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Abstract
Deciduous	and	evergreen	trees	differ	in	their	responses	to	drought	and	nitrogen	(N)	
demand.	Whether	or	not	these	functional	types	affect	the	role	of	the	bacterial	com-
munity	 in	 the	N	 cycle	 during	 drought	 remains	 uncertain.	 Two	deciduous	 tree	 spe-
cies	 (Alnus cremastogyne,	 an	N2-	fixing	species,	and	Liquidambar formosana)	and	two	
evergreen	trees	(Cunninghamia lanceolata	and	Pinus massoniana)	were	used	to	assess	
factors	 in	controlling	rhizosphere	soil	bacterial	community	and	N	cycling	functions.	
Photosynthetic	 rates	 and	biomass	production	of	plants,	16S	 rRNA	sequencing	and	
N-	cycling-	related	genes	of	rhizosphere	soil	were	measured.	The	relative	abundance	
of	 the	phyla	Actinobacteria	and	Firmicutes	was	higher,	 and	 that	of	Proteobacteria,	
Acidobacteria,	 and	Gemmatimondaetes	was	 lower	 in	 rhizosphere	 soil	of	deciduous	
trees	than	that	of	evergreen.	Beta-	diversity	of	bacterial	community	also	significantly	
differed	between	the	two	types	of	trees.	Deciduous	trees	showed	significantly	higher	
net	photosynthetic	rates	and	biomass	production	than	evergreen	species	both	at	well	
water	condition	and	short-	term	drought.	Root	biomass	was	the	most	important	factor	
in	driving	 soil	bacterial	 community	and	N-	cycling	 functions	 than	 total	biomass	and	
aboveground	biomass.	Furthermore,	44	bacteria	genera	with	a	decreasing	response	
and	46	taxa	showed	an	increased	response	along	the	root	biomass	gradient.	Regarding	
N-	cycle-	related	functional	genes,	copy	numbers	of	ammonia-	oxidizing	bacteria	(AOB)	
and	autotrophic	ammonia-	oxidizing	archaea	(AOA),	N2	fixation	gene	(nifH),	and	deni-
trification	genes	(nirK,	nirS)	were	significantly	higher	in	the	soil	of	deciduous	trees	than	
in	that	of	the	evergreen.	Structural	equation	models	explained	50.2%,	47.6%,	48.6%,	
49.4%,	and	37.3%	of	the	variability	in	copy	numbers	of	nifH,	AOB,	AOA,	nirK,	and	nirS,	
respectively,	and	revealed	that	root	biomass	had	significant	positive	effects	on	copy	
numbers	of	all	N-	cycle	functional	genes.	In	conclusion,	root	biomass	played	key	roles	
in	affecting	bacterial	community	structure	and	soil	N	cycling.	Our	findings	have	im-
portant	implications	for	our	understanding	of	plants	control	over	bacterial	community	
and	N-	cycling	function	in	artificial	forest	ecosystems.
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1  |  INTRODUC TION

Global	climate	change	is	likely	to	increase	frequencies	and	severity	
of	droughts,	imposing	soil	water	deficit	stress	on	trees,	which	will	
markedly	 reduce	 productivity	 of	 plantations	 and	 natural	 forests	
(Gillespie	 et	 al.,	2020;	 Pardos	 et	 al.,	2021).	 Compared	 to	mono-
cultures,	 diverse	 plant	 communities	 are	 more	 likely	 to	 increase	
productivity	and	be	more	resistant	and	resilient	to	drought	(Chen	
et	 al.,	 2021;	 Pardos	 et	 al.,	 2021).	 Increasing	 evidence	 suggests	
that	the	different	drought-	resistant	abilities	have	been	deeply	im-
pacted	by	soil	microbial	communities	(Castro	et	al.,	2019;	Osburn	
et	 al.,	2021).	 Changes	 in	 the	 bacterial	 community	 in	 the	 face	 of	
drought	decline	soil	nitrogen	(N)	availability	through	impacting	soil	
N	cycling	process	(Chen	et	al.,	2021;	Wang	et	al.,	2021).	However,	
greater	microbial	 diversity	 in	more	 diverse	 forests	 is	 thought	 to	
be	 beneficial	 to	 facilitate	 efficient	 nutrient	 cycling	 process	 thus	
potentially	 better	 sustaining	 forest	 functions	 and	 stability	 com-
pared	 to	 monospecific	 forests	 (Gillespie	 et	 al.,	 2020;	 Naylor	 &	
Coleman-	Derr,	2018).

The	N	fixation,	nitrification,	and	denitrification	are	key	N	cy-
cling	processes	 in	soils,	which	are	 largely	determined	by	specific	
microbial	 guilds	 and	 tightly	 connected	 with	 soil	 properties	 in-
cluding	water	availability	and	pH	(Bowen	et	al.,	2020;	McCulloch	
et	al.,	2020).	Symbiotic	N	fixation	by	N2-	fixing	plants	constitutes	
the	 largest	 natural	 input	 of	 N	 into	 forest	 ecosystems	 (Ngom	
et	 al.,	 2016).	Ammonia-	oxidizing	bacteria	 (AOB)	 and	 autotrophic	
ammonia-	oxidizing	 archaea	 (AOA)	 have	 been	 primarily	 used	 to	
study	nitrifying	microbial	 communities	 (Guo	et	 al.,	2021; Trivedi 
et	al.,	2019).	Genes	(nirK	and	nirS)	reflecting	denitrifying	microbial	
communities	encode	nitrite	reductase	to	transform	nitrite	to	nitric	
oxide	(Bowen	et	al.,	2020;	Moreau	et	al.,	2015).	A	lower	soil	water	
availability	 reduced	N	cycling	by	 limiting	extracellular	enzymatic	
activities	 and	 impacting	 the	N	 fixation,	 denitrifying	 or	 nitrifying	
microbial	 communities	 (Bowen	 et	 al.,	2020;	 Castro	 et	 al.,	2019; 
Guo	et	al.,	2021).

In	addition	to	effects	of	soil	properties,	plants	can	also	strongly	
regulate	soil	microbial	communities	and	microbially	driven	N-	cycling	
processes	through	litter	or	diverse	root-	derived	inputs	of	labile	or-
ganic	 compounds	 (Henneron	 et	 al.,	2020;	Mushinski	 et	 al.,	2020).	
The	 rhizosphere	 soil	 hosts	diverse	microbial	 communities	 that	 are	
crucial	 to	promote	plant	nutrient	acquisition	and	resistance/	toler-
ance	 to	abiotic	stressors	 (Moreau	et	al.,	2015;	Naylor	&	Coleman-	
Derr,	 2018).	 The	 N2-	fixing	 plants	 enhance	 N	 fixation	 ability	 by	
promoting	 photosynthesis	 and	 root-	derived	 carbon	 releasing	 to	
rhizosphere	 soil.	 Symbiotic	 N	 fixation	 is	 costly,	 and	 allocation	 of	
labile	carbon	(C)	to	root	nodules	of	N2-	fixing	plants	can	be	greatly	
reduced	due	to	decreased	photosynthetic	C	fixation	during	drought	
(Minucci	et	al.,	2019).	Plants	are	proposed	to	control	soil	N	cycling	

in	the	rhizosphere	to	sustain	their	nutrition	and	growth	(Henneron	
et	al.,	2020).	However,	the	impacts	on	microbial	community	and	N-	
cycling	functions	among	plants	with	different	N	demand	in	response	
to	drought	need	more	research.

McCulloch	et	al.	 (2020)	showed	that	drought	reduced	symbi-
otic	N	fixation	by	reducing	nodule	biomass	and	nitrogenase	activ-
ity	in	eight	N2-	fixing	species.	Root-	nodule	symbiosis	of	actinorhizal	
plants	and	bacteria	of	the	genus	Frankia	is	an	important	pathway	
of	new	N	 input	 into	 forest	ecosystems,	 in	addition	 to	symbioses	
of	 legumes	 and	 Rhizobium	 bacteria	 (Ngom	 et	 al.,	 2016; Tobita 
et	 al.,	 2015).	The	actinorhizal	plants	play	 crucial	 roles	 in	 replen-
ishing	soil	nutrients	of	agroforestry	and	improving	bacterial	com-
munity	 in	degraded	 land	 (Farías	et	al.,	2009;	Ngom	et	al.,	2016).	
Among	actinorhizal	plants,	 species	belonging	 to	 the	genus	Alnus 
are	distributed	worldwide	and	have	been	cultivated	 in	monocul-
ture	for	revegetating	or	rehabilitating	disturbed	habitats	and	com-
mercial	production	(Tobita	et	al.,	2015;	Uri	et	al.,	2014).	Henneron	
et	al.	 (2020)	concluded	that	acquisitive	species	with	higher	pho-
tosynthesis	 and	 N	 uptake	 induced	 a	 stronger	 acceleration	 of	 N	
cycling	 than	 conservative	 species	 in	 rhizosphere	 soil.	Deciduous	
and	evergreen	trees	represent	opposite	extremes	along	“leaf	eco-
nomics	spectrum,”	which	ranks	from	acquisitive	and	fast-	growing	
to	 conservative	 and	 slow-	growing	 traits	 (Wright	 et	 al.,	 2004).	
Deciduous	trees	with	greater	specific	root	length	and	specific	leaf	
area	 show	 higher	 N	 uptake	 and	 photosynthetic	 capacity,	 grow-
ing	 faster	 than	evergreen	 trees	 (Baldocchi	 et	 al.,	2010;	Cantarel	
et	al.,	2015;	Wright	et	al.,	2004).	Growth	of	the	deciduous	species	
is	more	closely	coupled	to	soil	nutrient	availability	than	evergreen	
species	 (Gray	&	Schlesinger,	1983).	Higher	N	demand	of	decidu-
ous	trees	may	accelerate	N	cycling	by	imposing	different	selective	
pressures	on	soil	bacterial	community	structures	compared	with	
evergreen	species.	Therefore,	in	the	present	study,	we	examined	
responses	 of	 soil	 bacterial	 community	 and	 functions	 associated	
with	 deciduous	 and	 evergreen	 trees	 to	 short-	term	 drought.	We	
predicted	higher	number	of	N-	cycling-	related	bacteria	species	 in	
soil	of	deciduous	trees	due	to	higher	N	demands	than	evergreen	
trees.	 In	 addition,	 the	 crucial	 factors	 driving	 soil	 bacterial	 com-
munity	and	N-	cycling	function	of	deciduous	and	evergreen	trees	
under	soil	water	deficit	were	elucidated.

2  |  MATERIAL AND METHODS

2.1  |  Experimental design

Cunninghamia lanceolata,	 Pinus massoniana,	 Alnus cremastogyne,	
and	Liquidambar formosana	are	important	tree	species	in	monocul-
tures	and	mixed	plantations	(Wang	et	al.,	2009;	Wu	et	al.,	2021).	

T A X O N O M Y  C L A S S I F I C A T I O N
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The	 first	 two	are	coniferous	evergreen	 trees,	and	 the	 latter	 two	
are	broadleaf	deciduous	species.	Soils	collected	from	a	degraded	
land	 (0–	20 cm	depth)	were	homogenized	 after	 removing	 gravels,	
roots	and	plant	litter.	One-	year-	old	C. lanceolata,	P. massoniana,	A. 
cremastogyne	and	L. formosana	trees	collected	from	a	local	nursery	
garden	near	the	experiment	site	(30°19	N,	120°23	E)	and	30	indi-
viduals	per	species	were	planted	in	plastic	pots	(30 cm	external	di-
ameter	and	21 cm	height,	one	individual	per	pot)	in	mid-	December	
2018.	After	 5	months,	we	 selected	16	 individuals	 of	 similar	 size	
and	 growth	 performance	 per	 species	 (May	 28,	 2019).	 We	 sub-
jected	all	species	to	two	treatments	(water	vs.	drought);	soil	water	
content	was	maintained	at	approximately	80%	field	capacity	(ap-
proximately	27.8%	soil	water)	in	the	well	water	treatment	and	30%	
field	 capacity	 (approximately	 10.6%	 soil	 water)	 in	 the	 drought	
treatment.	The	pots	were	weighed	every	day	to	monitor	soil	water	
content	 and	 the	 lost	water	was	 replenished	 in	 time.	 Eight	 repli-
cates	 per	 treatment	were	 used.	 The	 experiment	was	 conducted	
in	a	greenhouse	at	Hangzhou	Normal	University,	China	(30°19	N,	
120°23	E).

2.2  |  Gas exchange measurements and harvesting

The	 net	 photosynthetic	 rate	 per	 treatment	 (eight	 replicates)	 was	
measured	 using	 an	 LI-	6400	 photosynthesis	 system	 (Li-	Cor)	 under	
the	 following	 conditions:	 photosynthetic	 photon	 flux	 density	
1500 μmol m−2 s−1,	 28°C	 leaf	 temperature,	 70%	 relative	 humidity,	
and	400 μmol mol−1 CO2.	Measurements	were	made	from	July	29	to	
August	1,	2019.	We	harvested	all	plants	on	August	30,	2019,	and	all	
samples	(root,	stem,	and	leaf)	were	dried	at	75°C	for	72 h.

2.3  |  Rhizosphere soil physicochemical properties

Soil	adhering	 to	 root	was	defined	as	 rhizosphere	soil.	Rhizosphere	
soil	samples	were	collected	by	carefully	removing	soil	from	the	root	
surface	 after	 harvesting	 the	 plants.	 Four	 soil	 replicates	 of	P. mas-
soniana	in	the	water	treatment	were	discarded	because	of	technical	
errors	 during	 transport.	 Subsamples	 of	 rhizosphere	 soil	 were	 air-	
dried	to	measure	pH,	total	phosphorus,	available	phosphorus,	total	
N,	and	ammonium	(NH+

4
-	N)	and	were	determined	according	to	Guo	

et	al.	(2019).	In	brief,	soil-	water	suspension	(1:2.5	w/v)	was	used	for	
pH	determination.	Soil	extractions	with	50	ml	2	M	KCl	were	used	
to	determine	NH+

4
.	Soil	digested	by	H2SO4	and	HClO4	was	used	to	

measure	 total	 phosphorus	 through	molybdenum	blue	 colorimetry.	
Soil	 extractions	 with	 sodium	 bicarbonate	 was	 used	 to	 determine	
available	 phosphorus.	 The	 soil	 organic	 matter	 was	 measured	 ac-
cording	to	Guo	et	al.	(2021).	Summary	of	soil	properties	is	shown	in	
Table S1.	Further	subsamples	of	fresh	rhizosphere	soil	were	stored	
at	4°C,	 and	activities	of	β-	1,4-	N-	acetylglucosaminidase	 (NAG)	 and	
β-	D-	glucosidase	 were	 assessed	 using	 respective	 ELISA	 kits.	 NAG	
and	β-	D-	glucosidase	are	related	to	chitin	and	cellulose	degradation,	
respectively	(Jing	et	al.,	2020).

2.4  |  16S rRNA sequencing and real- time 
quantitative PCR

Soil	 subsamples	were	stored	at	−80°C	until	DNA	extraction.	Total	
DNA	was	extracted	from	fresh	soil	 (0.5	g)	using	a	kit	 (Omega	Bio-	
tek),	and	DNA	quality	was	assessed	using	1%	agarose	gel	electropho-
resis.	 The	 16S	 primers	 338F	 (5′-	ACTCCTACGGGAGGCAGCAG-	3′)	
and	806R	 (5′-	GGACTACHVGGGTWTCTAAT-	3′)	 targeting	 the	V3–	
V4	region	were	used	for	PCR	amplification,	followed	by	paired-	end	
sequencing	 on	 a	MiSeq	 platform	 (Illumina;	 Guo	 et	 al.,	2021).	 The	
PCR	 amplification	 steps	 followed:	 initial	 denaturation	 (3	 min)	 at	
95°C,	27 cycles	 (30 s)	 at	 95°C,	 annealing	 (30 s)	 at	 55°C,	 elongation	
(45 s)	at	72°C,	and	a	final	extension	(10	min)	at	72°C.	PCR	reactions	
were	performed	in	triplicate	20 μl	mixture.	Raw	FASTQ	reads	were	
demultiplexed,	quality	filtered.	More	details	concerning	the	process	
on	raw	reads	are	shown	in	the	supplementary	materials.	All	bacte-
rial	sequences	were	assigned	to	operational	taxonomic	units	(OTUs)	
using	the	SILVA	database	and	the	UPARSE	pipeline	at	97%	similarity	
(Quast	et	al.,	2013).

DNA	 extracts	 were	 also	 subjected	 to	 quantitative	 PCRs	
(qPCRs)	 to	 quantitate	 copy	 numbers	 of	 N-	cycling	 genes:	 ammo-
nia	 monooxygenase	 (amoA)	 genes	 of	 AOA,	 AOB,	 nifH,	 nirS	 and	
nirK.	 The	 following	 primer	 combinations	 were	 used:	 AOA	 for-
ward:	 5′-	ATGGTCTGGCTWAGACG-	3′,	 reverse:	 5′-	GCCATCCATC	
TGTATGTCCA-	3′;	AOB	forward:	5′-	GGAGRAAAGCAGGGGATCG-	3′,	
reverse:	5′-	CTAGCYTTGTAGTTTCAAACGC-	3′;	nifH	forward:	5′-	TG	
CGAYCCSAARGCBGACTC-	3′,	reverse:	5′-	ATSGCCATCATYTCRCCG	
GA-	3′;	 nirS	 forward:	 5′-	AACGYSAAGGARACSGG-	3′,	 reverse:	
5′-	GASTTCGGRTGSGTCTTSAYGAA-	3′;	 and	 nirK	 forward:	 5′-	TGC
ACATCGCCAACGGNATGTWYGG-	3′,	 reverse:	 5′-	TGCACATCGCC
AACGGNATGTWYGG-	3′.	More	details	 concerning	 the	process	 on	
qPCR	are	 shown	 in	 the	 supplementary	materials.	 Standard	 curves	
for	 each	 functional	 gene	 were	 produced	 according	 to	 Frey	 and	
Rieder	(2013).

2.5  |  Statistical analyses

We	used	a	two-	way	analysis	of	variance	 (ANOVA)	to	 identify	the	
effects	 of	 species,	 drought,	 and	 their	 interaction	 terms	 on	 plant	
biomass,	enzyme	activity,	and	bacterial	alpha-	diversity.	We	named	
a	factor	‘leaf	habit’	to	indicate	deciduous	and	evergreen	tree	spe-
cies	 in	 the	present	 study	 in	 order	 to	 compare	 their	 effects	 com-
bined	with	 drought	 on	 net	 photosynthetic	 rate,	 enzyme	 activity,	
qPCR	results,	and	bacterial	alpha-	diversity	using	two-	way	ANOVA	
following	 Tukey's	 b	 post	 hoc	 test	 in	 case	 of	 significant	 interac-
tions.	 Relative	 abundances	 of	 bacterial	were	 analyzed	 at	 phylum	
and	 genus	 level	 between	 deciduous	 and	 evergreen	 trees	 with	
independent-	samples	 T	 test.	 Bacterial	 beta-	diversity	 was	 ordi-
nated	using	nonmetric	multidimensional	scaling	(NMDS)	based	on	
Bray–	Curtis	distances.	PERMANOVA	using	the	“adonis”	function	of	
the	“vegan”	in	R	software	was	used	to	find	significant	differences	
in	 soil	 bacterial	 community	 dissimilarity	 (Oksanen	 et	 al.,	 2020).	
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“Ward.	D2”	 function	was	used	 to	perform	hierarchical	 clustering	
analysis	based	on	Bray–	Curtis	distances	of	bacterial	OTUs	from	all	
samples,	and	the	silhouette	width	method	 in	R	decided	the	num-
ber	of	clusters	to	be	used	(Xiong	et	al.,	2021).	The	Spearman	cor-
relations	between	characters	of	bacterial	community	(the	relative	
abundance	of	the	major	bacterial	phyla),	soil	properties	and	plant	
growth	versus	functions	in	enzyme	activities	and	N-	cycling-	related	
genes.	The	multiple	regression	model	with	variance	decomposition	
analysis	was	applied	to	estimate	the	importance	of	the	importance	
of	 soil,	 plant,	 and	 bacterial	 characteristics	 in	 driving	 the	 studied	
enzyme	 activities	 and	N-	cycling-	related	 functional	 genes	 follow-
ing	descriptions	in	Jiao	et	al.	 (2020).	After	checking	potential	col-
linearity,	 distance-	based	 redundancy	 analysis	 (db-	RDA)	 was	 also	
performed	using	‘vegan’	package.	Network	analysis	was	conducted	
and	 visualized	 using	 Cytoscape	 v.	 3.5	 and	 Gephi,	 respectively	
(Bastian	et	al.,	2009;	Shannon	et	al.,	2003).	Robust	Spearman	cor-
relation	scores	(Spearman's	|r| > .5)	and	statistically	significant	cor-
relations	were	tested	(p < .01).	Network	complexity	and	hub	nodes	
in	 co-	occurrence	 networks	 were	 tested	 as	 described	 by	 Xiong	
et	al.	 (2021).	Soil	bacterial	community	change	along	the	root	bio-
mass	gradient	was	analyzed	using	threshold	indicator	taxa	analysis	
(Baker	et	al.,	2015).	We	used	bootstrapping	(n =	500)	to	estimate	
uncertainty	around	the	environmental	change	points	 for	each	 in-
dicator	 taxa.	Structural	equation	models	 (SEM)	were	used	to	test	
the	effects	of	 root	biomass	on	each	N-	cycling	 function	using	 the	
‘lavaan’	package	(Rosseel,	2012).	The	model	was	fitted	according	to	

chi-	squared	tests,	a	high	comparative	fit	 index	(≥0.90),	a	 low	root	
means	square	error	of	approximation	index	(≤0.1),	and	a	low	stand-
ardized	root	means	square	residual	index	(≤0.1).

3  |  RESULTS

3.1  |  Plant performance in carbon fixation and 
biomass production

The	largest	root	biomass	was	produced	by	A. cremastogyne	in	the	water	
treatment	(Table 1).	Root	biomass	of	L. formosana	and	A. cremastogyne 
was	significantly	smaller	in	the	drought	than	in	the	water	treatment,	
but	root	biomass	of	C. lanceolata	and	P. massoniana	was	not	signifi-
cantly	smaller	 in	the	drought	than	 in	the	water	treatment	 (Table 1).	
Deciduous	trees	showed	significantly	higher	net	photosynthetic	rates	
than	evergreen	both	at	well	water	 (12.86	vs.	7.46 μmol m−2 s−1)	 and	
drought	treatment	(5.45	vs.	1.63 μmol m−2 s−1;	Figure	S1).

3.2  |  Composition, diversity, and structure of 
bacterial community

Proteobacteria,	 Actinobacteria,	 Chloroflexi,	 Acidobacteria,	
Firmicutes,	 and	 Gemmatimondaetes	 were	 the	 six	 most	 abundant	
soil	 bacterial	 phyla.	 The	 drought	 treatment	 did	 not	 significantly	

Aboveground 
biomass (g) Root biomass (g)

Total 
biomass (g)

Liquidambar formosana

Control 59.09 ± 1.77a 6.86 ± 0.38c 65.95 ± 1.64a

Drought 30.95 ± 1.92b 5.22 ± 0.29d 36.17 ± 1.97b

Alnus cremastogyne

Control 23.70 ± 1.54c 12.66 ± 0.46a 36.35 ± 1.80b

Drought 14.33 ± 1.20de 8.39 ± 0.35b 22.72 ± 1.42c

Cunninghamia lanceolata

Control 19.60 ± 1.64 cd 4.50 ± 0.29de 24.10 ± 1.87c

Drought 12.13 ± 1.47e 3.02 ± 0.29e 15.15 ± 1.70d

Pinus massoniana

Control 4.32 ± 0.55f 0.56 ± 0.05f 4.87 ± 0.54e

Drought 4.04 ± 0.69f 0.49 ± 0.07f 4.53 ± 0.68e

Significant	effects

Species (243.616)*** (303.968)*** (255.620)***

Drought (105.581)*** (62.706)*** (122.493)***

Species × drought (29.325)*** (13.596)*** (26.346)***

Note:	A	two-	way	analysis	of	variance	was	used	to	test	the	effect	of	plant	species,	drought,	and	
their	interactions	on	growth	characteristics.	Different	lowercase	letters	in	the	column	indicate	
significant	differences.	Significant	effects	of	factors	and	interactions	(×)	are	indicated.	Numbers	in	
brackets	indicate	F	values.
Abbreviation:	NS,	not	significant.
***p ≤ .001.

TA B L E  1 Growth	characteristics	of	
four	tree	species	in	response	to	two	soil	
water levels
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affect	the	relative	abundances	of	each	phylum	(Figure 1a).	However,	
Actinobacteria	and	Firmicutes	in	the	soil	of	deciduous	trees	showed	
higher	 relative	 abundances,	 whereas	 those	 of	 Proteobacteria,	
Acidobacteria,	 and	 Gemmatimondaetes	 were	 lower	 in	 deciduous	
than	in	coniferous	tree	soils	(Figure 1a).	The	dominant	bacterial	taxa	
at	 genus	 level	were	 also	 significantly	 different	 between	deciduous	
and	coniferous	tree	soils	(Figure 1b).	For	example,	the	relative	abun-
dance	of	Arthrobacter	and	Bacillus	in	deciduous	tree	soils	were	signifi-
cantly	higher	than	in	coniferous.

Shannon	diversity	 in	the	L. formosana	soil	community	after	the	
drought	was	significantly	higher	than	under	well-	watered	conditions	
(Figure 2a).	 Shannon	 diversity	 of	 C. lanceolata	 and	 P. massoniana 
soil	 communities	 tended	 to	 be	 higher	 than	 those	 of	 communities	
associated with L. formosana	 and	 A. cremastogyne.	 Soil	 bacterial	
alpha-	diversity	in	the	soil	of	deciduous	species	was	significantly	in-
creased	by	drought,	whereas	that	 in	 the	soil	of	coniferous	species	
did	not	differ	significantly	between	water	and	drought	treatments	
(Figure 2b).	Plants	significantly	affected	richness	of	bacterial	com-
munity	(Figure	S2).	Regarding	bacterial	beta-	diversity,	clustering	and	
NMDS	analyses	showed	a	clear	separation	between	broadleaf	de-
ciduous	and	coniferous	trees	soil	communities	(Figure 2c,d).

Drought	and	species	exerted	specific	effects	on	network	traits,	
such	 as	 clustering	 coefficients,	 positive/negative	 relationships,	
modularity,	 and	 hub	 node	 number	 (Figure 3;	 Figure	 S2; Table 2).	
Regarding	plant	 leaf	habit,	drought	declined	positive	 relationships,	
average	degree,	clustering	coefficients,	and	hub	nodes	but	increased	
negative	 relationships	 and	path	distance.	Modularity	was	 reduced	

in	broadleaf	deciduous	trees	but	increased	in	coniferous	evergreen	
trees	in	the	drought	treatment	(Table 2;	Figure	S3).

3.3  |  Nitrogen- cycling functions

Soil	β-	D-	glucosidase	in	P. massoniana	and	NAG	in	C. lanceolata showed 
the	highest	activity	in	the	water	treatment	(Figure	S4a,b),	and	NAG	ac-
tivity	was	significantly	higher	in	the	soil	of	evergreen	than	in	that	of	de-
ciduous	trees	(Figure	S4).	Soil	AOA,	AOB,	nifH,	and	nirS	copy	numbers	
were	significantly	higher	 in	the	soil	of	deciduous	trees	than	 in	ever-
green	(Figure 4).	The	ratio	of	AOA	to	AOB	was	also	higher	in	the	soil	of	
deciduous	trees	(Figure 4f).	These	functional	genes	were	less	affected	
by	drought	than	by	plant	leaf	habit,	and	significant	interaction	effects	
of	 the	 two	 factors	were	 found	 on	 the	 denitrification-	related	 genes	
nirS	and	nirK.	Copy	numbers	of	nirS	 in	the	soil	of	deciduous	species	
were	significantly	higher	in	the	drought	than	in	the	water	treatment	
(Figure 4d),	 whereas	 in	 evergreen,	 nirK	 copy	 numbers	were	 signifi-
cantly	lower	in	the	drought	than	in	the	water	treatment	(Figure 4e).

3.4  |  Effects of root on bacterial community and 
N- cycling functions

Root	biomass	was	a	key	factor	in	predicting	diverse	functions	of	soil	
microbial	community	(Figure 5).	NAG	activity,	copy	numbers	of	nifH,	
AOB,	AOA,	nirK	and	nirS	was	positively	related	with	root	biomass,	

F I G U R E  1 Relative	abundances	in	the	soil	of	four	tree	species	exposed	to	two	water	regimes	at	the	phylum	(a)	and	genus	level	(b),	
respectively.	Only	the	top	10	genera	are	shown.	Deciduous	tree	species	(Alnus cremastogyne,	an	N2-	fixing	species,	and	Liquidambar 
formosana)	and	two	evergreen	trees	(Cunninghamia lanceolata	and	Pinus massoniana).	Independent	samples	T	test	was	taken	to	compare	
differences	between	deciduous	and	evergreen	species.	NS:	p > .05,	*:	.05	≤ p < .01,	**:	.01	≤ p < .001,	***:	p ≤ .001
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and	abundance	of	Actinobacteria	and	Firmicutes,	while	negatively	
related	with	the	abundance	of	Gemmatimonadetes	(Figure 5).	Root	
biomass	and	soil	properties	explained	89.77%	of	the	variation	in	bac-
terial	communities,	and	RDA	axis	1	explained	79.92%,	with	root	bio-
mass	as	the	main	factor	affecting	the	variation	of	this	axis	(Figure	S5).

Threshold	 indicator	 taxa	 analysis	 (TITAN)	 identified	 44	 bacte-
ria	genera	with	a	decreasing	response	along	the	root	biomass	gra-
dient	 and	 46	 taxa	 showed	 an	 increasing	 response	 (Figure 6).	 The	
negative	 responding	 bacteria	 taxa	 declined	 sharply	 at	 small	 root	
biomass	 (2.265 g),	 while	 the	 positive	 responding	 bacteria	 taxa	 in-
creased	at	high	root	biomass	(8.885 g;	Figure	S6).	The	most	sensitive	

negative	responding	bacteria	taxon	(lowest	change	point	value)	was	
Pseudoduganella	while	 the	most	 sensitive	positive	 responding	bac-
teria	taxon	(highest	change	point	value)	was	Chitinimonas	(Figure 6).

The	SEM	explained	50.2%,	47.6%,	48.6%,	49.4%,	and	37.3%	of	
the	variability	 in	 copy	numbers	of	nifH,	AOB,	AOA,	nirK,	 and	nirS,	
respectively	 (Figure 7).	Root	biomass	negatively	affected	bacterial	
Shannon	 diversity,	 but	 the	 effect	 was	 not	 statistically	 significant.	
However,	root	biomass	exerted	significant	positive	effects	on	copy	
numbers	of	all	N-	cycle	 functional	genes	 (Figure 7);	 the	correlation	
coefficients	of	nifH,	AOB,	AOA,	nirK,	and	nirS	were	0.48,	0.50,	0.55,	
0.59,	and	0.60,	respectively.

F I G U R E  2 Bacterial	alpha-		and	beta-	
diversity	in	the	soil	of	two	deciduous	
(Alnus cremastogyne	and	Liquidambar 
formosana)	and	two	evergreen	
(Cunninghamia lanceolata	and	Pinus 
massoniana)	tree	species	in	response	to	
two	water	regimes.	(a)	Bacterial	Shannon	
diversity	of	each	species	at	operational	
taxonomic	unit	level,	(b)	Bacterial	Shannon	
diversity	of	both	deciduous	and	evergreen	
species	combined.	A	two-	way	analysis	
of	variance	was	used.	Post	hoc	tests	
were	used	to	test	differences	among	
treatments	with	Tukey's	b	tests.	Different	
letters	indicate	significant	differences.	
(c)	Hierarchical	clustering	analysis	and	
(d)	nonmetric	multidimensional	scaling	
(NMDS)	based	on	Bray–	Curtis	distances

F I G U R E  3 Co-	occurrence	network	of	the	four	tree	species	and	two	plant	leaf	habits	in	the	control	(water)	and	drought	treatments.	
Cunninghamia lanceolata	and	Pinus massoniana	belong	to	the	evergreen	species,	Alnus cremastogyne	and	Liquidambar formosana	belong	to	the	
deciduous	species
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4  |  DISCUSSION

Soil	microbiomes	could	play	essential	roles	in	forest	ecosystem	re-
sponses	 to	 increasing	 anthropogenic	 global	 climate	 changes.	 We	
tested	the	individual	and	interactive	effects	of	plant	leaf	habit	and	
drought	on	soil	bacterial	community	structure	and	N	cycling	func-
tion.	 Our	 results	 showed	 that	 bacterial	 community	 and	N	 cycling	
function	were	interactively	affected	by	plant	leaf	habit	and	drought.

4.1  |  Effects of plant and drought on 
bacterial community

The	 drought-	induced	 changes	 in	 diversity	 and	 taxonomic	 com-
position	 of	 soil	 bacterial	 community	 depend	 on	 water	 avail-
ability,	 soil	 physiochemical	 properties	 and	 plant	 physiological	
responses	 (Bastida	 et	 al.,	 2017;	 Han	 et	 al.,	 2021;	 Naylor	 &	
Coleman-	Derr,	 2018).	 Drought	 significantly	 reduced	 SOM,	 TN,	
and	NH+

4
	 of	 rhizosphere	 soils	 (Table	 S1)	 and	 induced	 changes	 in	

the	abundance,	diversity,	and	network	structure	of	 the	bacterial	
community	 in	 this	 study	 (Figures 1–	3;	 Figure	S2).	Nutrient	 com-
petition	among	microbes	and	osmotic	stress	affects	bacteria	spe-
cies	 (Chodak	et	al.,	2015;	Xie	et	al.,	2021).	The	bacterial	genera,	
for	example,	Arthrobacter	and	Bacillus,	were	reduced	by	drought,	
suggesting	drought-	sensitive	species	belonging	to	the	two	genera	
were	strongly	inhibited	by	the	declining	water	availability	(Chodak	
et	al.,	2015;	Xie	et	al.,	2021).	Plants	also	impose	strong	selective	
pressure	on	the	bacterial	community	by	recruiting	species-	specific	
microbes	 in	 response	 to	 water	 deficit	 (Ehlers	 et	 al.,	 2020;	 Guo	
et	 al.,	2019,	2021).	 In	 this	 study,	 co-	occurrence	 network	 results	
revealed	 a	 better	 connected	 and	more	 stable	 bacterial	 network	

of	 rhizosphere	soil	surrounding	L. formosana compared to A. cre-
mastogyne	 with	 a	 greater	 decline	 in	 positive	 relationships,	 aver-
age	degrees,	and	clustering	coefficients	but	an	increase	in	average	
path	lengths	after	drought	(Figure 3).	Mutualistic	relationships	in	
the	 plant–	soil	 continuum	have	 been	 reported	 between	 bacterial	
communities	and	plants	considering	resistance	to	drought	(Naylor	
&	Coleman-	Derr,	2018).	The	more	stable	and	connected	network	
of	 bacterial	 community	 can	 be	 less	 affected	 by	 drought	 (Jiao	
et	al.,	2020).

4.2  |  Crucial role of root biomass in shaping soil 
bacterial community and function

Our	results	provided	convincing	evidences	that	the	plant	leaf	habit	
imposed	 stronger	 impacts	 on	 bacterial	 community	 than	 short-	
term	drought.	Greater	variations	happened	 in	 the	 relative	abun-
dance	 of	 dominant	 bacteria,	 richness	 and	 diversity	 (alpha-		 and	
beta),	 and	N-	cycling	 function	between	deciduous	and	evergreen	
plants	than	drought	 (Figures 1,	2,	and	4).	Plant	 leaf	habit	had	no	
significant	effects	on	soil	physiochemical	 traits	 (Table	S1),	which	
demonstrated	an	 important	 role	of	plant	characteristics	 in	shap-
ing	the	divergent	bacterial	community.	The	two	deciduous	species	
recruited	 higher	 relative	 abundance	 of	 plant	 growth-	promoting	
bacteria	genera	Arthrobacter	and	Bacillus	than	the	two	evergreen	
species	 (Figure 1).	 The	 random	 forest	 analysis	 and	 db-	RDA	 re-
sults	 confirmed	 the	 important	 role	 of	 plant	 characteristics,	 par-
ticularly	root	biomass,	in	driving	bacterial	structure	and	functions	
(Figure 5;	Figure	S5).	Further	analysis	identified	by	TITAN	showed	
that	different	indicators	of	bacterial	taxa	at	the	genus	level	along	
the	 smaller	 to	 larger	 root	 biomass	 gradient	 from	 evergreen	 to	

TA B L E  2 Traits	of	bacterial	co-	occurrence	networks	of	four	tree	species	and	two	plant	leaf	habits	in	response	to	control	(water)	and	
drought	treatments

Treatment
Positive 
edge

Negative 
edge

Average 
degree Modularity

Average 
clustering 
coefficient

Average path 
distance

Hub 
node

Leaf	habit

Broadleaf	deciduous Control 7547 20 51.128 0.440 0.592 2.146 123

Drought 5726 72 39.044 0.348 0.525 2.408 77

Coniferous	evergreen Control 8304 119 56.341 0.343 0.607 2.204 129

Drought 4502 150 31.327 0.416 0.482 2.631 47

Species

Liquidambar formosana Control 2283 14 15.896 0.512 0.472 3.444 0

Drought 2438 107 17.196 0.434 0.496 3.668 1

Alnus cremastogyne 4002 1 27.311 0.492 0.586 3.123 50

Drought 1706 65 12.621 0.589 0.479 3.888 0

Cunninghamia 
lanceolata

Control 2017 105 14.937 0.558 0.478 3.487 0

Drought 1388 68 10.189 0.634 0.431 4.065 0

Pinus massoniana Control 4273 83 30.455 0.370 0.561 3.124 56

Drought 1146 178 9.355 0.614 0.416 4.391 0
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deciduous	species	(Figure 6;	Figure	S6).	The	hub	nodes	from	the	
co-	occurrence	 network	 were	 considered	 as	 potential	 keystone	
taxa	in	microbial	community	(Jiao	et	al.,	2020).	The	changing	bac-
terial	taxa	indicators	affected	by	the	root	mass	were	probably	the	
main	reasons	in	driving	changes	in	keystone	taxa,	connection,	and	
modularity	of	the	network	(Figure 3;	Figure	S3).

We	found	that	root	biomass	was	a	crucial	factor	in	determin-
ing	 the	 composition	 and	 structure	 of	 the	 soil	 bacterial	 commu-
nity.	 Effects	 of	 deciduous	 and	 evergreen	 trees	 on	 soil	 bacterial	
communities	can	be	attributed	to	differences	 in	plant	photosyn-
thetic	carbon	supply	as	well	as	to	the	varying	amounts	of	carbon	
released	to	the	soil	through	root	exudates	(Guo	et	al.,	2019,	2021; 
Keller	 et	 al.,	2021;	 Zhalnina	 et	 al.,	 2018).	 Analogous	 to	 the	 leaf	
economic	 spectrum	 aboveground	 (Donovan	 et	 al.,	2011;	Wright	
et	al.,	2004),	the	root	of	deciduous	and	coniferous	species	ranges	
from	more	competitive	and	fast-	growing	traits	to	more	conserva-
tive	 slow-	growing	 traits	 (Sun	et	 al.,	2021).	Deciduous	 trees	with	

higher	 growth	 rates	 and	 biomass	 production	 show	 higher	 root	
exudation	rates	and	release	more	root-	derived	carbon	to	the	rhi-
zosphere	compared	to	evergreen	trees	(Emmett	et	al.,	2020;	Sun	
et	al.,	2021;	Wang	et	al.,	2021).	Our	results	were	consistent	with	
previous	 studies	 showing	 that	 deciduous	 trees	 typically	 have	 a	
higher	 net	 photosynthetic	 rate	 than	 evergreen	 trees	 (Baldocchi	
et	 al.,	2010;	 di	Francescantonio	et	 al.,	2020;	Wang	et	 al.,	2021),	
which	 implies	 a	 higher	 quantity	 of	 root-	derived	 carbon	 released	
into	rhizosphere	soil.

4.3  |  Deciduous trees accelerate soil N cycle

We	 hypothesized	 that	 deciduous	 trees	 would	 elicit	 N	 cycling	
more	 strongly	 by	 promoting	 N-	cycling-	related	 bacteria,	 com-
pared	to	evergreen;	significantly	higher	copy	numbers	of	N-	cycle-	
related	genes	in	the	soil	of	deciduous	species	compared	to	that	of	

F I G U R E  4 Copy	numbers	of	N-	cycling-	
related	autotrophic	ammonia-	oxidizing	
archaea	(AOA)	(a),	ammonia-	oxidizing	
bacteria	(AOB)	(b),	nifH	(c),	nirS	(d),	and	
nirK	(e).	The	ratio	between	AOA	and	
AOB	was	shown	(f).	A	two-	way	analysis	
of	variance	was	used	to	test	the	effects	
of	plant	leaf	habit,	drought,	and	their	
interactions	on	these	genes.	p- values	
of	each	factor	are	shown.	Post	hoc	
tests	were	used	to	test	differences	
among	treatments	with	Tukey's	b tests. 
Different	letters	indicate	significant	
differences.	Cunninghamia lanceolata 
and	Pinus massoniana	belong	to	the	
evergreen	species,	Alnus cremastogyne 
and	Liquidambar formosana	belong	to	the	
deciduous	species
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evergreen	supported	this	hypothesis.	Plant–	soil	microbe	interac-
tions	 in	 the	 rhizosphere	are	a	predominant	 link	 in	N	cycling	and	
supply	(Moreau	et	al.,	2019).	Plants	seem	to	be	able	to	control	N	
transformations	mediated	by	diverse	soil	microbes	in	and	near	the	
rhizosphere	 (Bardgett	 et	 al.,	2014;	Galland	 et	 al.,	2019;	Moreau	
et	al.,	2019;	Mushinski	et	al.,	2020).	Random	forest	analysis	iden-
tified	 root	 biomass	 as	 having	 a	 key	 role	 in	 affecting	 N-	cycling	
functions	 (Figure 5).	All	 studied	N-	cycling	genes	were	positively	
correlated	 with	 the	 relative	 abundance	 of	 Actinobacteria	 and	
Firmicutes	 but	 negatively	 correlated	 with	 Gemmatimonadetes	
(Figure 5).	 The	 SEM	 also	 demonstrated	 strong	 positive	 effects	
of	root	biomass	on	N-	cycling	genes	(Figure 7).	Higher	N	demand	
of	deciduous	trees	requires	more	N	input	to	meet	plant	biomass	
accumulation	 by	 increasing	 the	 abundance	 of	 nifH.	 Soil	 nitrate	
(NO−

3
)	is	the	major	plant-	available	form	of	N,	and	higher	AOB	and	

AOA	levels	accelerate	nitrification.	However,	the	denitrification-	
related	bacteria	showed	higher	gene	copies.	Cantarel	et	al.	(2015)	
observed	that	denitrification	depends	on	the	relative	growth	rate	
of	 plants.	 Higher	 nirK	 and	 nirS	 in	 the	 rhizosphere	 of	 deciduous	

species	 can	 stimulate	 transformation	 from	NO−

3
	 to	nitrous	oxide	

and	 increase	N	 loss,	which	may	 imply	 that	bacteria	outcompete	
plants	regarding	the	use	of	NO−

3
	resources	(Moreau	et	al.,	2015).	

In	 addition,	 denitrification	 inhibitors	 or	 stimulators	 through	
the	 release	 of	 organic	 compounds	 have	 been	 reported	 (Bardon	
et	al.,	2016;	Moreau	et	al.,	2019).	However,	the	exact	mechanisms	
underlying	 the	 simulation	 of	 denitrification	 in	 the	 plant	 rhizos-
phere	remain	to	be	elucidated.

The	 four	 tree	 species	 studied	 in	 this	 study	 are	widely	 used	 to	
construct	 establish	 artificial	 plantations	 (Wang	 et	 al.,	 2009;	 Wu	
et	al.,	2021).	Our	results	have	important	implications	for	our	under-
standing	of	plants	control	over	bacterial	community	and	N-	cycling	
function	in	artificial	forest	ecosystems.	A	recent	study	across	nine	
European	 countries	 assessed	 responses	 of	 mixed	 and	 monocul-
ture	 forests	 to	 drought	 events	 between	 1975	 and	 2015	 (Pardos	
et	al.,	2021),	which	showed	that	drought	resistance	of	mixed	conifer-	
deciduous	broadleaf	forests	exceeded	that	of	mixed	broadleaf	for-
ests;	 this	 suggests	 an	 important	 role	 of	 plant	 leaf	 habit	 diversity	
in	 mixed	 forests	 (Figure	 S7).	 Our	 simple	 framework	 showed	 that	

F I G U R E  5 Potential	biological	
contributions	of	plant,	soil,	and	bacterial	
characteristics	in	enzyme	activities	
and	N-	cycling	genes	identified	using	
correlation	and	random	forest	model.	
The	Spearman	correlations	calculated	
between	differences	in	plant,	soil,	
and	bacterial	characteristics	versus	
differences	in	enzyme	activities	and	
N-	cycling	genes.	The	multiple	regression	
model	with	variance	decomposition	
analysis	was	applied.	Circle	size	
represents	the	importance	of	soil	
and	plant	characteristics	in	driving	
major	bacterial	taxa.	Colors	represent	
Spearman	correlations.	AOA,	ammonia-	
oxidizing	archaea;	AOB,	ammonia-	
oxidizing	bacteria;	NAG,	β-	1,4-	N-	
acetylglucosaminidase
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different	 tree	 species	 with	 different	 roots	 (biomass,	 architecture,	
or	 exudates)	 recruited	 more	 diverse	 microbes	 to	 influence	 forest	
productivity	 (Figure	S7).	The	diversity	of	mycorrhizal	 fungi	associ-
ating	with	 roots	of	different	plant	 leaf	habits	 contributes	 to	niche	
separation	with	 respect	 to	acquisition	and	 transport	of	 soil	N	and	
water,	 which	 suggests	 reduced	 competition	 for	 these	 resources	
due	to	symbiotic	mycorrhiza.	Roots	of	N2-	fixing	plants	colonized	by	
mycorrhiza	 show	 increased	N	 fixation	 and	drought	 resistance	 (Liu	
et	 al.,	 2020),	 and	 N2-	fixing	 plants	 increase	 soil	 N	 availability	 and	
promote	the	growth	of	adjacent	plants	(Chen	et	al.,	2021;	Minucci	
et	 al.,	2019;	 Tang	et	 al.,	2019).	Mixed	 forests	 greatly	 increase	 soil	
N	availability	compared	to	monocultures,	by	promoting	N	mineral-
ization,	increasing	soil	N	retention,	or	reducing	denitrification	(Chen	
et	al.,	2021;	Wang	et	al.,	2021).

5  |  CONCLUSIONS

Overall,	declining	soil	water	availability	and	plant	leaf	habit	impacted	
the	bacterial	community.	However,	stronger	effects	of	deciduous	and	
evergreen	tree	species	on	bacterial	community	and	N-	cycling	function	
than	 short-	term	drought	had	been	proved	 in	 this	 study.	Deciduous	
and	evergreen	tree	species	showed	different	plant	traits	in	carbon	fix-
ation	and	growth.	As	a	linkage	between	above	and	belowground,	root	
biomass	played	key	roles	in	affecting	bacterial	community	structure	
and	soil	N	cycling.	However,	our	research	is	constrained	by	low	sam-
ple	size	of	deciduous	and	evergreen	tree	species.	Further	research	on	
N-	cycling	microbes	affected	by	plant	functions	and	plant–	soil	interac-
tions	 is	 required	 to	predict	 the	 respective	consequences	of	 climate	
change.

F I G U R E  6 Threshold	Indicator	Taxa	Analysis	of	soil	bacterial	community	at	genus	level	in	responding	to	a	root	biomass	gradient.	Only	
taxa	with	pure	(purity	≥0.95)	and	reliable	(reliability	≥0.95)	responses	are	plotted.	Bootstrapping-	based	(n =	500)	probability	density	
functions	of	negative	responding	bacteria	taxa	(blue)	(a)	and	positively	responding	bacteria	taxa	(red)	(b)	along	the	root	biomass	gradient

F I G U R E  7 Structural	equation	models	to	assess	relationships	and	effects	of	root	biomass	on	soil	alpha-	diversity	and	N-	cycling-	related	
genes	(a-	c).	AOA,	ammonia-	oxidizing	archaea;	AOB,	ammonia-	oxidizing	bacteria
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