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Abstract: Reflections often cause degradation in image quality for pictures taken through glass
medium. Removing the undesired reflections is becoming increasingly important. For human vision,
it can produce much more pleasing results for multimedia applications. For machine vision, it can
benefit various applications such as image segmentation and classification. Reflection removal is
itself a highly illposed inverse problem that is very difficult to solve, especially for a single input
image. Existing methods mainly rely on various prior information and assumptions to alleviate the
ill-posedness. In this paper, we design a variational model based on multiscale hard thresholding to
both effectively and efficiently suppress image reflections. A direct solver using the discrete cosine
transform for implementing the proposed variational model is also provided. Both synthetic and
real glass images are used in the numerical experiments to compare the performance of the proposed
algorithm with other representative algorithms. The experimental results show the superiority of our
algorithm over the previous ones.

Keywords: multiscale thresholding; reflection removal; reflection suppression; variational model

1. Introduction

For most multimedia and computer vision applications, the input images are normally
assumed to be both clean and clear. However, bad lighting conditions and environments
such as photographing behind a window glass or showcase are almost inevitable in our
daily life. In these scenarios, the captured images often contain undesired reflections
from the objects on the camera side, which severely degrade image quality and affect the
performance of multimedia and computer vision applications, such as image segmentation
and classification.

Due to the rapid growth of mobile devices, a fast and effective reflection removal
algorithm is increasingly desired. Reflection removal is the restoration process that aims
essentially at removing or suppressing unpleasing reflections and improving the visibility
of the scenes in front of the glass medium. As a preprocessing step, it can benefit various
follow-up applications.

Barrow et al. [1] first proposed a linear assumption for an observed degraded image Y
as a superposition of two layers as follows:

Y = T + R, (1)

where T and R are the transmission and reflection layers, respectively. The inverse problem
of resolving T and R given Y is highly ill-posed, since there is only one equation for two
unknowns per pixel. According to the number of input images Y used, reflection removal
methods can be classified into multiple-image and single-image approaches, where the
former makes the problem less ill-posed while the latter is itself highly ill-posed and
challenging. Since perfectly separating the transmission and reflection layers is, in general,
very difficult even for the case of multiple input images and, in most situations, people tend
to care only about the transmission layers, estimating a reasonable T that might contain
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slightly misclassified information from R can be considered instead. To make the ill-posed
problem more tractable for single input image, researchers tried to suppress the reflection
in the image (i.e., estimating a reasonable T) instead of removing the reflection (i.e., solving
an exact separation of T and R) [2,3]. In this paper, we follow the same idea and consider
the reflection suppression problem instead.

Multiple-image approaches generally use several degraded images as input, which are
captured by a fixed camera. Kong et al. [4] employed a physical formation model and used
different angular filters to estimate the optimal reflection layer. Similarly, Schechner et al. [5]
focused on various distances using multiple images for reflection removal. Farid and
Adelson [6] employed independent component analysis to separate reflections from glossy
surfaces or glass using two images with different polarization angles. Agrawal et al. [7]
made use of two degraded images captured with and without a flash exposure to identify
reflections. Multiple images captured with different camera positions were also considered.
Sirinukulwattana et al. [8] exploited varying reflections taken from different viewpoints to
smooth reflections and enhance the transmission. Similarly, Li and Brown [9] exploited the
subtle changes in the reflection via different viewpoints. Video sequences were also used
to separate transmission and reflection layers. Xue et al. [10] exploited motion differences
and recovered the transmission and reflection layers. Gai et al. [11] jointly estimated layer
motions via a blind separation algorithm. Guo et al. [12] exploited the correlation of the
transmission layers across multiple images to separate the two layers. Multiple input
images largely reduce the ill-posedness of the reflection removal problem. However, due
to fastidious image acquisition requirements, algorithms based on multiple images have
limited practical applications.

In most situations, one may not have the chance to capture multiple images of the same
scene, which is especially difficult with slightly different camera positions or polarization
angles. As a consequence, single-image approaches are becoming practically important.
As mentioned above, reflection removal based on a single input image is itself a highly
ill-posed problem, and existing methods mainly assume different image priors for the
transmission and reflection layers. Levin and Weiss [13] exploited sparse gradient priors
with manual labels to distinguish the two layers. Li and Brown [14] assumed that two
layers have different smoothness and imposed the smooth and sparse gradient priors over
the two layers. Shih et al. [15] exploited the Gaussian mixture model prior for the reflections
to solve a deblur optimization problem. Wan et al. [16] exploited the depth of field in a
multiscale manner using K-L divergence to identity edges of different layers.

Recently, deep neural networks are also adopted to remove reflection. Fan et al. [17]
proposed the first deep neural network to solve the layer separation problem. They
exploited edge information to guide the separation process. Wan et al. [18] integrated a
gradient inference network with a image inference network as a concurrent network to
remove the reflection of a single input image. Yang et al. [19] proposed a cascade deep
network to bidirectionally estimate the transmission and reflection layers. More precisely,
the network uses for the estimated transmission to estimate reflection and then useds for
the estimated reflection to estimate transmission. Zhang et al. [20] proposed a convolutional
network with a feature loss, an adversarial loss, and an exclusion loss that enforces the
layer separation. The main advantage of deep learning-based approaches for reflection
removal is that no handcrafted image priors are necessary. However, a large amount of
deep network training time and training datasets is required.

The remainder of this paper is organized as follows. In Section 2, we briefly review two
related works for reflection suppression. In Section 3, we present the improved reflection
suppression model for a single-input image. The proposed model is based on multiscale
hard thresholding, and a direct solver using the discrete cosine transform for implementing
the proposed model is also given in Section 3. Numerical experiments are conducted in
Section 4 to demonstrate the superior performance of the newly proposed model. Finally,
some concluding remarks and discussions are given in Section 5.
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2. Related Work

As introduced in Section 1, reflection removal is a highly ill-posed inverse problem
that is very challenging to solve, especially for the case of a single input image. Arvani-
topoulos et al. [2] tried to suppress the reflection instead of removing the reflection. They
exploited a Laplacian data fidelity term and a sparse gradient prior, which achieve satis-
factory quality for reflection suppression. However, since their model is nonconvex, their
algorithms are quite inefficient and require a large number of iterations to converge to a
desirable result.

As an improvement of [2], Yang et al. [3] proposed a hard thresholding operation to
the gradient of the input image in the Laplacian data fidelity term. Their method also
achieves satisfactory quality for reflection suppression, but the algorithm is highly efficient
compared with [2]. Since our method is an improvement of [3], we briefly review the works
of [2,3] in the following two subsections.

2.1. Smooth Regularization on T

The algorithm proposed in [2] for reflection suppression mainly relies on the critical
assumption that reflection edges (gradients) are smaller in magnitude and less in focus
compared to transmission edges. This assumption is reasonable in real-world scenar-
ios since the camera focuses on transmission objects rather than reflection components.
Mathematically, this assumption can be expressed as the following formation model [21]:

Y = W ◦ T + (1−W) ◦ (kσ ∗ R), (2)

where ◦ and ∗ denote the component-wise multiplication and the convolution operation,
respectively. W is the contribution weight of the transmission T to the observation Y, and kσ

is a Gaussian blur kernel with standard deviation σ performed on the reflection layer R. In
general, W is pixel-dependent and depends on the lighting conditions and the distance of
the camera to the captured scene. For simplicity, weight W can be considered as a constant,
i.e., W(x) = w, ∀x ∈ Ω, where Ω and x = (x1, x2) denote the image domain and a pixel
point, respectively.

Following the successful smoothing model of Xu et al. [22], Arvanitopoulos et al. [2]
employed the number of non-zero gradients as the prior information to restrict and regular-
ized output transmission. Their model can eliminate small gradients and simultaneously
preserve large image edges. The original minimization problem in [22] is as follows:

min
T
‖T −Y‖2

2 + λC(T), (3)

where the following:

‖T −Y‖2
2 := min

T

∫
Ω
(T −Y)2 dx, (4)

is the L2 data fidelity term which keeps the optimal T close to the observation Y, and the
following:

C(T) := ]{x ∈ Ω : |∇T(x)| 6= 0}, (5)

is the L0 regularization term where ] denotes the cardinality measure applied on a given set
(i.e., a measure of the number of elements of the set). The L0 term regularizes the optimal T
by implicitly performing a hard thresholding of its gradients with threshold λ. Since high
frequency details of the image will be eliminated, model (3) is suitable for image smoothing
but unsuitable for reflection suppression.

To preserve high frequency details in optimal T, Arvanitopoulos et al. [2] proposed a
Laplacian data fidelity term to replace (4), where the Laplacian of the optimal T is defined
by the following.

L(T) := div(∇T) =
∂2 T
∂x2

1
+

∂2 T
∂x2

2
. (6)
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Their data fidelity term based on the Laplacian to enforce the consistency in fine
structures is then given as follows:

min
T
‖L(T)−L(Y)‖2

2 + λC(T), (7)

where regularization term C(T) is the same as defined in (5). The new model can preserve
strong edges and details in transmission T while eliminating reflection R simultaneously;
thus, it is more suitable for reflection suppression.

2.2. Direct Thresholding on Y

In [2], the edge information of the optimal T is preserved by applying the Laplacian
differential operator L. The reflection component R is suppressed by applying regulariza-
tion C on T. As the regularization parameter λ increases, more reflections are suppressed in
T. However, as their model defined in (7) is nonconvex, their operator splitting algorithm
for minimizing the nonconvex energy functional is highly inefficient and takes a large
number of iterations to converge to a desired solution. Therefore, Yang et al. [3] integrated
these ideas into a new model formulation, which significantly reduces computation times
while retaining satisfactory reflection suppression performances.

Instead of using the hard thresholding operation derived implicitly from the smoothing
regularizer C on T, Yang et al. [3] adopted the idea from [23,24] to directly integrate the hard
thresholding operation for gradients on Y into the energy functional, which is expressed
as follows:

min
T

1
2
‖L(T)− div(δh(∇Y))‖2

2 +
ε

2
‖T −Y‖2

2, (8)

where δh is the hard thresholding operation for gradients and is defined as follows.

δh(G(x)) :=
{

G(x), if |G(x)| ≥ h
0, if |G(x)| < h

. (9)

In the first term of (8), the gradient of the observation Y, i.e., ∇Y, is thresholded using
δh before taking the divergence operator div. Since∇Y(x) with magnitude |∇Y(x)| smaller
than h will be truncated to zero, the model has the ability to suppress reflections in T. Since
the data term also enforces the consistency of T to Y via Laplacian operator L, fine details
of Y will be preserved simultaneously in T. Therefore, the δh in (8) takes over the role of C
in (7) for reflection suppression.

Since the data fidelity term in (8) contains only second-order derivatives of trans-
mission T, the optimal solution of T will not be unique, and any optimal transmission T
shifted by a affine function A, i.e., T + A, will also be an optimal transmission. To ensure
the uniqueness of the optimal solution, the second term of (8) is incorporated. The model
parameter ε should be taken as a positive tiny number so as not to cancel out the effect of
reflection suppression, which is performed via the first term.

3. Proposed Method

In this section, we present an improved version of the model of Yang et al. [3] given
in (8) for single-image reflection suppression. The proposed model is based on multiscale
hard thresholding, and a direct solver using the discrete cosine transform for implementing
the proposed model is also given.

3.1. Multiscale Thresholding

The hard thresholding model given in (8) suppresses the reflections by eliminating the
gradients of Y at pixel point x with magnitude |∇Y(x)| less than the prescribed threshold
value h. For a small h, the model eliminates only small gradients; thus, only weak reflections
will be suppressed while strong reflections remain in the optimal transmission. For a large h,
the model eliminates both small and large gradients; thus, both weak and strong reflections
will be suppressed simultaneously. However, when h is large, many important image edges
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in the transmission with their gradient magnitudes smaller than h will also be suppressed.
Therefore, a large h in (8) usually causes information loss in the optimal transmission. This
is the reason why the model should assume that reflection edges are smaller in magnitude
and less in focus compared to transmission edges. If this assumption fail to hold, the model
will produce either (1) a blurry transmission without any reflections when h is large or
(2) a clear transmission but with many reflections remaining when h is small. Therefore,
a moderate h is normally picked to trade off between situations (1) and (2) to obtain an
acceptable performance.

To suppress both weak and strong reflections while preventing the information loss of
important edges in the optimal transmission, we propose a multiscale hard thresholding
energy functional to improve the performance of the model of Yang et al. in (8). Beginning
with the smallest thresholding scale h, our model additionally considers another N − 1
countable thresholding scales, i.e., {2h, 3h, . . . , Nh}. Hence, there are totally N scales in our
model, that is, {h, 2h, 3h, . . . , Nh}, where scale number N is a prescribed positive integer
which can be determined by the user. The model in (8) is first modified as follows.

min
T

1
2

N

∑
n=1
‖L(T)− div(δnh(∇Y))‖2

2 +
ε

2
‖T −Y‖2

2. (10)

When N = 1, the multiscale energy functional reduces to the energy functional of
Yang et al. in (8). When N ≥ 2, the multiscale energy functional has N + 1 terms, and the
first N terms are linearly fused into one with uniform weights 1

2 , where each term involves a
hard thresholding operation on∇Y with threshold value nh at n-th scale. Therefore, the first
term in (10) can be viewed as a fusion term to integrate all information of the thresholded
Laplacian of Y at different scales. As n increases, more and more weak edges are eliminated;
thus, only strong edges are left. In other words, the small n term provides the suboptimal
transmission T with both strong and weak edges while the large n term provides the
suboptimal transmission T with only strong edges. After adding the second term in (10)
to ensure the uniqueness of the optimal solution, the final optimal transmission T can be
viewed as a linear combination of the sub-optimal transmissions of those subfunctionals
corresponding to different thresholding scales. The model parameter ε is also set to be a
positive tiny number just as that provided in (8). In this paper, ε will be fixed at 10−6.

To further enhance the preserved edge information, we proposed a pixel-dependent
weight function ϕ to adapt the thresholded gradients pixelwisely for all subfunctionals in
(10) to form our final model for reflection suppression:

min
T

1
2

N

∑
n=1
‖L(T)− div(ϕδnh(∇Y))‖2

2 +
ε

2
‖T −Y‖2

2, (11)

where the adaptive weight function ϕ is designed to be inversely proportional to |∇Y|
as follows.

ϕ(x) = (1− |∇Y(x)|
maxx∈Ω |∇Y(x)| ) + β, ∀x ∈ Ω. (12)

The role of shifting β in (12) is to maintain a base level of the adaptive weight function.
In this paper, β will be fixed at 1.0.

3.2. Solving the Model

Since the energy functional proposed in (11) is convex, a transmission T is the optimal
solution to (11) if and only if it satisfies the Euler-Lagrange equation derived step by
step below:
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L∗(
N

∑
n=1

(L(T)− div(ϕδnh(∇Y)))) + ε(T −Y) = 0

⇒ (
N

∑
n=1
L∗L(T)) + εT = L∗(

N

∑
n=1

div(ϕδnh(∇Y))) + εY

⇒ (NL∗L+ ε)T = L∗(
N

∑
n=1

div(ϕδnh(∇Y))) + εY

⇒ (NLL+ ε)T = L(
N

∑
n=1

div(ϕδnh(∇Y))) + εY

(13)

where L∗ denotes the adjoint operator of L. Since L is self-adjoint, we have L∗ = L. Taking
the Fourier cosine transform Fc on both sides, we have the following.

⇒ Fc[(NLL+ ε)T] = Fc[L(
N

∑
n=1

div(ϕδnh(∇Y))) + εY]

⇒ (NFc(L) ◦ Fc(L) + ε) ◦ Fc(T) = Fc[L(
N

∑
n=1

div(ϕδnh(∇Y))) + εY]
(14)

Denoting K = Fc(L) and using component-wise division, we have the following.

Fc(T) =

Fc[L(
N

∑
n=1

div(ϕδnh(∇Y))) + εY]

NK ◦ K + ε
(15)

Taking the inverse Fourier cosine transformF−1
c , we arrive at the optimal transmission

of (11) as follows:

T = F−1
c

[Fc[L(
N

∑
n=1

div(ϕδnh(∇Y))) + εY]

NK ◦ K + ε

]
, (16)

where K is the Fourier cosine transform of the Laplacian operator, which can be represented,
in its finite dimensional matrix form on an I × J digital image lattice, as follows:

Ki,j = 2(cos(
iπ
I
) + cos(

jπ
J
)− 2), 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1, (17)

and the differential operators L, div and ∇ can be replaced with standard finite difference
schemes [25] for digital input images [Yi,j] for 0 ≤ i ≤ I − 1 and 0 ≤ j ≤ J − 1.

The overall algorithm of the proposed multiscale thresholding method for reflection
suppression is summarized in (Algorithm 1), and a toy example in Figure 1 shows the
effectiveness of the proposed algorithm.

Algorithm 1: The proposed algorithm for reflection suppression by multiscale
thresholding

input : a degraded rgb color image f
set : parameters h, N, ε = 10−6, β = 1.0
for c in {r, g, b}

Y ← f c

compute ϕ using (12)
compute T using (16) and (17)
gc ← T

endfor
output : the reflection suppression color image g
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(a) (b) (c) (d)

Figure 1. Comparison using a toy example. (a) The input test image. (b) The result of algorithm [2].
(c) The result of algorithm [3]. (d) The result of proposed algorithm with N = 4.

4. Numerical Experiment

In this section, we compare the proposed algorithm with the reflection suppression
algorithms of Arvanitopoulos et al. [2] and Yang et al. [3], which are all implemented in
MATLAB. Both synthetic and real glass images are tested. All experiments are implemented
using MATLAB 2019a executed on a Windows PC with Intel Core i7-4790 processor and
16 GB RAM.

4.1. Synthetic Glass Image

Two pairs of images of size 512× 512 were blended into one using Equation (2) to
synthesize the test images. The constant weight Wi,j ≡ w is set at three different values,
which are 0.7, 0.6, and 0.5. The standard deviation σ = 2 is used for the Gaussian blur kernel.
The model parameters are fixed at λ = 0.002 for algorithm [2] and h = 0.01, ε = 10−6,
for both algorithm [3] and the proposed algorithm according to the suggestions in [2,3].
Figure 2a shows two transmission images ‘Lena’ and ‘Clown’ and Figure 2b shows two
reflection images ‘Barbara’ and ‘House’. The first test image was synthesized by blending
‘Lena’ with ‘Barbara’ using constant weight w, and the second test image was synthesized
by blending ‘Clown’ with ‘House’ using constant weight w.

(a) (b)

Figure 2. Two pairs of images to be synthesized. (a) Two transmission images: ‘Lena’ and ‘Clown’.
(b) Two reflection images: ‘Barbara’ and ‘House’. The sizes of these four images are all 512× 512.

We begin with w = 0.7, which corresponds to a relatively weak reflection effect
among the three cases. Figure 3 shows the reflection suppression results of all competing
algorithms for the two synthetic glass images. It can be found by observing Figure 3d,k
that the proposed algorithm with scale number N = 1 simultaneously possesses very
significant image enhancement effects than the two competing algorithms in Figure 3b,c,i,j.
As the scale number N increases from 2 to 4 as Figure 3e–g,l–n demonstrates, the proposed
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algorithm is able to suppress more and more reflections while preserving the edge structures
of the transmission images.

Similar results can be found in Figures 4 and 5, which correspond to the relatively
moderate (w = 0.6) and strong (w = 0.5) reflection effects, respectively. The proposed
algorithm with N = 1 in Figures 4d,k and 5d,k still show significant enhancement effects
and the reflections are increasingly suppressed as N increases. To evaluate the competing
algorithms quantitatively, we compute the PSNR value for each reflection suppression
result using the underlying true transmission image as the reference image. Table 1 shows
the PSNR values, and the best value in each row is shown in boldface. It can be seen that
the proposed algorithm with N = 2 has the best PSNR values in all cases, and the PSNR
values for N = 3 and N = 4 keep very close to that of algorithms [2,3]. This shows that the
proposed algorithm is superior to the two representative algorithms. Theoretically, a large
N in (11) can suppress more reflections but obtains lower PSNR values since important
edges of the transmission are lost in the same time. On the other hand, a small N in (11)
can get higher PSNR values but suppressing less reflections. Empirical observations from
Table 1 suggest that one can set N = 2 for high PSNR values or set N = 4 for suppressing
more reflections. N = 3 is another choice that balances these two extreme choices.

We note that algorithms [2,3] produce very similar image quality and PSNR values.
However, this is an expected phenomenon. Although the smooth regularization on T
in (7) and the direct thresholding on Y in (8) have quite different functional forms, their
core ideas are rather similar, i.e., “to eliminate small image gradients”. Model (8) directly
eliminates the image gradients of Y, which are less than h in magnitude. For small h, less
image gradients are eliminated; for large h, more image gradients are eliminated. On the
other hand, model (7) eliminates the image gradients of T in the order of small magnitude
to large magnitude, and the number of total eliminated gradients will be determined by
model parameter λ. For small λ, less image gradients are eliminated; for large λ, more
image gradients are eliminated. Although tuning parameters h and λ can produce very
similar results and quality, they are still different since the energy functionals, and (7) and
(8) are not equivalent. The two main advantages of model (8) compared to model (7) are as
follows: (i) tuning the parameter h is much more intuitive than tuning the parameter λ since
h is directly related to gradient magnitude while λ is not; and (ii) the energy functional (8)
is convex in T while the energy functional (7) is nonconvex in T, which means that their
algorithm will be less efficient.

Table 1. PSNR values of the reflection suppression results in Figures 3–5. The best value in each row
is shown in boldface.

Image Algorithm [2] Algorithm [3] Proposed
(N = 1)

Proposed
(N = 2)

Proposed
(N = 3)

Proposed
(N = 4)

Figure 3a 70.18 70.16 70.73 70.71 69.94 69.14
Figure 3h 66.36 66.37 66.87 67.06 66.82 66.39
Figure 4a 67.96 67.99 68.64 68.65 68.03 67.41
Figure 4h 63.96 63.97 64.31 64.47 64.27 63.96
Figure 5a 66.21 66.22 66.44 66.68 66.28 65.86
Figure 5h 62.07 62.07 62.15 62.35 62.24 62.05
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(a)

(b) (c) (d)

(e) (f) (g)

(h)

(i) (j) (k)

(l) (m) (n)

Figure 3. Reflection suppression results for synthetic glass images with w = 0.7. (a,h) Input images.
(b,i) The results of algorithm [2]. (c,j) The results of algorithm [3]. (d,k), (e,l), (f,m), and (g,n) are
results of the proposed algorithm with N = 1, 2, 3, 4, respectively.



Sensors 2022, 22, 2271 10 of 19

(a)

(b) (c) (d)

(e) (f) (g)

(h)

(i) (j) (k)

(l) (m) (n)

Figure 4. Reflection suppression results for synthetic glass images with w = 0.6. (a,h) Input images.
(b,i) The results of algorithm [2]. (c,j) The results of algorithm [3]. (d,k), (e,l), (f,m), and (g,n) are the
results of the proposed algorithm with N = 1, 2, 3, 4, respectively.
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(a)

(b) (c) (d)

(e) (f) (g)

(h)

(i) (j) (k)

(l) (m) (n)

Figure 5. Reflection suppression results for synthetic glass images with w = 0.5. (a,h) Input images.
(b,i) The results of algorithm [2]. (c,j) The results of algorithm [3]. (d,k), (e,l), (f,m), and (g,n) are
results of the proposed algorithm with N = 1, 2, 3, 4, respectively.
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4.2. Real Glass Image

The real glass dataset of Yang et al. [3] is used here. The test images were captured di-
rectly using various smartphones with different resolutions. Figures 6–8 show the reflection
suppression results of all the competing algorithms for the six real glass input images.

The ‘Dog’ image has some reflections on the window glass. Algorithms [2,3] smoothed
out some of them, while the proposed algorithm suppressed all reflections and simulta-
neously enhanced image details. The ‘Girl’ image has a strong reflection on the left side
such that all algorithms can not completely remove it. However, the proposed algorithm
with N = 4 suppresses the most reflections among all algorithms. The ‘Tree’ image has
an extremely strong reflection that no algorithm can remove it. However, the proposed
algorithm still has the best visual performance by enhancing the image contrast. The ‘Office’
image has many small rectangle shape reflections that are hard to suppress, the proposed
algorithm with N = 4 still suppresses most of them among all algorithms. The ‘Child’ and
‘Library’ images have many complex reflections and the proposed algorithm with N = 4
still has the best visual performance. Here, we note that the images ‘Office’ and ‘Library’
are relatively challenging among all real examples. The main reason is that the rectangular-
shaped window reflections have both bright intensities and sharp edges that violate the
critical assumption that reflection gradients are smaller in magnitude and lower in focus
compared to transmission gradients. If we want to completely remove those reflections, we
need to set large h and we will lose many transmission edges as a heavy price. Therefore,
the reflections of these two images are relatively hard to suppress. We further note that
algorithm [3] and the proposed algorithm share the same model parameters h and ε for all
input images.

Since we do not have reflection-free solutions for real glass images for computing
PSNR values to quantitatively evaluate the algorithms, here, we compare their computation
times instead. Table 2 shows the computation time in seconds for all six input images
and all competing algorithms. Although the proposed algorithm costs much time than
algorithm [3], it is still very efficient compared to algorithm [2].

Table 2. Computation time of the reflection suppression results in Figure 6. The best value in each
row is shown in boldface.

Image Size Algorithm [2] Algorithm [3] Proposed
(N = 1)

Proposed
(N = 2)

Proposed
(N = 3)

Proposed
(N = 4)

Figure 6a 667 × 1000 445.3 0.682 0.775 0.941 1.062 1.246
Figure 6h 823 × 1200 661.2 0.998 1.145 1.353 1.617 1.785
Figure 7a 880 × 1193 699.8 1.008 1.158 1.402 1.666 1.884
Figure 7h 1080 × 1440 1036.6 1.209 1.388 1.734 2.159 2.472
Figure 8a 1131 × 1698 1377.9 1.888 2.042 2.536 2.987 3.492
Figure 8h 1992 × 2448 3234.2 3.853 4.401 5.476 6.501 7.934
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(a)

(b) (c) (d)

(e) (f) (g)

(h)

(i) (j) (k)

(l) (m) (n)

Figure 6. Reflection suppression results for real glass images ‘Dog’ and ‘Girl’. (a,h) Input images.
(b,i) The results of algorithm [2]. (c,j) The results of algorithm [3]. (d,k), (e,l), (f,m), and (g,n) are
results of the proposed algorithm with N = 1, 2, 3, 4, respectively.
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(a)

(b) (c) (d)

(e) (f) (g)

(h)

(i) (j) (k)

(l) (m) (n)

Figure 7. Reflection suppression results for real glass images ‘Tree’ and ‘Office’. (a,h) Input images.
(b,i) The results of algorithm [2]. (c,j) The results of algorithm [3]. (d,k), (e,l), (f,m), and (g,n) are
results of the proposed algorithm with N = 1, 2, 3, 4, respectively.
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(a)

(b) (c) (d)

(e) (f) (g)

(h)

(i) (j) (k)

(l) (m) (n)

Figure 8. Reflection suppression results for real glass images ‘Child’ and ‘Library’. (a,h) Input
images. (b,i) The results of algorithm [2]. (c,j) The results of algorithm [3]. (d,k), (e,l), (f,m), and (g,n)
are results of the proposed algorithm with N = 1, 2, 3, 4, respectively.



Sensors 2022, 22, 2271 16 of 19

4.3. Ablation Study

Here, we conduct an ablation study for the adaptive weight function ϕ used in the
proposed model and provide an experiment of the proposed algorithm with various values
of h and β.

We begin with the ablation study by comparing the reflection suppression results
of the proposed algorithm with and without the adaptive weight function ϕ, i.e., setting
ϕ by (12) and by constant value 1, respectively. Experimental results are provided in
Figure 9. From Figure 9b–e, one can observe that, under constant weight ϕ = 1, more and
more reflections are suppressed as N increases but the transmission edges also become
increasingly blurred. Under the adaptive weight ϕ given in (12), weak transmission edges
are enhanced and keep their sharpness as N increases. The results are shown in Figure 9f–i.

To further elaborate the effects of parameters h and β to the proposed model, we
test the proposed algorithm under N = 2 and ϕ in (12) with h = 0.025, 0.05, 0.075 and
β = 0.25, 0.5, 1. Experimental results are provided in Figure 10. It can be observed that,
as the threshold parameter h increases, the strong reflections are increasingly suppressed
but the weak transmission edges on the lower building also become increasingly blurred.
However, as enhancement parameter β increases, those weak edges become increasingly
enhanced. These two experiments demonstrate the role that adaptive weight function ϕ
played in the proposed variational model.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 9. Reflection suppression results for real glass image ‘Mall’. (a) Input image. (b–e) The results
of proposed algorithm (under ϕ = 1) with N = 1, 2, 3, 4, respectively. (f–i) The results of algorithm
(under ϕ in (12) and β = 1) with N = 1, 2, 3, 4, respectively.
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Input

(h, β) = (0.025, 0.25) (h, β) = (0.025, 0.5) (h, β) = (0.025, 1)

(h, β) = (0.05, 0.25) (h, β) = (0.05, 0.5) (h, β) = (0.05, 1)

(h, β) = (0.075, 0.25) (h, β) = (0.075, 0.5) (h, β) = (0.075, 1)

Figure 10. Reflection suppression results of the proposed algorithm (under N = 2 and ϕ in (12)) for
real glass image ’Building’ with various h and β.

5. Summary and Conclusions

In this paper, we have proposed a both effective and efficient method for suppress-
ing image reflections. Unlike the previous methods that suppressed the reflections only
in a single spatial scale, the proposed method can suppress both weak and strong and
multiple scale reflections while preserving important edge information via a multiscale
hard thresholding framework. A direct solver using the Fourier cosine transform for im-
plementing the proposed method is also given. Experimental results demonstrate that
the proposed new algorithm is able to achieve superior performance compared with the
previous algorithms. Extending the multiscale idea used in our model for dealing with
more challenging situations such as ghosting effect [15,26] should be interesting, and this
deserves further studies.
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8 September 2021), and https://github.com/yyhz76/reflectSuppress/tree/master/figures (accessed
on 15 September 2021).
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