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Abstract: Objective: This nested case–control study aimed to investigate the effects of VEGFA poly-
morphisms on the development of bisphosphonate-related osteonecrosis of the jaw (BRONJ) in
women with osteoporosis. Methods: Eleven single nucleotide polymorphisms (SNPs) of the VEGFA
were assessed in a total of 125 patients. Logistic regression was performed for multivariable analy-
sis. Machine learning algorithms, namely, fivefold cross-validated multivariate logistic regression,
elastic net, random forest, and support vector machine, were developed to predict risk factors for
BRONJ occurrence. Area under the receiver-operating curve (AUROC) analysis was conducted to
assess clinical performance. Results: The VEGFA rs881858 was significantly associated with BRONJ
development. The odds of BRONJ development were 6.45 times (95% CI, 1.69–24.65) higher among
carriers of the wild-type rs881858 allele compared with variant homozygote carriers after adjusting
for covariates. Additionally, variant homozygote (GG) carriers of rs10434 had higher odds than
those with wild-type allele (OR, 3.16). Age ≥ 65 years (OR, 16.05) and bisphosphonate exposure
≥ 36 months (OR, 3.67) were also significant risk factors for BRONJ occurrence. AUROC values were
higher than 0.78 for all machine learning methods employed in this study. Conclusion: Our study
showed that the BRONJ occurrence was associated with VEGFA polymorphisms in osteoporotic
women.

Keywords: bisphosphonate-related osteonecrosis; VEGFA; gene polymorphism; machine learning

1. Introduction

Bisphosphonates are widely used to treat various bone diseases, including osteoporo-
sis and cancer-induced bone metastasis. Osteonecrosis of the jaw (ONJ) is a rare but severe
adverse effect of bisphosphonate treatment [1]. The clinical manifestations of ONJ include
the presence of exposed bone in the maxillofacial area for more than 8 weeks in patients
with current or previous bisphosphonate administration, in the absence of head and neck
radiation therapy [2]. Since BRONJ was first described in 2003, denosumab, which is a
new antiresorptive; tyrosine kinase inhibitors; mammalian target of rapamycin inhibitors;
monoclonal antibodies; radiopharmaceuticals; selective estrogen receptor modulators; and
immunosuppressants have been implicated in ONJ [3]. Despite an enormous amount of
research that has been reported, its pathogenesis is poorly understood; current theories
include suppression of bone remodeling, inflammation, altered gingival fibroblast function,
impaired immune function, and inhibition of angiogenesis [4,5].
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The majority of ONJ cases occur after dental surgery, such as tooth extraction [6],
and thus wound healing processes may be involved. Complementary treatment, such
as laser, ozone therapy and application of platelet concentrates in solid and liquid form,
would allow both to prevent ONJ and improve healing after surgical treatment of bone
lesions [7–9]. Blood vessel growth is essential for initiating and sustaining wound healing.
Inhibition of healing in hard and soft tissues, as well as the consequent effects on the
vasculature, are presumed to have anti-angiogenic effects [10]. Thus, it is assumed that
ONJ may develop, at least in part, due to the effect of bisphosphonates on angiogenic gene
expression in healing tissues.

Vascular endothelial growth factor A (VEGF-A) is one of the most potent pro-angiogenic
factors involved in wound healing [11]. During angiogenesis, endothelial cell proliferation
is required to form new vessels, and VEGF-A promotes proliferation and migration of
vascular endothelial cells. VEGF-A reduction is often observed in patients with ONJ [12].
Bisphosphonates are known to suppress angiogenesis following tooth extraction [13]. Ad-
ditionally, microvascular defects associated with BRONJ lesions have been reported [14].
However, the pathophysiology associated with BRONJ development is still unclear, result-
ing in uncertainty regarding the genetic factors associated with BRONJ.

Several studies have reported BRONJ-associated genes. Through genome-centered
studies, including genome-wide association studies or exome sequencing studies, associa-
tions of CYP2C8, PPARG, RBMS4, ASRD, SLC25A5, CCNYL2, and SIRT1 with BRONJ have
been reported [15–17]. Additionally, FDPS, HLA-DRB1, HLA-DQB1, CYP19A1, and VEGF
have shown significant associations with BRONJ through gene-centered studies such as
single-nucleotide polymorphism (SNP) analyses [18]. However, many of these relevant
studies enrolled healthy controls without taking bisphosphonate [17,19]. In other studies,
all of the participants comprised bisphosphonate users, but they received treatment only
with zoledronic acid among various bisphosphonates for both solid tumors and multiple
myeloma [17,20–22]. Moreover, most such studies investigated oncology patients, and
to our knowledge, there are no publications reporting related studies of patients with
osteoporosis.

Machine learning is a field of study that gives computers the capability to learn with-
out being explicitly programmed. Machine learning has been widely used for prediction
in several areas, including medical fields [23]. With huge progress in machine learning
techniques, there have been several studies using machine learning in dental and maxillo-
facial fields, such as periodontology, endodontics, orthodontics, radiology, and dental and
maxillofacial surgery [24–27]. However, the use of machine learning methods to predict
BRONJ has never been reported.

Therefore, we aimed to evaluate the association between VEGFA polymorphisms
and bisphosphonate-related ONJ occurrence in osteoporosis patients taking bisphospho-
nates, and we used supervised machine learning to build predictive models for BRONJ
occurrence.

2. Materials and Methods
2.1. Patients and Data Collection

This prospective, nested case-control study was conducted from January 2014 through
December 2018 at Ewha Womans University Mokdong Hospital. Patients with current or
previous bisphosphonate use who were scheduled for dentoalveolar surgery were enrolled
in the study. Eligible patients were those older than 50 years diagnosed with osteoporosis
by a medical doctor. Patients with any history of head and neck radiation or tumors
necessitating antiresorptive drug administration were excluded. BRONJ was diagnosed
by oral surgeons according to the guidelines of the American Association of Oral and
Maxillofacial Surgeons [28]. The study was approved by the institutional review board
of Ewha Womans University Mokdong Hospital (IRB number: 14-13-01) and conducted
in accordance with the Declaration of Helsinki. Informed consent was obtained from all
patients before their participation in the study. Clinical information was recorded and
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collected from electronic medical records. The collected information included patients’ age,
gender, comorbidities, and duration of bisphosphonate use.

2.2. Genotyping

Saliva samples were collected for genotyping using the tube format (OG300) of the
Oragene®·DNA Self-Collection Kit (DNAgenotek, Kanata, ON, Canada). The samples
were incubated at 50 ◦C for 2 h before DNA extraction, and genomic DNA extraction was
performed according to the manufacturer’s instructions. The genetic information of the
VEGFA SNPs was obtained from Haploreg 4.1, the SNP database of the National Center
for Biotechnology Information. Eleven VEGFA SNPs (rs2010963, rs699947, rs10434, rs25648,
rs3024987, rs3025022, rs3025035, rs3025039, rs998584, rs6905288, and rs881858) were selected
and genotyped to investigate their associations with BRONJ development [29–36]. These
SNPs were analyzed by SNaPShot Multiplex kits (ABI, Foster City, CA, USA) according
to the manufacturer’s instructions. Genotyping was performed by a single-base primer
extension assay using SNaPShot multiplex kits (ABI) or TaqMan genotyping assays using a
real-time polymerase chain reaction system (ABI 7300, ABI) according to the manufacturer’s
instructions.

2.3. Statistical Analysis and Machine Learning Methods

The chi-squared test was used to compare categorical variables, and Student’s t-test
was used to compare continuous variables between the case and control groups. Multivari-
able logistic regression analysis was used to examine independent risk factors for BRONJ.
Factors that had p values < 0.05 in the univariate analysis were included in multivariate
analysis. Odds ratios (ORs) and adjusted odds ratios (aORs) were calculated from univari-
ate and multivariate analyses, respectively. Attributable risk (%) was calculated as follows:
(1-1/aOR) × 100.

Machine learning algorithms were developed to predict risk factors for BRONJ oc-
currence (Figure 1). Fivefold cross-validated multivariable logistic regression, elastic net,
random forest (RF), and support vector machine (SVM) classification models were utilized.
All the methods were implemented using the R package caret. For cross-validation, the
dataset was randomly divided into five equal subsets. After partitioning one data sample
into five subsets, we selected one subset for model validation, while the remaining sub-
sets were used to establish machine learning models. Each cross-validation iteration was
repeated 100 times to evaluate the power of the machine learning models. In elastic net,
the gird-search value for λ and α, which controls the weight that is given to the penalty
and the weight given to ridge or lasso penalty, respectively, was varied. In terms of RF, the
mtry, the number of randomly selected predictors, was tested. For SVM, we used the linear
and radial kernel functions, and the cost and sigma were optimized.

To assess the ability of the constructed models for BRONJ occurrence, we analyzed
the area under the receiver-operating curve (AUROC) and its 95% confidence interval (CI)
of each model. All statistical tests were conducted with a two-tailed alpha of 0.05. The
data were analyzed using Statistical Package for Social Sciences Version 20.0 for Windows
(SPSS, Chicago, IL, USA). Machine learning algorithms were constructed using R software
version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria).
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Figure 1. Flow chart of the machine learning approaches.

3. Results

Of the 149 patients screened for inclusion in this study, 24 were excluded for the
following reasons: 20 patients with additional indications other than osteoporosis, 2
patients without clinical information, and 2 men. A total of 125 patients were included in
the final analysis. As shown in Table 1, 58 patients (46.4%) developed BRONJ after dental
procedures. The mean age of study patients was 72.9 ± 9.4 years, and 19 patients were
under 65 years of age. Hypertension was more common among cases than controls (62.4%
versus 41.8%, p < 0.05). The proportion of patients treated for 36 months or longer was
higher in the case group than the control group (p < 0.01) (Table 1).

Table 1. Patient characteristics of study patients.

Characteristics Case (n = 58) Control (n = 67) p

Age (years) 0.003
<65 3 (5.2) 16 (24.2)
≥65 55 (94.8) 50 (75.8)

Comorbidity
Hypertension 36 (62.1) 28 (41.8) 0.024

Diabetes mellitus 18 (31.0) 16 (23.9) 0.370
Cardiovascular disease 8 (13.8) 8 (11.9) 0.757

Rheumatoid arthritis 7 (12.1) 2 (3.0) 0.080
Thyroid disease 4 (6.9) 2 (3.0) 0.415
Kidney disease 2 (3.4) 3 (4.5) 1.000

Liver disease 0 (0) 2 (3.0) 0.499
Cancer 2 (3.5) 6 (9.1) 0.284

Treatment duration (months)
<36 13 (25.5) 30 (55.6) 0.002
≥36 38 (74.5) 24 (44.4)
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Among the 11 VEGFA SNPs evaluated, all of the allele frequencies were consistent
with the Hardy–Weinberg equilibrium. Univariate analysis revealed rs10434 (A > G) and
rs881858 (G > A) as significantly associated with BRONJ development. Variant homozygous
carriers (GG) of rs10434 developed BRONJ more often than those with other genotypes.
Wild G allele carriers of rs881858 had a higher risk of BRONJ development than those with
other genotypes (Table 2).

Table 2. Associations of genotypes with bisphosphonate-related osteonecrosis of the jaw.

Gene
Polymorphism Allele Change Minor Allele

Frequency
Grouped

Genotypes Case (n = 58) Control (n = 67) p

rs699947 A > C 0.253 AA, AC 22 (37.9) 31 (46.3) 0.347
CC 36 (62.1) 36 (53.7)

rs2010963 C > G 0.439 CC 14 (25.0) 8 (12.5) 0.077
CG, GG 42 (75.0) 56 (87.5)

rs25648 C > T 0.081 CC 51 (87.9) 52 (77.6) 0.131
CT, TT 7 (12.1) 15 (22.4)

rs3024987 C > T 0.211 CC, CT 56 (96.6) 63 (94.0) 0.685
TT 2 (3.4) 4 (6.0)

rs3025022 C > T 0.181 CC, CT 18 (31.0) 23 (34.3) 0.696
TT 40 (69.0) 44 (65.7)

rs3025035 C > T 0.202 CC 34 (59.6) 49 (73.1) 0.246
CT, TT 23 (40.4) 18 (26.9)

rs3025039 C > T 0.133 CC 42 (72.4) 50 (74.6) 1.000
CT, TT 16 (27.6) 17 (25.4)

rs10434 A > G 0.113 AA, AG 7 (12.1) 18 (26.9) 0.039
GG 51 (87.9) 49 (73.1)

rs998584 C > A 0.421 CC 7 (12.1) 14 (21.2) 0.176
CA, AA 51 (87.9) 52 (78.8)

rs6905288 G > A 0.240 GG, GA 21 (36.2) 33 (49.3) 0.142
AA 37 (63.8) 34 (50.7)

rs881858 G > A 0.133 GG, GA 18 (31.0) 10 (14.9) 0.031
AA 40 (69.0) 57 (85.1)

After adjusting for demographic variables with p < 0.05, we found that the odds of
BRONJ development were about 6.45 times higher among the G allele carriers of rs881858
than the odds among variant homozygote carriers (p < 0.01). The rs10434 polymorphism
did reach the marginal significance after adjusting for covariates. Additionally, in terms
of BRONJ development, patients who were treated for longer than 36 months and those
who were older than 65 years of age had ORs of 3.67 and 16.05, respectively (Table 3).
The attributable risk of the rs881858 polymorphism was 84.5%. The AUROC of logistic
regression was 0.818 (95% CI, 0.736–0.901).

Table 3. Multivariate analysis to identify predictors of bisphosphonate-related osteonecrosis of the jaw.

Variables Crude Odds Ratio (95% CI) Adjusted Odds Ratio (95% CI) Attributable Risk (%)

Age ≥ 65 years 5.87 (1.61–21.34) ** 16.05 (1.87–138.05) * 93.8
Treatment duration ≥ 36 months 3.65 (1.60–8.36) ** 3.67 (1.36–9.94) * 72.8

VEGFA
rs10434, GG 2.68 (1.03–6.97) * 3.16 (0.97–10.31) 68.4

rs881858, GG/GA 2.56 (1.07–6.14) * 6.45 (1.69–24.65) ** 84.5

Logistic regression analysis with backward elimination was carried out with variables such as age, hypertension, treatment duration,
rs10434, and rs881858. * p < 0.05, ** p < 0.01.

After we performed fivefold cross-validated multivariate logistic regression, elastic
net, RF, and SVM models (linear kernel and radial kernel), the AUROC values (mean,
95% CI) across 100 random iterations showed the clinical performance as follows: fivefold
cross-validated multivariable logistic regression (0.788, 0.702–0.875), elastic net (0.788,
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0.702–0.875), RF (0.781, 0.694–0.878), linear kernel SVM (0.786, 0.694–0.878), and radial
kernel SVM (0.793, 0.706–0.879).

4. Discussion

The main finding of this study was that, in terms of BRONJ development, the odds
of wild-G allele carriage of rs881858, with an OR of 6.45 and an attributable risk of 84.5%,
were higher than the odds of variant homozygosity. After adjusting for covariates, we
found that patients with the GG rs10434 genotype showed an approximately 3.16-fold
(95% CI, 0.97–10.31) increased risk of BRONJ compared with those with the A allele.
Among demographic variables, age ≥ 65 years and treatment duration ≥ 36 months were
significant risk factors for BRONJ occurrence. In the fivefold cross-validated multivariate
logistic regression, elastic net, RF, and SVM models, the mean AUROC value (0.78) across
100 random iterations revealed the favorable performance of these models.

VEGF is one of the most important growth factors for regulating vascular development
and angiogenesis—it acts by stimulating proliferation of vascular endothelial cells and
increasing vascular permeability [37]. The VEGF protein family includes VEGF-A (also
known as VEGF), VEGF-B, VEGF-C, and VEGF-D, all of which modulate angiogenesis by
binding to VEGF receptors such as VEGFR1, VEGFR2, and VEGFR3. Among interactions
between VEGF and VEGFR, a well-known cellular response pathway is VEGF-A, which
is the principal inducer of angiogenesis and VEGFR2 signaling [38]. During vascular
formation, VEGF-A binds to VEGFR2 and activates multiple pathways through signaling
intermediates. The stimulation of various downstream pathways by these interactions
promotes endothelial proliferation and angiogenesis [38].

Angiogenesis affects the processes of bone repair and wound healing. It is known that
suppression of osteoclasts by long-term bisphosphonate treatment can affect osteoblast
function, thereby impairing bone repair. A study using mice with osteoblast-specific
deletion of VEGFA showed that appropriate levels of VEGF were required for coupling
angiogenesis and osteogenesis at repair sites [39]. Inhibition of VEGF signaling, which
enhances intramembranous bone formation, has been shown to impair bone healing by
interfering with the conversion of cartilage callus to bone callus [40]. It has also been
reported that zoledronate therapy reduces VEGF levels and bone blood flow [41]. These
results suggest that the anti-angiogenic activity of bisphosphonates could result in avascular
necrosis and impair tissue repair.

The rs881858 SNP, a significant factor in our study, is located in a VEGFA intron. The
function of this SNP has not been characterized, but chromosomal interactions between
the rs881858 SNP region and the promoter of VEGFA may affect the regulation of VEGFA
gene activity. Previous genomic studies have reported that patients with wild-type (G
allele) rs881858 were associated with chronic kidney disease development due to decreased
nephrogenesis, which is induced by reduced VEGFA activity [42,43]. In another publication,
it is suggested that wild-type homozygotes have higher insulin resistance, indicating
impaired angiogenesis [44].

Another SNP, rs10434, was found to have a marginally significant impact on BRONJ
occurrence. The rs10434 polymorphism, which is located in the 3′UTR region of VEGFA,
has been widely studied in association with carcinoma and pregnancy loss. A study
of Chinese patients found that the rs10434 A allele was significantly associated with an
increased risk of B cell chronic lymphocytic leukemia, ostensibly via the upregulation of a
VEGF-based autocrine pathway [45]. Another study of Iranian pregnant women found that
the recessive allele (G) of rs10434 was significantly more frequently encountered among
patients with pre-eclampsia than among controls, possibly because of decreased VEGFA
expression [46,47]. These results are consistent with our findings.

For environmental factors, numerous potential risk factors for BRONJ have been
considered. Treatment duration, administration route, co-morbidities, co-medications,
smoking, and age are among the most commonly reported potential risk factors for devel-
oping ONJ [48,49]. However, evidence is still sparse due to the lack of prospective studies.
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In this study, among demographic factors, age and treatment duration were significant risk
factors for BRONJ. The significance of these demographic factors was expected, and our
findings were consistent with those of previous studies [50,51].

In this study, various machine learning approaches were utilized to predict BRONJ.
Regardless of the machine learning method used in this study, the AUROC values indicated
that all of the models in this study performed well. In particular, the AUROC value from
the multivariable logistic regression model was exactly the same as that from the elastic
net, a penalized linear regression model that combines the penalties of the lasso and ridge
methods [52]. Meanwhile, RF is an ensemble method of bootstrap aggregated binary
classification trees. RF grows binary classification trees on the basis of bootstrapped
samples of the training data while using only a random subset of available features at each
node to find the optimal splitting rule [53–55]. Through repeating these processes, RF can
generate thousands of decorrelated decision trees (i.e., the ensemble) that can provide more
robust committee-type decisions. SVMs were implemented using linear and radial basis
function kernels in this study. Linear kernel SVMs have a single tuning parameter, C, which
is the cost parameter of the error term, whereas radial kernel SVMs have an additional
hyperparameter that defines the variance of the Gaussian, i.e., how far a single training
example’s radius of influence reaches [55,56].

This study had some limitations, including its small sample size, which led to an
underpowered study. Due to the nature of osteoporosis, the number of men (n = 2) was
so small that they were not included in this study to rule out the effect of gender. Some
demographic factors such as smoking history and corticosteroid therapy could not deal
with covariates because of insufficient information. It was possible to be additional potential
confounders that were not eventually included in the predictive model. Additionally,
we did not examine the underlying mechanism at the molecular level. Moreover, the
lack of external validation and other factors that may affect the performance of machine
learning algorithms also must be considered when interpreting the findings of this study.
Nevertheless, the strength of this study is that this is the first study using machine learning
methods to predict BRONJ. In addition, our control group consisted of well-defined patients
by oral and maxillofacial surgeons after undergoing dentoalveolar surgery. In many other
studies, it has been pointed out that inclusion of healthy subjects or uncertain controls in
genetic studies results in bias.

5. Conclusions

To our knowledge, this was the first study to investigate the effects of variations in
the VEGFA gene on BRONJ complications among patients with osteoporosis. Additionally,
this study utilized machine learning approaches to predict BRONJ occurrence. Although
further functional studies are needed to verify our findings, these results could contribute
to clinical decision-making based on ONJ risk.
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AUROC Area under the receiver-operating curve
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SVM Support vector machine
VEGF-A Vascular endothelial growth factor A
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