causing a persistent low-level infection that did not kill the mice (182).

Interestingly, mutants defective in ECA biosynthesis trigger Rcs stress response
activation in Serratia marcescens regardless of whether peptidoglycan biosynthesis is
disrupted, suggesting that ECA may play an especially important role in envelope
integrity for this species (150). A role in envelope integrity is also suggested by the
overproduction of outer membrane vesicles (OMV) in the absence of ECA in Serratia
marcescens, suggesting an instability in the OM (183). In contrast, a screen in E. coli K-12
revealed differences in OMV production in ECA biosynthesis mutants, but these phe-
notypes varied greatly depending on which gene was mutated, suggesting that the
results may be indirect (184). Phan et al. (174) found that seven genes of the ECA
operon are essential for serum resistance in E. coli; however, these effects may have
been the result of the loss of O-antigen and/or isoprenoid carrier effects.

Recently, we determined that one of the forms of ECA, ECACYC, plays a significant
role in the OM permeability barrier (145). We found that loss of ECACYC disrupts the OM
permeability barrier, causing detergent and bile salt sensitivity. Furthermore, we de-
termined that ECACYC genetically interacts with a protein of unknown function, YhdP,
to carry out this activity. When yhdP is deleted, ECACYC takes on aberrant activity that
damages the OM, despite greatly lowered ECACYC levels. Careful screening of different
ECA mutants and screening for hallmarks of peptidoglycan stress allowed us to
eliminate peptidoglycan stress as a cause of these phenotypes (145).

ECA has been considered as a vaccination against infections stemming from enter-
obacterial strains due to its prevalence within the order. In a mouse model, salmonel-
losis leads to the development of ECA antibodies. However, no insight into the role of
ECA antibodies in protection from infection was provided (185). Results regarding the
protective nature of ECA antibodies have been mixed (63–65, 78, 79, 81). Further
investigation into the protective nature of ECA antibodies against Enterobacterales
species is warranted, as ECA antibodies have the potential to protect against all
enterobacterial pathogens. In an ECA vaccine candidate, it would likely be important
that the O-acetylation of ECA be maintained. O-Acetylation of surface-exposed poly-
saccharide has been shown to be important for the generation of protective antibodies
for many pathogens (186–191). Kajimura et al. (111) have reported that the absence of
O-acetylation in ECACYC decreases the immunoreactivity of this ECA form toward a
rabbit-generated antibody. A recent study has determined that a partially O-acetylated
polysaccharide may be highly advantageous for vaccine use due to epitope exposure
and hydrophobicity profiles (192). In this aspect, ECA may be ideal given its nonstoi-
chiometric acetylation of GlcNAc (111).

CONCLUDING REMARKS

Since the discovery of ECA in 1962, the work of many investigators has elucidated
considerable information about the structure and biogenesis of ECA, and yet our
understanding of this fascinating molecule remains incomplete. Whereas many carbo-
hydrate antigens on the bacterial cell surface are highly variable allowing for escape
from immune surveillance, ECA remains invariant despite its presence in many patho-
genic species. This suggest that the function of ECA must be incredibly important for
the cell. Yet, this function is largely unknown. In the past, investigations of the function
of ECA have been hampered by the complex genetic and biosynthetic interactions
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between ECA and other cytoplasmic glycans (i.e., peptidoglycan and O-antigen). Now
that these interactions have been characterized, more in-depth studies of ECA functions
will be possible.

It is quite likely that the functions of ECA will be found to vary between the types
of ECA and to occur on the level of cellular function as well as interaction with the
environment. For instance, it has become clear that ECACYC and ECAPG both play roles
in maintaining the OM permeability barrier (145); however, given that antibiotic and
detergent susceptibility differs between the loss of these two molecules and the
different cellular location of the ECA forms, it is likely that the function of each is
distinct. ECALPS, as of yet, has had no cellular function described. While it is clear that
ECA is important for pathogenesis, at least in Salmonella, it has not yet been deter-
mined whether this is due to an alteration of Salmonella cellular function or an
alteration of Salmonella’s interaction with the host.

Nevertheless, from the earliest studies of ECA it has been shown that ECA interacts
with the host immune system, leading to the production of broadly cross-reactive
antibodies. Yet, it is not known whether these ubiquitous antibodies play a role in the
pathogenesis or protection from enterobacterial pathogens. Further evidence of the
importance of ECA interactions with the environment can be gleaned from the regu-
lation of ECA expression or chain length by temperature (141, 145, 193). Future
investigations into the functions of ECA will lend important insights into the cellular
function and host-pathogen interactions of an important group of bacteria.
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