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A neutralizing human antibody binds to the
N-terminal domain of the Spike protein of SARS-CoV-2
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Developing therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be
guided by the distribution of epitopes, not only on the receptor binding domain (RBD) of the Spike (S) protein
but also across the full Spike (S) protein. We isolated and characterized monoclonal antibodies (mAbs)
from 10 convalescent COVID-19 patients. Three mAbs showed neutralizing activities against authentic
SARS-CoV-2. One mAb, named 4A8, exhibits high neutralization potency against both authentic and
pseudotyped SARS-CoV-2 but does not bind the RBD. We defined the epitope of 4A8 as the N-terminal
domain (NTD) of the S protein by determining with cryo–eletronmicroscopy its structure in complex with the
S protein to an overall resolution of 3.1 angstroms and local resolution of 3.3 angstroms for the 4A8-NTD
interface. This points to the NTD as a promising target for therapeutic mAbs against COVID-19.

T
he global outbreak of COVID-19 has
emerged as a severe threat to human
health (1–3). COVID-19 is caused by a
novel coronavirus, the severe acute re-
spiratory syndrome coronavirus 2 (SARS-

CoV-2), which is an enveloped, positive-strand
RNA virus that causes symptoms such as cough,
headache, dyspnea, myalgia, fever, and severe
pneumonia in humans (1, 3–5).
SARS-CoV-2 is a member of the b corona-

virus genus,which also contains SARS-CoV and
MERS-CoV, which caused epidemics in 2002
and2012, respectively (6, 7). SARS-CoV-2 shares
about 80% sequence identity to SARS-CoV and
uses the same cellular receptor, angiotensin-
converting enzyme 2 (ACE2) (8–16).
The trimeric S protein decorates the sur-

face of coronavirus and plays a pivotal role
during viral entry (17, 18). During infection,
the S protein is cleaved into the N-terminal
S1 subunit and C-terminal S2 subunit by host
proteases such as TMPRSS2 (18, 19) and
changes conformation from the prefusion to
the postfusion state (20). S1 and S2 comprise
the extracellular domain (ECD; 1 to 1208 amino
acids) and a single transmembrane helix and
mediate receptor binding and membrane fu-
sion, respectively (16). S1, which consists of the
N-terminal domain (NTD) and the receptor
binding domain (RBD), is critical in determin-
ing tissue tropism and host ranges (21, 22). The
RBD is responsible for binding to ACE2, where-

as the function of NTD is not well understood.
In some coronaviruses, the NTD may recog-
nize specific sugar moieties upon initial attach-
ment and might play an important role in
the prefusion-to-postfusion transition of the
S protein (23–26). The NTD of the MERS-CoV
S protein can serve as a critical epitope for neu-
tralizing antibodies (26).
The SARS-CoV-2 S protein–targeting mono-

clonal antibodies (mAbs) with potent neutral-
izing activity are a focus in the development of
therapeutic interventions for COVID-19 (27–29).
Many studies reported the functions and struc-
tures of SARS-CoV-2–neutralizing antibodies
that target the RBD and inhibit the associa-
tion between the S protein and ACE2 (28–34).
The RBD-targeting antibodies, applied indi-
vidually, might induce resistance mutations
in the virus (26). Antibodies that target non-
RBD epitopesmight be added to antibody cock-
tail therapeutics for SARS-CoV-2.We thus sought
to identify antibodies to different regions of the
S protein and to the Nucleocapsid (N) protein.

Results
Isolation of human mAbs from memory B cells
and plasma B cells

To isolate mAbs and analyze the humoral
antibody responses to SARS-CoV-2, we col-
lected plasma and peripheral blood mono-
nuclear cells (PBMCs) from 10 Chinese patients
who had recovered fromSARS-CoV-2 infection.
The age of donors ranges from 25 to 53 years.
The interval from disease confirmation date to
blood collection date ranged from23 to 29 days
for patients 1 to 5 and 10 to 15 days for patients
6 to 10 (table S1). We evaluated the titers of
binding antibodies in plasma to different
fragments of the SARS-CoV-2 S protein—
including the full ECD, S1, S2, and the RBD—
and to the N protein. Plasma from all the
patients except donor 2 bound to all five

SARS-CoV-2 protein segments, whereas that
from donor 2 recognized S-ECD and S2 only
(Fig. 1A). The neutralizing capacities of plasma
against authentic SARS-CoV-2andHIV-vectored
pseudotyped SARS-CoV-2 are correlated [cor-
relation coefficient (r) = 0.6868, P < 0.05]
(Fig. 1B). These results indicate that humoral
immune responses were specifically elicited
for all 10 patients during their natural infec-
tion with SARS-CoV-2.
To isolate S protein–specific mAbs, we first

sorted the immunoglobulin G–positive (IgG+)
memory B cells from PBMCs of convalescent
patients 1 to 5 with flow cytometry, using S-ECD
as the probe (Fig. 1C). The percentage of S-ECD–
reactive IgG+ B cells ranges from 0.56 to 11%,
as revealed with fluorescence activating cell
sorting (FACS). To avoid losing B cells with
low copies of S-ECD–specific receptors on cell
surfaces, we sorted plasma B cells frommixed
PBMCs derived from another five convalescent
patients (patients 6 to 10) without using S-ECD
protein as the probe in flow cytometry. The per-
centage of plasma B cells in CD3-CD19+ B cells
was 12.8%, which is higher than the percentage
ofmemory B cells in CD3-CD19+ B cells (Fig. 1C).
From the sorted B cells, we identified 9,

286, 43, 12, and 26 clones of single B cell from
patients 1 to 5, respectively, and 23 clones of
single B cell from the mixed PBMCs of patients 6
to 10 (Fig. 1D). The distribution of the se-
quenced heavy (IgH) gene families was com-
parable among the 10 donors, with VH3 being
the most commonly used VH gene, whereas
different donors displayed variable preferen-
ces for the light chain (IgL) gene families (Fig.
1D). The combination of V3 and J4, V3 andD3,
and D3 and J4 were the most common usage
for the IgH gene family (fig. S1). The average
mutations of amino acids permAb frommem-
ory B cells ranged from 17.50 to 48.04 for do-
nors 1 to 5, respectively, whereas mAbs from
plasma B cells possessed an average of 13.99
amino acidmutations for donors 6 to 10 (Fig. 1E).
Human antibodies elicited through repeated
exposures to different antigens confer an av-
erage of 26.46 amino acid mutations per Ab, as
previously reported (35). These results indicate
that natural SARS-CoV-2 infection elicited high
levels of somatic hypermutation (SHM) inmem-
ory B cells. The lengths of complementarity-
determining region 3 (CDR3) for antibodies
were similar among the donors, with average
lengths of these CDR3 ranging from 13.9 to
17.7 for VH and 9.3 to 10.1 for VL (Fig. 1F). The
CDR3 lengths of these mAbs were longer than
that inantigen-specific immunereceptors (means
of 12.7 for VH and 6.5 for VL, respectively) re-
ported previously (36).

Binding profiles of SARS-CoV-2 S protein–
specific human mAbs

To screen for S protein–specific antibodies, we
determined the binding specificity using enzyme-
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linked immunosorbent assay (ELISA) for the
399 human mAbs sorted above. From donors 1
to 5, respectively, 1, 16, 1, 3, and 9 S-ECD–specific
mAbs were identified. A total of 35 S-ECD–
specific mAbs were identified from donors 6 to
10 (Fig. 2A). We further characterized domain
specificities of the 35 mAbs with different frag-
ments of the S protein, including S1, S2, and
RBD (Fig. 2A). The S-reactive mAbs are classi-
fied into fourmajor groups on the basis of their
medium effective concentration (EC50) values
(Fig. 2A).Group 1 recognizes onlyS-ECD. Group 2
recognizes S-ECD and S1, with subgroup 2A
bindingS-ECD and S1 and subgroup 2B binding
S-ECD, S1, andRBD. Group 3 interacts with both
S1 and S2, where subgroup 3A targets the RBD
and subgroup 3B fails to bind the RBD. Group 4
recognizes S-ECD and S2. Only four mAbs
recognize the RBD among the 35 S-specific
mAbs (Fig. 2, A and B).
We performed a competition-binding assay

using ELISA for several representative mAbs
to determine whether there are overlapping
antigenic sites between different mAbs, with
CR3022 being used as a positive control mAb
that reported to bind the SARS-CoV-2 RBD
(Fig. 2C) (37). Among these mAbs, 4A8 in
group 2A competed with 1M-1D2 in group
2B. Another RBD-reactive mAb, 2M-10B11
in group 2B, competed with CR3022, suggest-
ing overlapped epitopes on RBD for these
two mAbs. These results indicate that anti-
body responses elicited by natural SARS-CoV-2
infection were diverse in epitope recognition
of S proteins.
To characterize the diversity in gene usage

and affinitymaturation, the phylogenetic trees
of these S-ECD–specific mAbs were analyzed
on the basis of the amino acid sequences of
VHDJH and VLJL by using a neighbor-joining
method in MEGA7 Software (38). Results in-
dicate that the VH gene usage is very diverse
among the 35 mAbs from 10 donors, with
VH3-30 being the most frequently used germ-
line gene. There was no particularly favored
VH gene identified among S1, S2, or RBD-
reactive mAbs (Fig. 2D). The percentages of
heavy chain variable gene sequence identity
ranged from 40.9 to 97.6% in the 35 S-ECD–
specific mAbs (fig. S2 and table S2).

Neutralizing activities of SARS-CoV-2 S–specific
human mAbs

We first performed in vitro neutralization
studies of the 35 S-ECD–specific mAbs using
authentic SARS-CoV-2 in Vero-E6 cells (Fig. 3A).
Of the 35 S-ECD–specific mAbs, only three
mAbs neutralized authentic SARS-CoV-2. MAb
1M-1D2, 4A8, and 0304-3H3 exhibitedmedium
to high neutralizing capacity with EC50 of
28, 0.61, and 0.04 mg/ml, respectively. As ex-
pected, the RBD-targeting controlmAb, CR3022,
failed to neutralize authentic SARS-CoV-2 (37).
Moreover, although the CR3022-competing

mAb, 2M-10B11, bound to the SARS-CoV-2
RBD with an EC50 of 5 ng/ml (Fig. 2A), it also
failed to neutralize authentic SARS-CoV-2.
These results suggest that binding affinities

of mAbs against RBD do not correlate fully
with the neutralizing abilities of mAbs. To
further investigate the inhibitory activity of
the three authentic SARS-CoV-2–neutralizing
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Fig. 1. Isolation of antigen-specific mAbs from convalescent patients of SARS-CoV-2. (A) Reactions of
plasma to SARS-CoV-2 proteins. S-ECD (extracellular domain of S protein), S1, S2, RBD (receptor binding
domain), and N protein were used in ELISA to test the binding of plasma. Plasma of heathy donors were
used as control, and cut-off values were calculated as optical density (OD) 450 of control × 2.1. Data were
shown with mean and SD of a representative experiment. (B) The correlations between the authentic
SARS-CoV-2 neutralizing antibody (NAb) titers and the pseudotyped SARS-CoV-2 NAb titers in plasma.
Neutralizing assays of plasma against authentic SARS-CoV-2 were performed by using Vero E6 cells, and
neutralization against pseudotyped SARS-CoV-2 were determined by using ACE2-293T cells. The correlations
were calculated by means of Pearson correlation test in Graphpad 7.0. (C) Flow cytometry sorting from
PBMCs of 10 convalescent patients. (D) Distribution of V gene families in heavy and light chains of all
distinct clones (the total number is shown in the center of the pie charts) for each donor. (E) The number of
amino acid (AA) and total nucleotide (Nt) mutations from the germline of all clonal sequences identified
in (D) is shown. (F) CDR3 amino acid lengths of VH and VL of all clonal sequences identified in (D).
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mAbs—4A8, 0304-3H3, and 1M-1D2—we tested
theRNA load of authentic SARS-CoV-2 in Vero-
E6 cells treated with each mAb using real-time
quantitative polymerase chain reaction (PCR)
(Fig. 3B). Consistent with the cytopathic effect
(CPE) assay results (Fig. 3A), mAbs 0304-3H3
and 4A8 displayed higher inhibitory capacities
than did 1M-1D2 (Fig. 3B).
We next performed luciferase reporter gene

assays for all 35 S-binding mAbs using HIV-
vectored pseudotyped SARS-CoV-2 (39), among
which three mAbs exhibited neutralizing ac-

tivity against the pseudotyped virus (Fig. 3C).
4A8 protected ACE2-293T cells with an EC50
of 49 mg/ml. Although mAb 2M-10B11 and 9A1
did not neutralize authentic SARS-CoV-2, 2M-
10B11 protected against pseudotyped viruswith
an EC50 of 170 mg/ml, and 9A1 provided weak
protection. To our surprise, neutralization by
0304-3H3 and 1M-1D2 was not observed (Fig.
3C). The inconsistency between the results
for pseudotyped SARS-CoV-2 compared with
authentic SARS-CoV-2 were also observed for
mAbs against MERS-CoV (40, 41) and may be

caused by the different presentation of S pro-
tein resulted from the different environmental
factors the viruses underwent, such as the cells
used for the neutralizing assays or for the pro-
duction of the pseudotyped or authentic virions
(42). On the basis of these results, 4A8 is a po-
tential candidate for the treatment of SARS-
CoV-2 because it displayed strong neutralizing
capacities against both authentic and pseudo-
typed SARS-CoV-2.

Binding characterization of candidate mAbs

To determine the possible neutralizing mech-
anism of themAbs, we determined the binding
affinities of the fivemAbswith potential neutral-
izing activity against different segments of the S
protein—including the full S-ECD and domains
S1, S2, and RBD—using biolayer interferometry
(BLI). All five testedmAbs bound to S-ECDwith
high affinity; equilibrium dissociation constants
(Kd) were less than 2.14 nM (Fig. 4A). 4A8 and
1M-1D2 bound to S1 withKd of 92.7 and 108 nM,
respectively, whereas 0304-3H3 and9A1 targeted
S2 with Kd of 4.52 and <0.001 nM, respectively
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(Fig. 4A, bottom). Moreover, 2M-10B11 bound
the RBD with Kd of 24.3 nM, which was ob-
tained by using heterogeneous ligand model
owing to the avidity effects (Fig. 4A, bottom).
To investigatewhether thesemAbs block the

binding of S protein to ACE2, we performed
flow cytometry using human embryonic kid-
ney (HEK) 293T cells expressing human ACE2.
As expected, only 2M-10B11 among the five
mAbs and ACE2-Fc prevented S protein from
binding to ACE2. In the presence of 2M-10B11,
only 0.52% of cells were double positive for
IgG and S protein (Fig. 4B). CR3022, which
competes with 2M-10B11, did not block the
binding of S to ACE2. The control mAb 1A8,
targeting the Marburg glycoprotein, did not
interfere with the binding either, and the 5.13%
of double positives may be due to the non-
specific binding of 1A8 to S protein. 4A8 also
failed to interfere with the binding of the S
protein to ACE2.

Cryo-EM structure of the complex between
4A8 and S-ECD

The mAb 4A8 was overexpressed and purified
by Protein A resin, and the S-ECD of SARS-
CoV-2 was purified through M2 affinity resin
and size exclusion chromatography (SEC). 4A8
and S-ECD protein were mixed and incubated
at a stoichiometric ratio of ~1.2 to 1 for 1 hour
and applied to SEC to remove excess proteins
(fig. S3A). The fraction containing the complex

was concentrated for cryo–electron micros-
copy (cryo-EM) sample preparation.
To investigate the interactions between 4A8

and the S protein, we solved the cryo-EM
structure of the complex at an overall resolu-
tion of 3.1 Å (Fig. 5 and movie S1). Details of
cryo-EM sample preparation, data collection
and processing, and model building can be
found in in the supplementary materials,
materials and methods (figs. S3 to S5). The
S protein exhibits asymmetric conformations
similar to the previously reported structures
(21, 22), with one of three RBDs in “up” con-
formation and the other two RBDs in “down”
conformation (Fig. 5).

Recognition of the NTD by 4A8

In the S protein–4A8 complex, each trimeric
S protein is bound with three solved 4A8
Fabs, each of which interacts with one NTD
of the S protein. Despite the different confor-
mations of the three S protein protomers,
the interface between 4A8 and each NTD is
identical (Fig. 5 and fig. S3I). The map quality
at the NTD-4A8 region was improved through
focused refinement to a local resolution of 3.3 Å,
enabling reliable analysis of the interactions
between the NTD and 4A8.
Association with 4A8 appears to stabilize

the NTD epitope, which is invisible in the
reported S protein structure alone (21, 22).
Supported by the high resolution of NTD, we

were able to build the structural model for
five new loops for NTD, designated N1 (resi-
dues 14 to 26), N2 (residues 67 to 79), N3 (resi-
dues 141 to 156), N4 (residues 177 to 186), and
N5 (residues 246 to 260), among which the N3
and N5 loopsmediate the interaction with 4A8
(fig. S5A). Besides, three new glycosylation sites
(Asn17, Asn61, and Asn149) on the NTD are iden-
tified in this structure (fig. S6).
The heavy chain of 4A8 mainly participates

in binding to the NTD mainly through three
complementarity-determining regions (CDRs),
named CDR1 (residues 25 to 32), CDR2 (resi-
dues 51 to 58), and CDR3 (residues 100 to 116)
(Fig. 6A and fig. S5B). The interface is con-
stituted by an extensive hydrophilic interac-
tion network, and the buried surface area at
the 4A8-NTD interface is 832 Å2. Arg246 on
the N5 loop of the NTD represents one dock-
ing site, which is stabilized by Trp258, simul-
taneously interacting with Tyr27 and Glu31 of
4A8 on CDR1 (Fig. 6B). On the N3 loop of the
NTD, Lys150 and Lys147 respectively form salt
bridges with Glu54 and Glu72 of 4A8 (Fig. 6C).
Lys150 is also hydrogen (H)–bondedwith 4A8-
Tyr111, while His146 forms a H-bond with 4A8-
Thr30 (Fig. 6C). In addition to the hydrophilic
interactions, Trp152 and Tyr145 on the N3 loop
of the NTD also interact with Val102, Pro106,
and Phe109 on the CDR3 of 4A8 through hy-
drophobic and/or p-p interactions (Fig. 6D).
Additionally, the glycosylation site of Asn149 on
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Fig. 4. 4A8 did not block the binding of Spike protein to ACE2 receptor.
(A) BLI sensorgrams and kinetics of mAbs binding to S proteins. Global
fitting curves are shown as black lines. The Kd were calculated by using a
1:1 binding model in Data Analysis Software 9.0, except for 2M-10B11,
which used a heterogeneous ligand model owing to avidity effect. (B) The
binding of S protein to human ACE2-overexpressing 293T cells were deter-
mined by means of flow cytometry. After the preincubation of S protein

with each indicated mAb, the mAb-S mixtures were added to the ACE2-
expressing cells. Cells were stained with anti-human IgG fluorescein
isothiocyanate (mAb binding, x axis) and anti-His (S binding, y axis).
Percentages of double-positive cells are shown. Control mAb CR3022 and
1A8 were previously reported to bind SARS-CoV RBD and Marburg
glycoprotein, respectively, and ACE2-Fc protein was a human ACE2 protein
conjugated with human Fc.
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the NTD is close to the 4A8-NTD interface, of
which N-glycansmight participate in the inter-
actions on the interface (Fig. 6A and fig. S6).

Discussion

There is an urgent need for prophylactic and
therapeutic interventions for SARS-CoV-2 in-
fections given the ongoing COVID-19 pandemic.
Our work reveals that naturally occurring
human SARS-CoV-2 mAbs isolated from the
B cells of 10 recovered donors are diverse in
gene usage and epitope recognition of S pro-
tein. The majority of the isolated mAbs did
not recognize the RBD, and all the mAbs that
neutralize authentic SARS-CoV-2 failed to in-
hibit the binding of S protein to ACE2. These
unexpected results suggest the presence of
other important mechanisms for SARS-CoV-2
neutralization in addition to suppressing the
viral interaction with the receptor.
The S1-targeting mAb 4A8 does not block

the interaction between ACE2 and S protein
but exhibits high levels of neutralization against
both authentic and pseudotyped SARS-CoV-2
in vitro.Many neutralizing antibodies against
SARS-CoV-2 were reported to target the RBD
of the S protein and block the binding be-
tween RBD and ACE2 (28–30, 32–34). Our
results show that 4A8 binds to the NTD of
S protein with potent neutralizing activity.
Previous study has shown that mAb 7D10
could bind to the NTD of S protein of MERS-
CoV probably by inhibiting the RBD-DPP4
binding and the prefusion-to-postfusion con-
formational changeof S protein (26).Wealigned
the crystal structure of 7D10 in complex with
the NTD of S protein of MERS-CoV with our
complex structure and found that the inter-
faces between the mAb and the NTDs are par-
tially overlapped (fig. S7). 7D10 may inhibit
the interaction betweenMERS-CoV and DPP4
through its light chain, which is close to the

RBD. In our complex, the light chain of 4A8 is
away from the RBD (fig. S7). Therefore, we spe-
culate that 4A8mayneutralize SARS-CoV-2 by
restraining the conformational changes of the
S protein. Furthermore, sequence alignment
of the S proteins from SARS-CoV-2, SARS-CoV,
and MERS-CoV revealed varied NTD surface
sequences that are respectively recognized by
different mAbs (fig. S8).

This work reports a fully human neutraliz-
ing mAb recognizing a vulnerable epitope of
NTD on S protein of SARS-CoV-2, functioning
with a mechanism that is independent of re-
ceptor binding inhibition. Combination of 4A8
with RBD-targeting antibodies may avoid the
escaping mutations of the virus and serve as
promising “cocktail” therapeutics. The infor-
mation obtained from these studies can be
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Fig. 5. Cryo-EM structure of the 4A8 and S-ECD complex. The domain-colored cryo-EM map of the complex is shown on the left, and two perpendicular views of
the overall structure are shown on the right. The heavy and light chains of 4A8 are colored blue and magenta, respectively. The NTDs of the trimeric S protein are
colored orange. The one “up” RBD and two “down” RBDs of trimeric S protein are colored green and cyan, respectively.

Fig. 6. Interactions between the NTD and 4A8. (A) Extensive hydrophilic interactions on the interface
between NTD and 4A8. Only one NTD-4A8 is shown. (B to D) Detailed analysis of the interface between NTD
and 4A8. Polar interactions are indicated by red dashed lines. The residues involved in hydrophobic
interactions are presented as spheres.
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used for development of the structure-based
vaccine design against SARS-CoV-2.
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