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Abstract. Gastrointestinal (GI) tract cancers that arise due 
to genetic mutations affect a large number of individuals 
worldwide. Even though many of the GI tract cancers arise 
sporadically, few of these GI tract cancers harboring a 
hereditary predisposition are now recognized and well charac-
terized. These include Cowden syndrome, MUTYH-associated 
polyposis, hereditary pancreatic cancer, Lynch syndrome, 
Peutz-Jeghers syndrome, familial adenomatous polyposis 
(FAP), attenuated FAP, serrated polyposis syndrome, and 
hereditary gastric cancer. Molecular characterization of the 
genes that are involved in these syndromes was useful in the 
development of genetic testing for diagnosis and also facili-
tated understanding of the genetic basis of GI cancers. Current 
knowledge on the genetics of GI cancers with emphasis on 
heritability and germ line mutations forms the basis of the 
present review.
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1. Introduction

Cancers arising within the gastrointestinal (GI) tract are 
genetic disorders caused by the sequential accumulation of 
alterations in genes that control the growth, differentiation, 

and DNA repair (1). Although the majority of cases appear 
to arise sporadically, a small percentage of GI cancers 
have an apparent hereditary component, as evidenced by 
the well-characterized genetic syndromes and the family 
history associated with the high risk of these syndromes (2). 
Nearly 5% of inherited cases are due to highly penetrant 
mutations with well characterized clinical presentations (3). 
An additional 20-25% of cases are estimated to have an 
associated hereditary component, which has not yet been 
established (4). Many of the GI tract cancers appear to be 
due to mutations in single genes and these types of cancer 
are less penetrant but occur more frequently as compared 
to the cancers seen in combination with well-characterized 
syndromes (1). Examples for single gene mutations include 
common single-nucleotide polymorphisms (SNPs) in genes 
that are involved in the control of metabolism or which are 
regulated by environmental factors (4). Mutations in multiple 
susceptibility loci can also lead to these cancers by inducing 
additive effects (2). Identification of individuals who are at 
risk for GI tract cancer, and the development of methods for 
better diagnosis and prevention of cancer and therapeutic 
approaches is dependent on proper understanding of the 
molecular basis and genetics of GI tract cancers (3).

The present review addresses the genetics of the currently 
well-characterized hereditary cancers of GI tract. In this 
review we focus on the genetics of hereditary GI cancers, 
which are primarily that of a type of colorectal cancer (CRC) 
syndromes and also briefly discuss some aspects of pancreatic, 
and stomach cancers.

2. Hereditary CRC syndromes

Clinical, pathological, and genetic features form the 
basis for identifying and classifying the CRC syndromes. 
Pathophysiological conditions that lead to adenomatous polyps 
include familial adenomatous polyposis (FAP), attenuated 
FAP (AFAP), MUTYH-associated polyposis (MAP) and 
Lynch syndrome. Hamartomatous polyps are the primary 
lesions in Peutz-Jeghers syndrome (PJS) and juvenile polyp-
osis syndrome (JPS) (5). Serrated polyposis syndrome (SPS) 
is unique situation as it poses much higher cancer risk and 
therefore this syndrome needs to be identified separately from 
other conditions. Except for MAP, all these abovementioned 
conditions are inherited autosomal dominant disorders. MAP 
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is autosomal recessive, whereas, SPS is rarely inherited. There 
are many similarities between the phenotypes of AFAP and 
MAP, which are associated with varying numbers of adenomas, 
and these also resemble the phenotypes of Lynch syndrome, 
sporadic polyps, and other polyposis syndromes, often causing 
some confusion (6). Despite the clinical similarities between 
these syndromes, each of them has unique genetic aetiologies 
and cancer risks, and also specific clinical features.

3. CRC syndromes with adenomatous polyps

Conditions that express adenomatous polyps are seen only in a 
few of the inherited GI cancer predisposition syndromes, such 
as Lynch syndrome, FAP, AFAP, and MAP. The chances of 
developing colon cancer and tumors elsewhere are quite high 
in these syndromes (7) and non-malignant manifestations 
seen in these syndromes contribute to elevated morbidity and 
mortality.

Lynch syndrome. Lynch syndrome or hereditary non-polyposis 
colon cancer is one of the main causes for up to 5% of all 
CRC (8-10). Individuals with Lynch syndrome have an 80% 
risk for CRC (4). The syndrome is also associated with an 
increased risk of developing malignancies at extra-colonic sites 
such as endometrium, stomach, ovary, small bowel, pancreas, 
ureter, renal pelvis, hepatobiliary tract, and brain (11-14). 
Among these sites, cancer arising within endometrium is the 
second most common malignancy in Lynch syndrome with a 
lifetime risk between 40 and 60% (Table I), which is similar to 
or even higher than the estimated risk for CRC in women with 
Lynch syndrome. However, endometrial cancer often occurs 
before CRC in these women (8,15,16). Approximately 2% of all 
endometrial cancers likely arise due to Lynch syndrome (17).

An important feature of Lynch syndrome is that there is 
an early onset of cancer as compared to the general popula-
tion (13,18). Thus, while in the general population, CRC has 
an onset at 65 years and endometrial cancer at 60 years, these 
onset ages are much lower in people with Lynch syndrome, 
at 44 and 48 years, respectively, for these two types of 
cancer (14,19-21). Lynch syndrome is also characterized by 
the occurrence of synchronous (multiple primary cancers 

occurring simultaneously) and metachronous (multiple cancers 
occurring at intervals) tumors (22,23). Synchronous and 
metachronous cancers occur to different extents in individuals 
with Lynch syndrome (50% incidence) as compared to those 
with sporadic CRC (20% incidence) (14,24). Furthermore, the 
right or proximal colon are frequent sites for CRC in Lynch 
syndrome patients, whereas in individuals with sporadic CRC, 
there is relatively higher incidence of sigmoid/distal carci-
nomas (9,13,14,25). Crohn's-like reactions, tumor-infiltrating 
lymphocytes, signet ring cells and mucinous adenocarcinoma 
are some of the main pathologic features of CRC associated 
with Lynch syndrome. These pathological features, which 
are often considered as red flags for Lynch syndrome, are 
less common in sporadic CRC (14,21,22,26). A high level 
of microsatellite instability (MSI-H), which is a feature of 
carcinogenic process when there is defective DNA mismatch, 
is also a characteristic of Lynch syndrome. Studies show that 
MSI-H-bearing colon cancers have better overall prognosis 
unlike the colon cancers without MSI (27).

Germline mutations in mismatch repair (MMR) genes, 
which are a special class of tumor suppressor genes that are 
responsible for correcting DNA errors that occur during 
replication, lead to the pathogenesis of Lynch syndrome (23). 
Genes recognized to be associated with Lynch syndrome 
include human mutL homolog 1 (hMLH1) at 3p21.3, human 
mutS homolog 2 (hMSH2) at 2p21-p22, hMSH3 at 5q11-q12, 
hMSH6 at 2p16 human postmeiotic segregation 1 (hPMS1) at 
2q31-q33, and hPMS2 at 7q22 (22). Almost 90% of the cases 
with Lynch syndrome arise due to mutations in hMLH1 and 
hMSH2, whereas a small number of cases (10%) are thought 
to be due to mutations in hMSH6 and only on rare occasions 
mutations in hPMS2 are evident (28-31). Mutations in these 
genes show predominantly autosomal dominant inheritance 
with close to 80% penetrance for CRC and a 25% risk for 
metachronous CRC (14). These numbers are relatively lower 
for endometrial cancer (60% penetrance) as well as for 
other cancers (<20%). Observed phenotypic variations show 
dependency on the specific gene mutation. Thus, there is a 
slightly increased incidence of endometrial cancer in families 
with hMSH6 mutations who also show a moderately lower 
incidence of CRC compared with families harboring hMLH1 

Table I. Mode of inheritance of non-polyposis syndrome as well as the associated genes, lifetime risk of cancer development and 
non-malignant features.

Syndrome Inheritance Gene Sites Lifetime risk (%) Non-malignant features

Lynch Autosomal hMLH1 Colon 50-80 Physical or non-malignant features, with the
syndrome dominant hMLH2 Endometrium 40-60 exception of keratoacanthomas and
  hMLH6 Stomach 11-19 sebaceous adenomas/carcinomas, are rare
  hPMS2 Ovary 9-12
  EpCAM Hepatobiliary tract 2-7
  EpCAM Upper urinary tract 4-5
   Pancreas 3-4
   Small bowel 1-4
   CNS 1-3

hMLH, human mutL homolog; hPMS2, human postmeiotic segregation 2; CNS, central nervous system.
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and hMSH2 mutations (Table II) (32). However, hPMS2 
mutation carriers display very different risk, which is 15-20% 
risk for CRC, 15% for endometrial cancer, and 25-32% for 
any Lynch syndrome-associated cancer (Table III) (29,33). In 
comparison to other MMR genes, these risks are much lower.

FAP. FAP is the second most common inherited CRC 
syndrome and accounts for approximately 1% of all CRC. It 
is characterized by the emergence of hundreds to thousands 
of adenomatous polyps throughout the colorectum, usually 
beginning in late childhood or adolescence. If untreated, indi-
viduals with FAP in adolescence inevitably develop CRC by 
the age of 40 years. Therefore, the penetrance of this syndrome 
is 100%. Even though polyps may appear as early as 16 years 
of age, diagnosis of CRC may be delayed until 36 years of 

age (34). Development of CRC is observed in approximately 
7% of patients by 21 years of age whereas 95% develop CRC 
by age 50.

Other types of cancer associated with FAP are duodenal 
cancer, thyroid cancer, medulloblastoma, bile duct cancer, 
and childhood hepatoblastoma (Table IV). Benign neoplasms 
associated with FAP are upper GI polyps, desmoids tumors, 
sebaceous and epidermoid cysts, osteomas, supernumerary 
teeth, and congenital hypertrophy of the retinal pigment 
epithelium (CHRPE) (35). Although desmoids tumors are 
classified as benign, they occur in approximately 10% of 
FAP patients and can result in major medical complications, 
including death (36). Indeed, complications from desmoid 
tumors are one of the leading causes of death in individuals 
with FAP who have had a prophylactic colectomy (37).

FAP arises as a consequence of a germline heterozygous 
mutation in the adenomatous polyposis coli (APC) gene, 
a tumor suppressor gene located on chromosome 5q21. 
Individuals who carry a germline pathogenic mutation in 
the APC gene eventually develop FAP. Despite being a rare 
disease, FAP has been considered as a good model for heredi-
tary cancers and mutations in APC gene are a good example 
of the molecular pathogenesis of neoplasia (38). Indeed, 
as is the case for other tumor suppressor genes, APC gene 
inactivation occurs only after both alleles have been damaged 
due to mutations. In FAP, one allele is inherited in a mutated 
form. Adenoma formation is initiated when the second allele 
is damaged or lost by somatic event. Inasmuch as significant 
number of adenomas likely develop within 15-40 years, it is 
quite possible that initiation of tumorigenesis can be triggered 
with just two hits. However, considering that only a small 
number of these adenomas progress to cancer, the presence 
of several additional mutations is probably necessary for this 
tumorigenesis (39,40).

Autosomal dominant inheritance of APC mutation is 
common in many cases of FAP, even though few cases 
(15-20%) appear to display de novo APC mutation. Patients 
with these types of mutations therefore do not present with 
a family history of the disease, but appear to have somatic 
mosaicism (36,37). Acquired APC mutations are often seen 
in sporadic colorectal carcinomas and recent studies suggest 
that nearly 66% of all CRCs harbor the mutated APC gene. 
Over 800 APC germline mutations have been reported (39) 
with the vast majority associated with FAP being truncating 
or nonsense mutations, and typically insertion or deletion, 
leading to altered reading frame (40,41).

The APC gene also has another mutation, APC 11307K, 
which appears mostly in individuals of Ashkenazi Jewish 
descent (42). The APC 11307K mutation is an indirect caus-
ative factor for CRC, through the formation of a weak spot in 
the APC gene, which is critical to the development of CRC (42). 
The APC 11307K mutation is autosomal dominantly inherited 
and people with this mutation generally develop cancer around 
the age of 60 years (43,44). The lifetime risk of CRC develop-
ment in individuals with APC 11307K gene mutation is much 
less than the risk associated with the other hereditary CRC 
syndromes, and is estimated to be 10-20% (45,46).

AFAP. AFAP is a variant of FAP and is also characterized by 
polyposis. However, in AFAP, the total number of polyps is 

Table III. Penetrance as HR and cumulative risk to 70 years of 
age for cancer based on gender.

   Risk, %
Cancer Gender HR (95% CI) (95% CI)

CRC Male 5-2 (2.8-9.7) 20 (11-34)
 Female 5-2 (2.8-9.7) 15 (8-26)
Endometrial Female 7-5 (2.8-20.0) 15 (6-35)
 Male 2.5 (0.4-16.2) 6 (1-33)
Less frequent Lynch Female 2.5 (0.5-12.6) 6 (1-25)
cancers Male 0.9 (0.3-2.3) 24 (10-51)
Other cancers Female 1.5 (0.8-3.1) 27 (15-48)
 Male - 25 (16-48)
Any Lynch Female - 32 (21-53)
syndrome-associated
cancer

CRC, colorectal cancer; HR, hazard ratio; CI, confluence interval.

Table II. Frequencies of tumors in patients with Lynch syn-
drome.

 hMSH6 hMLH1/MSH2
 ----------------------------- ----------------------------
Tumors n % n %

All primary tumors 144 - 859 -
Colorectal cancer 61 42.4 563 65.5
Endometrial cancer 9 6.3 43 5.0
Ovarian cancer 4 2.8 12 1.4
Stomach cancer 10 6.9 37 4.3
Breast cancer 8 5.6 17 2.0
Lung cancer 7 4.9 5 0.6
Prostate cancer 4 2-8 6 0-7
Cancer of renal 0 0 13 1.5
pelvis and ureter

MSH6, mutS homolog 6; MLH1, mutL homolog 1; MSH2, mutS 
homolog 2.
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<100 (Table IV), and the polyps have a tendency to develop on 
the right side of the colon (22). Furthermore, the penetrance 
of AFAP appears to be lower than that of FAP, and AFAP 
patients have a delayed development of CRC, by approximately 
12 years, compared to those with classic FAP (36).

AFAP may also result from splice-site mutations, which 
cause in-frame deletions of APC ORF (open reading frame) 
in a small number of patients and in most cases, genes with 
these mutations encode near full-length protein, providing 
an intuitive explanation for the weak attenuated phenotype. 
On the other hand, mutations in the 5' region of the APC 
gene, upstream of codon 157, appear to cause most cases of 
AFAP. How these mutations which potentially lead to trun-
cation of the APC contribute to the development of cancer 
remains to be determined. This paradox may be explained 
by the fact that translation is reinitiated at an in-frame ATG, 
at codon 184, when a mutation upstream of codon 169 causes 
truncation and such internal initiation is facilitated by an 
internal ribosome entry site. The resulting protein is devoid 
of regions containing amino acid sequences required for 
homodimerization and nuclear export, suggesting that these 
functions are probably not crucial for APC function. The 
hypomorphic nature of the truncated APC may be the cause 
for the lower number of polyps.

MAP. Unlike the other polyposis syndromes, which show 
an autosomal dominant pattern, MAP shows autosomal 
recessive inheritance and is possibly restricted to single 
generation. There are multiple colonic polyps in MAP 
patients and often it is difficult to distinguish MAP from 
classical AFAP (43). It has been suggested that MAP is the 
real AFAP (44). MAP is now known to be associated with 
CHRPE, osteomas, duodenal adenomas, anomalies, and 
gastric fundic gland polyps, as well as desmoids tumors, 

which are considered to be hallmarks of FAP (47). There may 
be up to 500 colorectal polyps in MAP and these polyps tend 
to be mostly small tubular or tubulovillous adenomas with 
mild dysplasia and there may also be hyperplastic polyps. 
Even though adenomas seem to show a right colonic predis-
position, tumorigenesis can occur throughout colorectum. At 
the time of diagnosis, which is generally at approximately 
45 years of age, the number of adenomas is <100 in many 
MAP patients and by approximately 50 years of age these 
patients develop CRC (45-49).

MAP is caused by bi-allelic mutations in the MUTYH 
gene, which encodes a base excision repair protein and loss 
of this protein compromises base excision repair and results 
in CG-AT transversions in several genes, including APC and 
KRAS (43,50,51). While germline MUTYH mutations appear 
to be potential causes for polyps and cancer predisposi-
tion, somatic MUTYH mutations may not have a significant 
role in the pathogenesis of colon cancer (52,53). There is 
approximately 80% lifetime CRC risk for MUTYH mutation 
carriers (Table IV). The two most common MUTYH muta-
tions are missense mutations Y179V and G396D (earlier 
labeled as Y165V and G382D, respectively), and occur in 
more than 80% of individuals of European ancestry with 
MAP (43,50,52,54-56). Other population-specific MUTYH 
mutations have been found (53). Nearly 90% of MAP patients 
in western populations have at least one of these muta-
tions (53).

In 8-13% of patients with >100 adenomas, even though 
disease causing APC mutations are absent, bi-allelic MUTYH 
mutations are found and these mutations are also seen in 
16-40% of patients without any FAP but with 15-99 colonic 
adenomas (50,54,55,57-59). Occurrence of bi-allelic mutations 
in patients with few to no polyps and early-onset CRC, as well 
as in CRC-negative individuals but having <10 adenomas, 

Table IV. Mode of inheritance of adenomatous polyposis syndromes as well as gene, lifetime risk of cancer development and 
non-malignant features associated with these syndromes.

    Lifetime
Syndrome Inheritance Gene Sites risk (%) Non-malignant features

FAP Autosomal dominant APC Colon 100 100-1000 of colorectal adenomas
   Duodenum/periampullary 4-12 Gastric fundic gland and duodenal
   Stomach <1 Adenomatous polyposis
   Pancreas 2 CHRPE, epidermoid cysts, osteomas
   Thyroid 1-2 Dental abnormalities
   Liver (hepatoblastoma) 1-2 Desmoids tumors
   CNS (medulloblastoma) <1
AFAP Autosomal dominant APC Colon 70 <100 colonic adenomas (0-100)
   Duodenum/periampullary 4-12 Upper GI polyposis similar to FAP
   Thyroid 1-2 Other non-malignant features are
     rare in AFAP
MAP Autosomal recessive MUTYH Colon 80 Colonic phenotype similar to AFAP
   Duodenum 4 Duodenal polyposis

FAP, familial adenomatous polyposis; AFAP, attenuated familial adenomatous polyposis; MAP, MUTYH-associated polyposis; CNS, central 
nervous system; CHRPE, congenital hypertrophy of the retinal pigment epithelium; APC, adenomatous polyposis coli; GI, gastrointestinal.
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is rare (60). The presence of MAP is frequent in individuals 
having 20-90 adenomas (53,61).

Polymerase proofreading-associated polyposis. A new type 
of polyposis syndrome that is associated with polymerase 
proofreading, which shows a phenotype including an early 
onset of colorectal and endometrial cancers along with 
oligo-adenomatous polyposis, is described in a few fami-
lies (62). The disease appears to have a high penetrance. 
Two germline mutations POLE p.Leu424Val and POLD1 
p.Ser478Asn were identified in individuals with this 
syndrome. The two pathogenic mutations are characterized 
by a dominant pattern of inheritance and associated with a 
high risk of multiple colorectal adenomas, large adenomas, 
early-onset CRC and multiple CRCs. POLD1 mutations are 
also associated with increased risk of endometrial cancer in 
female carriers (62,63).

Most of the germline mutations identified that POLE and 
POLD1 polymerases are situated in the proofreading (exo-
nuclease) domain of these enzymes, indicating that these 
mutant polymerases are unable to proofread and repair DNA 
replication errors (62,64-66). In MSI-positive colorectal and 
endometrial tumors certain mutations in the non-exonuclease 
domain of these polymerases and these mutations were found 
to be passenger mutations (66).

4. Hamartomatous polyposis syndromes

Among the hamartomatous polyposis conditions, which confer 
elevated risk for CRC and other malignancies, JPS and PJS 
seem to be more important (67), as compared to many other 
rare hamartomatous polyposis syndromes, such as Cowden 
syndrome (CS), which pose little risk for CRC.

PJS. PJS patients have multiple hamartomatous polyps, 
through the GI tract as well as mucocutaneous melanocytic 
macules. This type of hyperpigmentation is found mostly 
near the eyes or on the buccal mucosa, nose, or axilla. Other 
characteristics include small flat, brown, or dark blue spots in 
the peribuccal area and across the vermillion border of the 
lips (68). The elevated pigmentation is normally seen in child-
hood but disappears by adulthood.

The characteristic GI lesions are small bowel, histo-
logically distinctive hamartomatous polyps (69). Gastric and 
colonic Peutz-Jeghers polyps are found in ~25 and 30% of 
cases, respectively. There is ~87% lifetime risk of cancer and 
close to 70% risk specifically for GI tract cancer in people 
with PJS (65). In these patients the risk for pancreatic cancer 
is 11-36%. Other types of cancer are observed (Table V) and 
nearly 50% of patients with PJS succumbed to cancer by age 
57 years. PJS is inherited in an autosomal-dominant manner 
with variable penetrance. It arises from mutations of the 
STK11 gene on chromosome 19p13.3.

JPS. JPS is an autosomal-dominantly inherited syndrome 
and patients with JPS have multiple juvenile polyps in many 
parts of the GI tract including, colorectum, stomach, jejunum, 
ileum, and duodenum (67,70-73). Size of the polyps ranges 
from 5 to 50 mm, and these polyps are spherical and either 
single or multi-lobulated, with surface erosion. Patients with 
JPS show symptoms of bleeding, diarrhea, abdominal pain, 
intussusceptions and rectal prolapse. Because of the overlap 
with hereditary hemorrhagic telangiectasia (HHT) and arterio-
venous shunting, sometimes digital clubbing has been noted in 
these patients (71).

JPS occurs as a result of mutations of the SMAD4 gene 
or the BMPR1A gene (73-77). Up to 60% of individuals with 

Table V. Mode of inheritance of hamartomatous polyposis syndromes as well as gene, lifetime risk of cancer development and 
non-malignant features associated with these syndromes.

    Lifetime
Syndrome Inheritance Gene Sites risk (%) Non-malignant features

PJS Autosomal dominant STK11 Breast 54 Mucocutaneous pigmentations
   Colon 39 Gastrointestinal hamartomatous
     (Peutz-Jegher) polyps
   Pancreas 11-36
   Stomach 29
   Ovary 21
   Lung 15
   Small bowel 13
   Uterine/cervix 9
   Testicle <1
JPS Autosomal dominant SMAD4 Colon 39 Gastrointestinal hamartomatous
     (juvenile) polyps
  BMPR1A Stomach, pancreas, 21 Features of HHT congenital
   and small bowel  defects

PJS, Peutz-Jeghers syndrome; JPS, juvenile polyposis syndrome; HHT, hereditary hemorrhagic telangiectasia.
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clinically defined JPS are now found to exhibit mutations of the 
SMAD4 or BMPR1A genes (78). Germline mutations in these 
genes have been identified in ~40% of JPS patients (79,80). 
JPS patients with mutations in the SMAD4 gene usually have 
a family history of upper GI polyposis and are predisposed to 
developing large gastric polyps (79,81). Patients with BMPR1A 
mutations have a smaller number of gastric polyps compared 
to patients with SMAD4A (79,81,82). A large proportion of 
JPS patients with SMAD4 mutations have a 39% lifetime CRC 
risk, and develop GI juvenile polyps, while JPS patients with 
BMPR1A have a 21% lifetime risk of extra-colonic cancers and 
develop an HHT (Table V), a dominant disorder characterized 
by epistaxis, visceral arteriovenous malformations and 
telangiectasias (83). In two JPS patients, who did not show 
any symptoms of hemorrhagic telangiectasia, rare germline 
mutations in the ENG gene, which confers susceptibility to 
HHT, have been observed (84). It has been suggested that some 
patients with PTEN mutations, who have been misclassified 
as PJS patients, most likely belong to the PTEN hamartoma 
tumor group (85,86). In these patients, microdeletions at the 
chromosomal region 10q22-q23, which includes both PTEN 
and BMPR1A genes, has been reported (87).

CS. CS is associated with a wide range of clinical phenotypes 
that include orocutaneous lesions. These lesions include 
palmoplantar keratosis, oral mucosal papillomatosis, and 
facial trichlemmomas. The patients are at risk of developing 
cancers of the breast and thyroid. Adenocarcinoma of the 
uterus may also be associated with the syndrome (88). The 
majority of patients with CS have polyps throughout the 
colon (89,90). Hamartomatous polyps are the most common 
histologic polyps (89). Other polyp types include, juvenile 
polyps, ganglioneuromas, adenomas, and inflammatory 
polyps, and less commonly leiomyomas, lipomas, and 
lymphoid polyps (89-93).

Several investigations report the frequent occurrence of 
multiple hamartomatous polyps in the stomach, duodenum, 
and small bowel (67,89,94). The presence of gastric and colon 
cancers has been reported in some CS patients. CS is caused by 
germline mutations in the PTEN gene, which is a dual-specific 
phosphatase associated with the negative regulation of the 
AKT signaling (95-99).

SPS. SPS is a rare condition with characteristically large and 
multiple polyps of the colon, with an enhanced risk of CRC. 
Patients with SPS are a heterogeneous group with different 
disease phenotypes, which are probably caused by different 
genetic alterations (100). There are three different subgroups 
of SPS phenotypes: i) A right-sided phenotype with large 
sessile serrated adenomas along with an early-onset CRC with 
BRAF mutation; ii) a left-sided phenotype displaying a high 
number of small polyps showing KRAS mutation; and iii) a 
mixed phenotype with the characteristics of phenotypes 1 
and 2 (100,101). Nearly 80% of patients with SPS display 
regular colonic adenomas, which are a common occurrence in 
CRC-affected individuals with SPS (102,103).

Recessive and dominant inheritance patterns have been 
suggested for the SPS transmittance (104-106). Serrated 
polyps were observed in patients with bi-allelic mutations 
in the MUTYH, PTEN, SMAD4, and BMPR1A genes or 

with duplication in the GREM1 gene (107,108). Therefore, 
these genes were suggested to be altered in individuals with 
SPS (109). However, the fact that a history of adenomas was 
reported by 3 patients who meet criteria for SPS in a series of 
17 bi-allelic MUTYH mutation carriers, and by one bi-allelic 
MUTYH mutation carrier among 126 patients with SPS, is 
indicative of some overlap in the presentation of MAP and 
SPS.

HPC. Despite the fact that there is a genetic risk of pancreatic 
cancer, the basis for this inheritance is poorly defined. One 
of the well characterized risk factors for the development 
of pancreatic cancer is the hereditary chronic recurrent 
pancreatitis, which has an early onset in life. Both hereditary 
pancreatitis and age are cumulative factors elevate the rela-
tive risk for pancreatic cancer significantly up to 50-fold. Of 
note, this cumulative risk is found to be higher by as much 
as 75%, if there is paternal inheritance for pancreatitis. It has 
been demonstrated that either mutations in PRSS1 gene or a 
history of pancreatitis have the potential to confer a 5% risk for 
tumorigenesis in the same family members (3). Mutations in 
SPINK1 and CFTR genes, which have been linked to heredi-
tary pancreatitis, may also be associated with elevated risk of 
pancreatic cancer.

Evidence suggests that germline mutations in BRCA2 
gene, which is one of the genes associated with hereditary 
breast and ovarian cancer, might be the cause of up to 10% of 
pancreatic cancer cases (110,111). The 6174de1T BRCA2 muta-
tion, which is found in nearly 1% of individuals of Ashkenazi 
Jewish ancestry, likely explains the relatively higher incidence 
of pancreatic cancer in these people.

A clear genetic correlation between pancreatic cancer and 
familial melanoma has been described. Thus, patients with a 
mutation in CDKN2A have an elevated risk of both melanoma 
and pancreatic cancer (112). Whole genome sequencing or 
linkage analysis of familial pancreatic cancer kindred, have 
identified palladin (PALLD), ATM, and PALB2 genes, which 
enhance the risk of pancreatic cancer development (113-116). 
Apparently, previously known genetic mutations are causative 
for only 20% of familial clustering of pancreatic cancer. 
Therefore, in most cases, the responsible hereditary factors 
that are responsible for the increased number of pancreatic 
cancer cases in these kindred have not been identified.

Hereditary gastric cancer. Hereditary diffuse gastric 
cancer (HDGC) is also inherited in an autosomal dominant 
manner and develops into a poorly differentiated diffuse 
gastric adenocarcinoma (117). Clinical presentation of patients 
generally occurs around 40 years of age with linitis plastica, 
without a defined gastric tumor. The cumulative risk for the 
development of gastric cancer by 80 years of age is relatively 
high in women (83%) compared to men (67%). Even though no 
specific area of the stomach is targeted by tumor development, 
a diffuse area with up to 160 independent foci of tumor have 
been identified at prophylactic gastrectomy.

Germline mutations in the CDH1 gene, encoding the trans-
membrane protein E-cadherin, were found to be the cause of 
HDGC, with a penetrance of 70-80% (118). Risk of developing 
diffuse gastric cancer and lobular breast cancer is enhanced by 
heterozygous germline mutations in the CDH1 gene. Not all 
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families fulfilling these criteria have mutations in CDH1, indi-
cating that other genes may also be involved in diffuse gastric 
cancer predisposition. Germline mutations in CTNNA1 gene 
were described in three families that presented with diffuse 
gastric cancer (119).

A family history of gastric cancer in the absence of CDH1 
mutation, is known as the familial gastric cancer syndrome 
and can arise due to other inherited cancer predisposition 
syndromes such FAP and Li-Fraumeni syndrome (which is 
due to germline mutations in the TP53 tumor suppressor gene). 
Lynch syndrome confers ~13% risk for gastric cancer and 
inherited germline BRCA2 mutations also confer a great risk. 
A specific BRCA2, 614de1T, has been reportedly associated 
with a risk of gastric cancer by ~5.7% (120). It is important 
to bear in mind that nearly 21% patients with a family history 
of breast or gastric cancers, have BRCA2 mutation. BRCA2 
mutations are also noted in 24% of the patients with a family 
history of ovarian and gastric cancer (121).

5. Conclusion

Several well established hereditary GI cancer syndromes now 
exist, each with implication for specific cancer risk in GI and 
other organ systems. Investigation of the causative genetic 
factors has led to the identification of specific germline muta-
tions for several syndromes. Understanding the effect of these 
mutations in susceptibility is of great importance for cancer 
research aimed at developing new therapeutic and preven-
tive strategies. Although there are numerous gaps in current 
knowledge related to certain hereditary GI cancer syndromes, 
it is not unreasonable to assume that studies of GI syndromes 
may continue to lead the field in cancer research.
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