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Abstract

Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by
local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major
challenge for developing a general understanding of how local decision-making shapes land-use changes at the global
scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local
processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents,
across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-
significant variation in population density, market influence, and environmental conditions, with land systems ranging from
swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects
of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-
predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where
environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were
more similar to those observed across sites than the null model. At the two sites in which market forces significantly
influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model.
Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use
decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a
practical framework for systematic improvement of both theory and predictive skill in land change science based on a
continual process of experimentation and model enhancement.
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Introduction

Global environmental change and economic globalization are

increasingly coupled with local land-use and livelihood transitions

[1–3]. Managing the sustainability of such transitions requires an

understanding of both the local realities of changing land-use and

livelihood patterns, as well as the larger-scale contexts structuring

local decision-making [4–7]. This relates to a fundamental

challenge in land change science (LCS): to produce systematic

knowledge of how and under what conditions local land change

trajectories are constrained by local land systems, and how

responsive these are to changing global forcings [8], [9]. To

overcome this challenge, the LCS community has focused on

cross-site comparisons and synthesis of case study knowledge in its

efforts to reveal commonalities and differences among local land

system change patterns and processes and to build land system

change theory in general [10]. Yet the ability of LCS to

systematically assess the causes and consequences of local land

system change at global scale remains hampered by the

fragmentation of knowledge on land system change across the

local case-study literature. Here, we conduct a cross-site compar-

ison of the adaptive responses of agents to varying local and global

economic, environmental, and demographic conditions using a

generalized agent-based model (ABM) applied to real world

sample landscapes using a virtual laboratory approach. Our goal is

to generate and test hypotheses about where and when local

contextual complexities are and are not needed to explain local

land-use and livelihood patterns globally.

Generating systematic knowledge of the causes and conse-

quences of local land-use and livelihood change (i.e. land system

change) globally faces multiple simultaneous challenges. Land

system change at the local scale is influenced by a wide array of

driving forces often found to be highly dependent on local context,

which makes generalizations about the forces that drive change at

the global scale difficult [11–15]. Mismatches between the

resolution of remote sensing data on land cover and the spatial

and temporal scales of important social and/or biophysical

processes, for example, plague studies of land system change

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e86179

and Pacific Summer Institute 2012 (NSF Grant ## 1208953), and both NRM and ECE were#



[13], which inherently must account for a diverse range of causal

explanations. The best available data representing global scale

drivers of land system change, such as market influence [16], are

too coarse to represent the market-oriented land-use decisions of

individual land users. More fundamentally, the impossibility of

widespread experimental manipulations of land systems, the

multitude of forces influencing land system change, and the

complexity of their interactions represent major obstacles to

connecting land-use changes to their causes at and between local,

regional, and global scales [13]. Consequently, substantial

uncertainty exists surrounding the mechanisms through which

global and regional drivers influence local land-use decisions, and

how such relationships and their effects may or may not vary by

location.

Cross-site comparison and synthesis methods, such as meta-

analysis, can identify common patterns across empirical case

studies, and have thus far been used in LCS through a mix of

loosely structured meta-study techniques. Meta-studies of land

system change vary from fully quantitative statistical analyses (e.g.

[11], [17]) to qualitative coding methods such as qualitative

comparative analysis (e.g. [18]). Regardless of the synthesis

method, the ability to make systematic comparisons is ultimately

limited by the consistency of the methods, documentation, and

various theoretical lenses used to conduct case studies of land

system change. Cases studies are performed across different spatial

and temporal scales and from the perspectives of many varied

disciplines [10]. No standard case-study methodology exists in

LCS, which leaves the interpretation and coding of drivers of land

system change open to the meta-analyst [19]. Even when such

synthesis methods successfully identify common patterns across

empirical case studies, they cannot provide mechanistic explana-

tions of how such empirical patterns emerge from underlying

processes, and thus lack the means to form and test hypotheses of

how such systems will respond locally to changing large-scale

forces.

Rindfuss and colleagues [20] propose that simulation models of

land-use change, and agent-based models (ABMs) in particular

because of their representation of human decision-making

processes, provide a more formal means of comparison. In

response, Parker and colleagues [10] made the first attempt at a

systematic comparison of ABMs of land-use change in frontier

regions. The comparison was based on how each model addressed

agent-parcel relationships, non-spatial social networks, land

suitability, multiple agents, land transfer mechanisms, and

institutional drivers. However, just as meta-studies are constrained

by lack of standardization across case studies, these comparisons

revealed inconsistencies in how the same processes/structures were

represented across models. Although this comparison was

constrained by the limited scope and scale representations of the

input models, the potential of ABMs as a viable means of

comparison across sites was demonstrated.

Using ABMs as a means of comparison brings additional

challenges. The validity of any ABM is dependent on the

specification of agents’ decision-making rules and interactions

[21]. In an effort to make ABMs more realistic, agents’ decision-

making rules might be parameterized to conform with individual-

level empirical data, such as characteristics associated with agent

typologies (e.g. [22]). This imposes significant data demands,

which reduces the model’s domain of applicability because the

modeler is tempted to calibrate, and possibly overfit, it to the

observed patterns in a particular system [6], [23], [24].

Furthermore, the empirical data and process knowledge needed

to formalize linkages between agents’ land-use and livelihood

decision-making and global-level forces, and to systematically

compare land system change trajectories across sites, is lacking.

A major challenge for model-based comparison, then, is to find

the proper balance between the number and types of interactions

represented and the generality of their representation. Building on

the concept of pattern-oriented modeling (POM) [25] in a virtual

laboratory setting [8], [26] for designing, parameterizing, and

testing multi-scale ABMs with limited data, we conducted

comparative experiments across multiple sites and diverse land

systems. The virtual laboratory is applied to six test sites to

illustrate this approach and analyze the causes of landscape

outcomes across a wide range of environmental and social

conditions that are impossible to control and experiment with in

the field. We test an initial hypothesis that a minimal set of local

and global demographic, environmental, and market conditions is

sufficient to structure agent decisions such that stable strategies

emerge that reproduce observed land-use and livelihood patterns

across sites. The overall goal is to reproduce the land-use and

livelihood patterns observed at one point in time for each of the

sites, and by doing so provide insight into the decision-making

processes that produced those patterns. Model performance then

guides the formation of additional hypotheses of the relative

importance and predictability of local versus global factors in

determining land-use and livelihood patterns for future testing

across sites. The next section describes the selection and

characteristics of the set of test sites investigated. This is followed

by an overview of the procedures used to parameterize the general

model for each test site, and the experimental and statistical

frameworks used to compare model results across sites. The

following section discusses the sources of and insights from model

errors, and which factors were important for shaping land-use

patterns within and across sites. We conclude with a discussion of

the potential for this virtual laboratory approach to advance cross-

site comparison and theory-building efforts in LCS.

Materials and Methods

2.1. Site selection
Six test sites were selected across the approximate range of

variation observed in a set of global environmental [27–29],

population density [30], and market influence index [16] variables

(Table 1). Global market influence is sampled directly from

Verburg et al. [16] as a combination of market access and a

market influence index (based on travel time to large cities and

purchasing power parity, respectively; see [16] for description),

and is normalized to values between 0 to 1.Sites were chosen such

that two sites occupied each variable class, and sites within the

same region/country occupied different slope classes. Sample sites

included two in China (western Shandong Province, China (1a)

and northern Hunan Province, China (1b)), two in Luoang

Namtha, Laos (1c), one in southwestern Kentucky, USA (2a), and

one in northwestern Virginia, USA (2b) (Figures 1 and 2; Table 2).

Land-cover data were obtained from classified Landsat images

from 2001 NLCD [31] for U.S. sites, Heinimann et al. [32] for the

Laos sites, and Ellis et al. [33] for the China sites.

2.2. Site Descriptions
The first site in China was located in the prime agricultural

areas of the North China Plain near the town of Liaocheng in

Shandong Province (Fig. 1a). The site is characterized by nearly

uniformly distributed dense populations (Table 2) concentrated in

small villages around which land cover was dominated by intensive

cultivation. The second site in China was located near the town of

Taoyuan in the hilly regions of northern Hunan Province in south

Cross-Comparison with a Generalized ABM
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central China (Fig. 1b). The site is characterized by fairly high

population density dispersed within and along the edges of two

main valleys. Intensive cultivation of rice is present around

settlement areas, while extensive cultivation occupies areas with

moderate slopes on the edges of valleys. The first U.S. site was

located in prime agricultural areas along the border of Kentucky

and Tennessee near Russellville, KY (Fig. 2a). The site was

characterized by abundant prime agricultural land and dominated

by the commercial cultivation of corn and soybeans. The second

U.S. site was located in the Massanutten Mountains near

Harrisionburg, VA (Fig. 2b). Due to the short growing season

and hilly terrain, land-use/cover is dominated by pasture and

forest cover. The terrain is fairly hilly with median slopes of 11.7

percent (Table 2). Population density is low and concentrated

around a few small towns. Market influence and access are both

high because of the several large roads that intersecting the site.

The final two sites were in northern Laos. The first was a

combined rice and swidden cultivation system in the Luoang

Namtha region of northern Laos (Fig. 1c). The site was

characterized by dispersed pockets of high population density

(Table 2) in proximity to intensive rice cultivation, while the rest of

the landscape was sparsely populated and forested or cultivated

with low labor inputs. The second site in Laos was located in a

mainly swidden cultivation system in the Luoang Namtha region

of northern Laos (Fig. 1c). The site was characterized by very hilly

terrain (median slope of 40.2 percent) with patches of extensive

cultivation dispersed across the landscape. Detailed site-specific

descriptions and results can be found in the Section S2 in

Supplementary Information S1.

2.3. Global data inputs
The global context of each site was represented with several

global datasets that were used as input to the ABM and that

ensured cross-site comparability. Publicly available global datasets

(Table 3) were re-sampled for each site in ArcGIS 10.0 using zonal

statistics to the spatial resolution of 100 m in the local WGS 1984

UTM projection. Potential agricultural yields are based on a

global dataset of observed yields [34] and then modified according

to local terrain and precipitation constraints on agricultural

production. High resolution (,30 m) topographic data from the

ASTER Global DEM [28] is used to determine slope. Slope is a

proxy for suitability of soil for agriculture with reductions in

potential agricultural yields based on Global Agro-Ecological

Zones (GAEZ) slope constraint classes [28]. Precipitation levels

during the growing season [29] may impose additional reductions

in potential agricultural yields. Combined slope and precipitation

constraints were used to create an agricultural suitability layer used

to modify the potential productivities of land uses. Global market

access is re-sampled directly from [16] and the market influence

index is normalized to values between 0 and 1.

Model Analysis

The generalized ABM of land-use and livelihood decision-

making developed in Magliocca et al. [26] was applied to the six

landscapes described above to assess how global market influence

interacts with local environmental and demographic conditions to

affect local land-use patterns. Landscape outcomes were modeled

as a result of the decisions of agents representing aggregates of

households, in annual increments over a twenty-year period (with

the first ten as model spin-up). Agents’ behavioral rules were

derived from smallholder household economic theories [35], [36],

and involved allocation of labor to on-farm subsistence and market

production, as well as off-farm wage labor based on the expected

payoff from each of these activities and heterogeneous risk

preferences. Agents endogenously learned and adapted to the

utility-maximizing land-use and livelihood strategies for their

locations within the given landscapes. Agents land-use and

livelihood decisions were exogenously structured by local popula-

tion densities and environment conditions, which influenced

agricultural productivity and land availability per capita; as well

as global market forces, which influenced crop and agricultural

input prices, wage rates, and transportation costs. Agro-ecological

dynamics emerged from agent-environment interactions, which in

turn provided feedbacks to agents’ decisions and resulted in the

evolution of stable land-use and livelihood strategies by the end of

the model simulations. Detailed model specifications, descriptions

of agents’ decision heuristics and attributes, and psuedocode are

provided in Magliocca et al. [26].

Since little is known about how economic globalization

explicitly interacts with local environmental and demographic

conditions to affect decisions, this paper builds on the approach of

using POM within a virtual laboratory [8] to design, parameterize,

and test multi-scale ABMs of land-use change. This approach is

used to test alternative representations of local land-use decision

making through a set of cost and price functions, which are

parameterized using a genetic algorithm subject to performance

criteria drawn from the empirical livelihoods and development

literatures (see [8] and [26] for details). In the initial implemen-

tation of this model [26], global market influence was shown to be

the main driver of livelihood strategies, which interacted with local

Table 1. Selection criteria for test sites.

Selection Criteria Class Values Number of Sites

Population Density Classes (people km22) , = 16 2 sites in each class across sample set

.16 & , = 100

.100

Market Influence Classes (index value) , = 0.35 2 sites in each class across sample set

.0.35 & , = 0.65

.0.65

Slope Classes (%) , = 8 Different slope classes for each site per pair of sites in the same region

.8 & , = 16

.16

doi:10.1371/journal.pone.0086179.t001
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environmental conditions and population density to structure

agents’ choices of the most efficient land-uses.

3.1. Parameterizing and Modeling Test Sites
Land-use outcomes are modeled as the result of livelihood and

land-use decisions of agents at annual increments over a twenty-

year period (after ten periods for model spin-up). For each test site,

a raster landscape of 100 by 100 hectare-sized cells was generated

using ArcGIS 10.0. One hundred agents were each assigned a

‘settlement area’ of 10 by 10 cells (1 km2), over which their land-

use choices were made. This simplification into ‘‘settlement

agents’’ was made to easily manipulate population density and

land per capita settings, and test the effects of land allocation

processes across sites.

High resolution land-cover data (,30 m) were obtained from a

variety of sources specific to each site (Table 3; also see Section S1

in Supplementary Information S1 for site-specific details). Seven

different land use/cover categories were represented in the model:

three productive uses (intensive agriculture, extensive agriculture,

and pasture for grazing livestock) and four non-productive uses

(forest, fallow, dwellings/urban, and non-use [water, barren/

rock]). Productive land uses were defined by functional group,

rather than particular types (e.g. ‘intensive’ and ‘extensive’ versus

irrigated rice or shifting cultivation based on cassava), which vary

in their potential productivity, degradation/regeneration rates,

and labor and input costs [26]. Land-cover categories from the

data were re-classified to align with those represented in the model

as closely as possible by combining agricultural land cover classes

into functional groups. The model was initialized with non-

productive uses in the same locations as in the real landscape, but

all other cells were set to the lowest labor input agricultural use (i.e.

extensive cultivation).

Figure 1. Locations of eastern Asian sites: two in China (western Shandong Province, China (a) and Northern Hunan Province, China
(b)), two in Luoang Namtha, Laos (c).
doi:10.1371/journal.pone.0086179.g001
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3.2. Model Experiments
Different representations of market influence and population

density were experimentally manipulated to test the conditions

under which model-derived land-use patterns best matched those

observed for each site. Population and market were represented as

1) spatially variable and equal to the values for the real landscape,

2) uniform across the landscape and equal to the mean value of the

real landscape, or 3) uniform and plus or minus 0.1 and 0.2

different from the observed mean market influence and plus or

minus 10 and 20 percent away from the observed population

density values (model settings: 1+565 = 26). For each site, the

model was run 60 times for each possible population and market

combination (n = 1,560) in order to find unique combinations of

cost and price function parameters generated by the genetic

algorithm that met model performance criteria according to the

POM approach (see [8] and [27] for details). The results from

these model settings were contrasted with a random null model, in

which each land-use/cover category had equal probability of

occurring in each cell.

Population levels did not change during the simulation, and

crop prices and yields were held constant within a given model run

to allow agents to learn stable land-use and livelihood strategies

under alternative conditions. Variability in crop prices and yields,

for example, are certainly important influences of land-use choices

and livelihood strategies. However, exploring responses to such

variability is beyond the scope of this paper, because the focus here

lies in generating the land-use and livelihood strategies that are

best suited to alternative conditions across sites in an attempt to

reproduce observed patterns.

This experimental design explored the sensitivity of modeled

land-use outcomes to variations in the ways model input

information was represented (spatially variable vs. uniform in

various ways). If modeled processes accurately represented those

operating at the test sites, then one would expect model outcome

accuracy to improve as model inputs more closely resembled those

observed. Conversely, if model outcome accuracy declined as

model inputs more closely resembled those observed in reality,

then one or more modeled processes may have been incorrectly

represented. Testing the model with alternative inputs allowed for

differentiation between accurate model outcomes generated by

realistic process representation versus model artifacts. For exam-

ple, alternative model settings tested the effects of imposing a

‘settlement area’ for each agent, which assumed that production

activities were concentrated within one square kilometer of

population centers. If this was the case, then the spatially explicit

representation was expected to produce land-use patterns that best

matched those observed. However, if production activities

expanded beyond the imposed ‘settlement area’, then land-use

intensity would differ from that expected given the observed

population density. Finally, the alternative population and market

setting were use to explore the stability of aggregate land-use

outcomes resulting from agents’ cumulative adaptive decisions in

response to conditions beyond those observed in the current

landscapes.

3.3. Statistical Analysis
Several descriptive statistics were calculated for each site,

measuring the differences in distributions and rankings of each

land-use/cover category between the real and modeled land-

scapes. Only intensive agriculture, extensive agriculture, pasture,

forest, and fallow land-use/cover classes were considered in

statistical analyses. Dwellings, barren/rock, and water were

Figure 2. Location of U.S. sites: one in southwestern Kentucky (a), and one in northwestern Virginia (b).
doi:10.1371/journal.pone.0086179.g002
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excluded because they were initialized in the modeled landscape

exactly as in the real landscape and held constant throughout the

simulation. Modeled land-use outcomes, including the null

landscape, were compared to the real landscape to measure the

added explanatory power of the process-based model. To compare

aggregate landscape counts of each land-use/cover category, a

simple multi-dimensional distance measure, D, is used.

Di~
X5

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RCi{MCið Þ2

q
; ð1Þ

where RCi and MCi are counts of each land-use/cover category, i,

in the real and modeled landscapes, respectively. A more detailed

assessment of model error for each site was performed by

disaggregating Eq. 1 into land-use/cover counts within each land

suitability, which is provided in Section S1 in Supplementary

Information S1.

In addition, agreement between the rankings of land-use/cover

category counts for real and modeled landscapes was determined

using Spearman’s ranked correlation. If a strong positive

correlation exists between the rankings, then the model matches

the ranked abundances of categories observed in the real

landscape.

Finally, the degree to which land-use decisions were affected

more by market influence versus population pressure was

measured by comparing the relative value of agricultural products

Table 2. Summary statistics for each test site.

Site Name W. Shangdong N. Hunan W. KY N.W. VA L.N. Laos 1 L.N. Laos 2

Latitude 36u26940N 28u549270N 36u439140N 38u35940N 20u559210N 21u10980N

Longitude 115u409350E 111u129350E 87u59120W 78u479460W 101u37970E 102u129370E

Population Density (ppl km22) Min 73.8 1.2 0 0 1.23 0

Mean 512.3a 124.2 4.6 22.4 36.7 12.9

Max 4,113.0 2,777.6 161.4 314.0 2,160.7 180.0

Shannon’s Evenness Index for
Population Distrbution.
(Equal Distr. = 1.0)

0.9570 0.8781 0.7753 0.8993 0.8018 0.8499

Market Influence Min 0.60 0.51 0.83 0.84 0.02 0.02

Mean 0.63 0.59 0.86 0.87 0.02 0.02

Max 0.71 0.67 0.88 0.88 0.02 0.06

Market Access Min 0.14 0.06 0.40 0.44 0 0

Mean 0.29 0.17 0.59 0.62 0 0

Max 0.71 0.41 0.73 0.74 0 0

Slope (%) Min 0 0 0 0 0 0.50

Med. 9.8 11.3 7.2 11.7 17.5 40.2

Max 70.0 45.9 79.8 85.3 105.1 123.3

Land Suitability Classes (%) 1 47.8 37.9 57.8 28.7 28.5 4.1

2 39.1 41.2 34.0 38.7 19.1 5.0

3 12.4 19.1 7.6 26.4 29.9 18.5

4 0.7 1.8 0.6 6.2 22.5 72.4

aBolded values are the mean values and dominant land suitability class (class 1 = most suitable for agriculture; class 4 = least suitable for agriculture). Coordinates are
provided for the top-left corner of the test site bounding boxes.
doi:10.1371/journal.pone.0086179.t002

Table 3. Global data inputs used to parameterize the model environment.

Input Data Description Native Resolution Source

Population Density LandScan 2000 population density model 30 arc-second [31]

Market Access and Influence Based on travel time to large cities and
purchasing power parity, respectively

30 arc-second [16]

Potential Agricultural Yields Climatic potential wheat yields 5 arc-minute [35]

Slope Percent slope calculated from DEM 30 meter [28]

Land Suitability Percent reduction in potential agricultural
yields due to slope and precipitation constraints

30 arc-second [29]

Precipitation Constraints Average rainfall during growing season 30 arc-second [30]

Land Use/Cover Classified LandSat images 30 meter [32–34]

doi:10.1371/journal.pone.0086179.t003
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per land and labor unit inputs (i.e. ‘returns to labor’) in response to

market and population settings. Returns to labor were calculated

from each site’s observed yields, which reflect the intensity of

production subject to land suitability, and the value of agricultural

production, which reflects market influence settings. For simplic-

ity, an aggregate return to labor is presented for an entire site.

However, within sites individual agent’s returns to labor varied

subject to heterogeneous preferences for and perceptions of risk

and return in market opportunities.

These measures were intended to provide descriptions of model

performance within and across sample sites and not to test

statistical hypotheses of independence or similarity between real

and modeled landscape metrics. At this stage of hypothesis

generation, statistical significance is not yet relevant, as many

important mechanisms known to influence patterns of LUCC are

not included in the model design. Instead, these statistical

measures quantify the particular ways in which modeled

landscapes deviate from the test site landscapes, which provides

insight into potential mechanisms to be included in future model

experiments.

Results

To verify that agents’ assumed decision-making models

responded to changing economic, environmental, and demo-

graphic influences in realistic ways, the relationship between

cropping frequency and population density produced across model

runs was compared with that posited by Boserup [37] and

empirically tested by Turner et al. [38]. Model outcomes were

generally consistent with the predictions of Turner et al. [38];

modeled cropping frequencies increased with increasing average

population densities observed across test sites (Fig. 3). However, in

the W. Shandong and W. Kentucky sites, cropping frequencies

consistent with the general trend of population-driven intensifica-

tion resulted because the model produced different production

activities than those present in the real land systems. Results are

discussed in light of these discrepancies in the following section.

4.1 Source of model error
The ABM produced land-use outcomes more consistent with

the real landscape than the null model in all but the W. Kentucky

and N. Hunan sites (Fig. 4). Results for each site are presented in

detail in Supplementary Information S1. Generally, the model

performed better than the null landscape for sites that were limited

by land suitability (i.e. L.N. Laos 1 and 2, N.W. VA), and/or

where the imposed ‘settlement area’ approximated the actual

spatial configurations of land-users’ production and consumption

activities (i.e. W. Shandong) (Fig. 5). Across all sites, spatially

variable model settings improved the accuracy of model land-use

outcomes, producing rankings of land-use outcomes more similar

to the real landscapes and generally less overall error than with

spatially uniform model settings.

Model errors introduced by the ‘settlement area’ simplification

were exacerbated when market influence was high. The model

performed worse than the null model for land systems in which

market influence was an equally strong or stronger driver of land-

use decisions than population pressure or environmental con-

straints (Fig. 6). In Figure 6a, steeper slopes across experimental

settings within a given site illustrated the relatively larger influence

of market forces over population density on land-use decisions.

Flatter slopes indicated intensification decisions driven by popu-

lation pressure rather than market influence. Figure 6b demon-

strates that returns to labor (i.e. value of production per unit of

labor) in all Asian sites responded approximately linearly with

increasing population density, whereas high returns to labor in the

U.S. sites were obtained independent of population pressure.

The six test sites differed widely in population density,

environmental constraints, and market influence (Table 2).

Although these forces were influential in all sites, the relative

importance of each in shaping land-use decision-making and

outcomes varied across land systems (Fig. 7). Low land suitability

significantly constrained land-use outcomes in the Laotian sites, as

returns to labor and agricultural yield remained low. In the

northern Hunan site, fewer land suitability constraints facilitated

intensive cultivation and higher yields. In contrast, land suitability

was not a dominant influence on land-use decisions in the

remaining sites with more favorable suitability conditions.

Population density was an important structuring process at all

Asian sites. Cropping frequencies, agricultural yields, and returns

to labor all increased concurrently with population density. When

population density and market influence were low, as in the

Laotian sites, land-use choices were constrained by labor

limitations. Higher population densities in the Chinese sites led

to intensified land-use and higher yields. Conversely, population

density was not an important driver of land-use decisions for the

U.S. sites, as high agricultural yields and returns to labor were

obtained at low population densities.

Market influence was an important structuring process in the

China and U.S. sites. A large discrepancy between agricultural

yields and returns to labor in comparison to the Laotian sites, for

which market influence was not a structuring process, was evident.

Market influence was an equally important force shaping land-use

decisions with environmental constraints and population density

for the N. Hunan and W. Shandong sites, respectively. In contrast,

market influence was the dominant structuring process on land-use

decisions for the U.S. sites as evident by agricultural yields and

returns to labor independent of population density and land

suitability constraints.

The range of experimental settings implemented also enabled

exploration of the stability of agents’ land-use and livelihood

decision-making across settings that varied the level and degree of

uniformity in population density and market influence (n = 1,560)

for each site. Variability in modeled land-use outcomes, measured

as the interquartile range (IQR) of model errors among model

runs for each site, illustrated the stability of land-use decisions

across experimental population density and market influence

settings (Fig. 8). The northern Hunan site showed the largest

average variation among model runs, whereas the Laotian sites

displayed the largest overall IQR. Detailed analyses of variability

across model runs for each site are presented in Supplementary

Information S1.

4.2 Applicability of ABM v0.1
The applicability of the current agent decision-making frame-

work may be limited to land systems in which land-use decisions

are structured primarily by population pressure and/or environ-

mental constraints (Figures 6b and 7). This was reflected by the

declining success of the genetic algorithm in finding ‘successful’

solutions as market influence increased (Fig. 9). A solution was

successful when a parameter set being tested simultaneously

reproduced three model performance criteria based on smallhold-

er behavior patterns from the empirical livelihoods and develop-

ment literatures [8], [26]. Successful solutions were found in at

least half of model runs below a market influence of 0.7. Above

that point, the genetic algorithm consistently failed to find

parameter sets that met all three model performance criteria, as

land-use decisions favored profit-maximization rather than labor-

and risk-minimization.

Cross-Comparison with a Generalized ABM
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Discussion

Cross-site comparisons of model outcomes confirmed the

varying influences of population pressure, environmental con-

straints, and market influence on land-use decisions across

different land systems. Across all sites, the model’s performance

improved as representations of the level and degree of uniformity

in population density and market influence approached those of

the real landscape. Combined with favorable comparisons to null

model outcomes for four of the six sites, this suggests that the

current model has some explanatory power - even with its

generalized form. Furthermore, model results illustrated that the

applicability of the decision-making framework in our ABM was

limited to land systems in which land-use decisions were structured

primarily by population pressure and/or environmental con-

straints. Model settings that increased market influence above

those observed in the real landscape led to increased variability in

land-use outcomes. Model outcomes produced from these settings

suggested that increased market influence may lead to greater

dependence on market-oriented livelihood activities, which has the

potential to change the composition of the landscape significantly.

Model outcomes also demonstrated how the misrepresentation

or exclusion of important processes affected land-use extent and

intensity within and across sites. This leads to hypotheses about

which land systems require or do not require the addition of

context-dependent processes to improve model realism. More

importantly, this virtual laboratory approach provides a means for

cross-site comparisons of how and under what conditions driving

forces of land system change might differ from a generalized

model, which leads to testable hypotheses of the global patterns of

the relative strength of local versus global context in shaping local

land-use and livelihood outcomes. Such questions are currently a

focus of efforts to develop spatially explicit, multi-level, and

integrated human-natural system global assessment models [39].

5.1. Linking Model Errors to Process Representation
The lack of realistic land allocation mechanisms introduced

model errors for sites in which 1) land-users’ production and

consumption activities were disconnected in space, and/or 2)

market influence was the primary driver of land-use choices. The

imposition of a ‘settlement area’ tended to underestimate the

spatial extent of land use and the land per capita ratio. The W.

Shandong site was the exception that demonstrated the impor-

tance of accurately representing land allocation. The model

successfully matched land-use/cover outcomes for this site (Figs.

S1 and S2), because the one square kilometer ‘settlement area’ per

agent approximated the spatial configuration of villages and

resulting average land per capita present in the real system. Thus,

population pressure on land-use decisions was accurately modeled,

and the intensity and extent of land-use was consistent with what

was observed in the test site.

To varying degrees, the ‘settlement area’ simplification distorted

land per capita ratios in all other sites. Generally, active use of land

was likely more extensive and diffuse than was modeled, and thus

model agents responded to population pressures and land supply

limitations to a greater degree than real agents. For instance,

experimental model settings in which population density was

applied evenly over the landscape (and thus more diffusely)

produced more realistic land-use outcomes than when the real

spatial population distributions were used. For the U.S. sites,

which were characterized by high market influence and low

population density (Figs. S5, S6, S7, S8), the ‘settlement area’

failed to capture the spatial separation between consumptive and

productive land uses characteristic of fully mechanized cultivation

systems. Similarly, land tenure likely extends beyond the modeled

‘settlement area’ in the Laotian sites due to the prevalence of low-

intensity, extensive land uses (Figs. S9, S10, S11, S12). In the

northern Hunan site, the elongated valley-ridge configuration of

the landscape produces individual land holdings that are

fragmented and distributed both within and outside of the

‘settlement area’ (Figs. S3 and S4). Consequently, modeled land

pressure was artificially high in some places, and intensive

cultivation was better approximated in model versions with

population density settings that were spatially explicit or uniform

and slightly less than or equal to the observed mean. The

‘settlement area’ misrepresented land per capita across sites in

slightly different ways in different sites, yet intensive cultivation

was consistently over-estimated, revealing a common role of land

allocation processes.

Model errors provided insights into several other important

processes that are currently not represented, yet act in similar ways

across land systems to link land-use decisions to landscape

outcomes. One of the simplest mechanisms of agricultural

intensification in response to population and/or market forces

that was omitted and led to errors in modeled agricultural intensity

is multi-cropping. Currently, the model only represents up to

single cropping without fallow. This limitation was most evident in

the W. Shandong site, where modeled cropping frequencies were

lower than observed (Fig. 3).

Model errors due to market-driven land-use decisions were

more complex, stemming from inadequate representation of

mechanisms through which agents respond to market forces.

The northwestern Virginia and northern Hunan sites were both

moderately limited by land suitability, and in both cases agents

responded to market forces by expanding intensive cultivation

and/or pasture production. According to the labor- and risk-

minimizing decision rationale of the model, pasture was a

favorable land-use for market production in these sites because it

required relatively low labor/capital inputs, had high returns to

labor, and could be produced on marginal land. This logic

produced realistic land-use outcomes in northwestern Virginia

although the extent of the market response was underestimated

due to the ‘settlement area’ simplification.

Because no pasture was present in the real landscape, the

expansion of market-oriented pasture production in the model led

to large model errors for the northern Hunan site. Two

explanations for this discrepancy are possible and not mutually

exclusive. First, high population densities favored rice production

as the dominant subsistence crop on prime agricultural land,

which the model predicted well. The remaining land was less

suitable for intensive agriculture, and the model-predicted pasture

to be the next best land-use choice for these locations. In reality,

low-input cash crops and forestry products, such as tea, bamboo,

and/or fir trees, were chosen instead (unpublished data). Cash

crops are currently not represented in the model, but results

indicate that they strongly influence land-use choices in this

location and should be included in future model experiments. A

second plausible explanation for model failures is the influence of

local land allocation. Historically, land was allocated to individual

households evenly based on productivity [40]. Individual land

holdings today reflect this legacy, as households manage many

small, fragmented areas across the land suitability gradient, and

the small plots do not support large grazing pastures [40]. Based

on this historical context and the model results, land allocation is

clearly an important influence on the types of land uses chosen,

and thus should be included in a more detailed model of this

location.

Cross-Comparison with a Generalized ABM

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e86179



Figure 3. Modeled relationships between cropping frequency and population density were consistent with predictions from Turner
et al. [38] across test sites. Multiple outcomes (i.e., points) at each site reflect the mean land-use result for each combination of population and
market settings tested. Square data points represent model results from spatially variable model settings.
doi:10.1371/journal.pone.0086179.g003

Figure 4. Model error measured as correlation among rankings of and distance (D) between real and mean modeled land-use/cover
category counts across sites and compared to the null model. Square data points represent model results from spatially variable model
settings.
doi:10.1371/journal.pone.0086179.g004
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Finally, when agents responded to market influence by

expanding intensive cultivation, the model could not match the

scale of expansion. In reality, agricultural production decisions in

such cases are likely oriented towards profit-maximization rather

than labor- and risk-minimization through capital for labor

substitution. Fully mechanized agriculture was not represented

in the model, and thus modeled agricultural intensity for the

western Kentucky site was erroneously low. More broadly,

expansion of market-oriented land-uses was the main source of

variation among model runs within and across sites. As market

influence increased, larger variations in potential land-use

outcomes emerged (Fig. 8), and the genetic algorithm increasingly

failed to find successful solutions (Fig. 9). This illustrated the need

to introduce agent decision models with primarily market-oriented

objective functions and production rationales capable of making

the transition from a labor-driven to capital-driven commercial

Figure 5. Model performance was better than the null model (black line) for sites in which the imposed ‘settlement area’
approximated the actual land per capita (a) and spatial configurations of land-users’ production and consumption activities (i.e. W.
Shandong), and/or constraints on land suitability for agriculture were present (b; 4 = no constraints; 1 = severe constraints).
doi:10.1371/journal.pone.0086179.g005

Figure 6. Variations in aggregate returns to labor across sites in relation to median cropping frequency (a) and population density
(b) illustrate the relative roles of population pressure and market influence in land-use decisions. The trend line presented with
population density (b) serves only to group sites and does not indicate a derived statistical relationship.
doi:10.1371/journal.pone.0086179.g006
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production system. Combined with the inclusion of common

mechanisms through which land-users respond to market forces,

such decision-making models will improve the model’s ability to

represent market-driven land-use changes.

Cross-site comparisons of model performance revealed the

relative importance of land suitability constraints, population

pressure, and market influence in leading to high/low cropping

frequencies, crop yields, and returns to labor across sites (Fig. 7). It

was also apparent how market influence and population interact to

shape the potential variability and predictability of land system

outcomes. For example, land-use outcomes in the Laotian sites

showed little to no sensitivity to variations in cost and price

parameters at observed population density and market influence

settings. However, when population density and market influence

were experimentally increased, land-use outcomes varied much

more widely with alternative cost and price parameter settings.

This suggests that population density and market influence may

become increasingly important factors in such land systems, and

the mechanisms through which agents respond to such forces, for

example capital-for-labor substitution and/or multi-cropping,

need to be included in future model versions.

5.2. Model accuracy versus generality
Some local factors that mediate land per capita ratios and

constrain households’ livelihood choice sets, such as social

networks and land tenure rules, were not represented by the

model. The social structures in which individuals are embedded

vary widely across land systems, are heavily context dependent,

and are not easily generalized [13]. The models presented here are

still incomplete. Future efforts will implement processes hypoth-

esized to be important according to the model results reported

here. For example, a household-level model will be constructed

and compared with the current settlement-level agent represen-

tation to systematically test in which contexts a settlement versus

household agent representation is necessary, and which additional

processes are needed to explain outcomes across different land

systems and locations. Although, even the modest amounts of

variation in land-use patterns explained by the current model

version across different land systems demonstrate the value of this

ABM for cross-site comparisons of the causes and consequences of

local land-use change globally.

Certainly, over-simplifying the context in which land-use

decision-making is embedded can lead to incomplete and/or

Figure 7. Variations in the values of model inputs (average population density, market influence, and land suitability) and outputs
(median cropping frequency, return to labor, and average agricultural yields) standardized to normal scores.
doi:10.1371/journal.pone.0086179.g007

Figure 8. Variations in errors (number of incorrectly modeled
cells) in land-use outcomes within each site observed across
experimental population density and market influence set-
tings.
doi:10.1371/journal.pone.0086179.g008
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incorrect understanding of the forces that shape land-use choices.

Case studies and models of local land system change provide the

in-depth, site-specific knowledge that is invaluable for understand-

ing the local realities of global economic and environmental

change. On the other hand, representing the full complexity of

social interactions that influence land-use choices runs counter to

the aim of understanding more general and larger-scale trends in

land system change; the impracticality of acquiring such detailed

data across sites, coupled with the limitations of human cognition

to navigate such complexity, is prohibitive. Thus, a complemen-

tary effort is the pursuit of generalized process and system

knowledge to systematically integrate local findings and build

theory towards predicting large-scale changes that result from the

cumulative effects of local land system changes. As we demonstrate

here, a viable way forward in understanding land use as a global

change process is by starting with simple models, testing them

against current theory and empirical data, and gradually building-

in more complexities through an experimental, virtual laboratory

approach as needed to better explain and predict observations on

the real world.

Conclusions

A generalized ABM was developed within a virtual laboratory

framework for representing cross-scale influences on local land-use

decision-making and evaluating model performance across land

systems. This ABM was used to explore how agents’ decision-

making differed in response to the different environmental,

demographic, and economic conditions in a set of test sites. When

modeled land-use outcomes reasonably approximated those

observed in the test sites, the generalized model provided a

parsimonious explanation of the major processes structuring

observed land-use patterns. Conversely, when the model failed

to match real land-use patterns, it did so systematically, providing

a common model structure to compare sources of failure and the

influence of different structuring processes across sites. Particular-

ly, the applicability of the underlying labor- and risk-minimizing

decision-making framework was limited in land systems driven

primarily by market forces, which indicated the conditions under

which alternative decision-making frameworks are necessary.

Cross-site comparison and synthesis has been identified as a

priority by the LCS community [10]. Agent-based model

comparison, in particular, has the potential to provide insights

into commonalities and differences in decision-making across land

systems [20]. The modeling framework presented here formalizes

the mechanisms underlying land-use and livelihood decisions,

which makes it possible to examine agents’ adaptive responses to

local contextual and large-scale forces. Furthermore, doing so with

a generic model structure provides a means for systematic

comparisons of decision-making processes across land systems

and contributes to our understanding of patterns of local land-use

and livelihood changes globally. Future implementations of this

agent-based virtual laboratory approach will test hypotheses of

how and under what conditions driving forces of land system

change might differ from the generic model across a wider, more

representative range of land systems, and how agents’ motivations

might change as economic globalization restructures local

economic opportunities.

Supporting Information

Figure S1 Site characteristics and agent labor alloca-
tion. (a) Comparison of counts per land-use/cover category

between real (blue) and modeled (red) landscapes, (b) model

representation of sample site landscape and (c) land suitability, and

(d) the average percentage across agents of labor allocated to (from

Figure 9. Declining applicability of the underlying smallholder decision-making framework with increasing market influence,
measured as the average number of successful genetic algorithm solutions across model runs.
doi:10.1371/journal.pone.0086179.g009
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top to bottom) subsistence farm, market-oriented farm, and non-

farm wage (NFW) labor.

(TIF)

Figure S2 Measures of model error. (a) Relationship

between distance and Spearman’s Rho for landscape-level,

aggregate land-use/cover category counts in each experimental

combination; (b) distance measure of the landscape-level, aggre-

gate differences in land-use/cover category counts between the

real and modeled (colored points) and null (black line) landscapes;

(c) distance measure of aggregate difference in counts of landscape

cells in land-use/cover categories per counts of landscape cells in

each land suitability class between real and modeled (colored

points) and null (black line) landscapes.

(TIF)

Figure S3 Site characteristics and agent labor alloca-
tion. (a) Comparison of counts per land-use/cover category

between real (blue) and modeled (red) landscapes, (b) model

representation of sample site landscape and (c) land suitability, and

(d) the average percentage across agents of labor allocated to (from

top to bottom) subsistence farm, market-oriented farm, and non-

farm wage (NFW) labor.

(TIF)

Figure S4 Measures of model error. (a) Relationship

between distance and Spearman’s Rho for landscape-level,

aggregate land-use/cover category counts in each experimental

combination; (b) distance measure of the landscape-level, aggre-

gate differences in land-use/cover category counts between the

real and modeled (colored points) and null (black line) landscapes;

(c) distance measure of aggregate difference in counts of landscape

cells in land-use/cover categories per counts of landscape cells in

each land suitability class between real and modeled (colored

points) and null (black line) landscapes.

(TIF)

Figure S5 Site characteristics and agent labor alloca-
tion. (a) Comparison of counts per land-use/cover category

between real (blue) and modeled (red) landscapes, (b) model

representation of sample site landscape and (c) land suitability, and

(d) the average percentage across agents of labor allocated to (from

top to bottom) subsistence farm, market-oriented farm, and non-

farm wage (NFW) labor.

(TIF)

Figure S6 Measures of model error. (a) Relationship

between distance and Spearman’s Rho for landscape-level,

aggregate land-use/cover category counts in each experimental

combination; (b) distance measure of the landscape-level, aggre-

gate differences in land-use/cover category counts between the

real and modeled (colored points) and null (black line) landscapes;

(c) distance measure of aggregate difference in counts of landscape

cells in land-use/cover categories per counts of landscape cells in

each land suitability class between real and modeled (colored

points) and null (black line) landscapes.

(TIF)

Figure S7 Site characteristics and agent labor alloca-
tion. (a) Comparison of counts per land-use/cover category

between real (blue) and modeled (red) landscapes, (b) model

representation of sample site landscape and (c) land suitability, and

(d) the average percentage across agents of labor allocated to (from

top to bottom) subsistence farm, market-oriented farm, and non-

farm wage (NFW) labor.

(TIF)

Figure S8 Measures of model error. (a) Relationship

between distance and Spearman’s Rho for landscape-level,

aggregate land-use/cover category counts in each experimental

combination; (b) distance measure of the landscape-level, aggre-

gate differences in land-use/cover category counts between the

real and modeled (colored points) and null (black line) landscapes;

(c) distance measure of aggregate difference in counts of landscape

cells in land-use/cover categories per counts of landscape cells in

each land suitability class between real and modeled (colored

points) and null (black line) landscapes.

(TIF)

Figure S9 Site characteristics and agent labor alloca-
tion. (a) Comparison of counts per land-use/cover category

between real (blue) and modeled (red) landscapes, (b) model

representation of sample site landscape and (c) land suitability, and

(d) the average percentage across agents of labor allocated to (from

top to bottom) subsistence farm, market-oriented farm, and non-

farm wage (NFW) labor.

(TIF)

Figure S10 Measures of model error. (a) Relationship

between distance and Spearman’s Rho for landscape-level,

aggregate land-use/cover category counts in each experimental

combination; (b) distance measure of the landscape-level, aggre-

gate differences in land-use/cover category counts between the

real and modeled (colored points) and null (black line) landscapes;

(c) distance measure of aggregate difference in counts of landscape

cells in land-use/cover categories per counts of landscape cells in

each land suitability class between real and modeled (colored

points) and null (black line) landscapes.

(TIF)

Figure S11 Site characteristics and agent labor alloca-
tion. (a) Comparison of counts per land-use/cover category

between real (blue) and modeled (red) landscapes, (b) model

representation of sample site landscape and (c) land suitability, and

(d) the average percentage across agents of labor allocated to (from

top to bottom) subsistence farm, market-oriented farm, and non-

farm wage (NFW) labor.

(TIF)

Figure S12 Measures of model error. (a) Relationship

between distance and Spearman’s Rho for landscape-level,

aggregate land-use/cover category counts in each experimental

combination; (b) distance measure of the landscape-level, aggre-

gate differences in land-use/cover category counts between the

real and modeled (colored points) and null (black line) landscapes;

(c) distance measure of aggregate difference in counts of landscape

cells in land-use/cover categories per counts of landscape cells in

each land suitability class between real and modeled (colored

points) and null (black line) landscapes.

(TIF)

Supplementary Information S1 Section S1, Site-specific

statistical analyses. Error measurements calculated in Eq. 1 are

disaggregated by land suitability class to evaluate differences

between observed and modeled land-use/cover outcomes. Section

S2, Site-specific descriptions and results. Geographic descriptions

of study sites and site-specific statistics evaluating the agreement

between modeled, null model, and real land-use/cover outcomes.

(DOCX)
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