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Introduction
Archival formalin-fixed paraffin-embedded (FFPE) tissue repositories are valuable resources for 
clinical proteomic studies; such repositories may include retrospective as well as protein biomarker 
discovery and validation studies.1,2,3 These repositories are often composed of a large variety of 
patient biopsy tissues, which are accompanied by their associated clinical metadata, in the form of 
patient medical records. The wealth of information stored in these archival FFPE tissue repositories, 
together with the easily accessible FFPE samples, has generated improved methods for FFPE 
tissue analysis in the context of genomic, proteomic and immunohistochemical studies.1,2,3

The development and standardisation of FFPE sample processing for mass spectrometry (MS)-
based analysis to determine changes (or similarities) in the proteome composition of tumour 
versus healthy tissues is of great interest to clinical and translational research.4,5 Part of this process 
involves using an optimal and efficient protein extraction buffer to generate reproducible results. 
Studies have found that experimental factors, such as protein extraction buffer, pH, detergents, 
denaturants and temperature, play important roles in the final attainable protein yield from FFPE 
tissues.3,6 Other factors to consider include limited availability of clinical specimens and therefore 
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Background: Optimal protocols for efficient and reproducible protein extraction from 
formalin-fixed paraffin-embedded (FFPE) tissues are not yet standardised and new techniques 
are continually developed and improved. The effect of polyethylene glycol (PEG) 20 000 on 
protein extraction efficiency has not been evaluated using human FFPE colorectal cancer 
tissues and there is no consensus on the protein extraction solution required for efficient, 
reproducible extraction.

Objective: The impact of PEG 20 000 on protein extraction efficiency, reproducibility and 
protein selection bias was evaluated using FFPE colonic tissue via liquid chromatography 
tandem mass spectrometry analysis. 

Methods: This study was conducted from August 2017 to July 2019 using human FFPE 
colorectal carcinoma tissues from the Anatomical Pathology department at Tygerberg 
Hospital in South Africa. Samples were analysed via label-free liquid chromatography 
tandem mass spectrometry to determine the impact of using PEG 20 000 in the protein 
extraction solution. Data were assessed regarding peptide and protein identifications, 
method efficiency, reproducibility, protein characteristics and organisation relating to gene 
ontology categories.

Results: Polyethylene glycol 20 000 exclusion increased peptides and proteins identifications 
and the method was more reproducible compared to the samples processed with PEG 20 000. 
However, no differences were observed with regard to protein selection bias. We found that 
higher protein concentrations (> 10 µg) compromised the function of PEG.

Conclusion: This study indicates that protocols generating high protein yields from human 
FFPE tissues would benefit from the exclusion of PEG 20 000 in the protein extraction solution.
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a limited amount of starting material (tissue) available for 
optimising a protein extraction procedure. This places 
limitations on the choice of proteomics workflows (including 
protein extraction, protein sample enrichment, fractionation 
and digestion) that can be used to generate samples of 
suitable quality for high sensitivity liquid chromatography 
(LC) tandem MS analysis.2,7 Additional challenges faced in 
FFPE proteomics studies, which cannot be remedied after the 
fact, are pre-analytical factors that affect protein extraction 
efficiency and often produce variable protein yields. These 
may include tissue ischemic time, the composition of the 
fixative, fixation time (duration or range of formalin-fixation 
times used), as well as block age and storage conditions.2,4,8

During the protein extraction process, the effect of the 
formaldehyde fixation chemistry on the tissues poses another 
challenge to overcome. Due to extensive formaldehyde cross-
linking between molecules, accurate and efficient protein 
extraction from FFPE tissues is difficult. It requires specific 
sample processing techniques to allow for complete breakage 
of cross-linking bonds, which in turn allows for proper 
trypsin digestion.2,9,10,11 For this reason multiple strategies 
have been employed, including the use of denaturants, 
detergents, precipitants and antigen retrieval. However, 
several aspects of the formaldehyde-protein interactions 
remain unresolved and are the focus of continued research in 
the FFPE proteomics field.

We have previously studied the effects of FFPE block age on 
the quality and quantity of protein extracted from FFPE tissues 
and also evaluated protein purification methods using LC-
MS/MS analysis.12 However, the optimal protein extraction 
buffer components were not investigated. Therefore, of interest 
to this study are the effects of polyethylene glycol (PEG), 
specifically PEG 20 000, on protein extraction efficiency of 
human FFPE tissues using LC-MS/MS analysis, as there is no 
current consensus with regard to PEG usage and advantages 
for human FFPE tissue proteomics. Polyethylene glycol, a high 
molecular weight synthetic polymer, reduces non-specific 
protein adsorption to surfaces, such as experimental plastic-
ware (micropipette tips and microcentrifuge tubes), thereby 
preventing subsequent protein loss.3,13 Polyethylene glycols 
also precipitate proteins through a steric exclusion mechanism, 
whereby they occupy most of the space in solution, thus 
concentrating the proteins until they exceed solubility and 
precipitate.14,15,16,17 Therefore, subsequent centrifugation may 
pellet the precipitated proteins17 and these may be lost in the 
sample pellets (after clarifying the protein lysates and removal 
of the supernatants for analysis). Polyethylene glycol also 
causes interference and ion signal suppression in downstream 
LC-MS/MS analysis, if it is not completely removed from 
the  sample analysed.5,13 Removal of high concentrations of 
PEGs is challenging and PEG carry-over into sample fractions 
and LC columns is a huge problem.14,18 However, due to its 
advantages and available techniques to remove PEG before 
LC-MS/MS analysis, it is often used for protein extraction of 
FFPE tissues.3,13 To our knowledge, however, PEG efficacy 

with regard to protein extraction of human FFPE tissues has 
not been fully evaluated yet.

Polyethylene glycol can vary in polymer size, and for this 
study PEG 20 000 was chosen, because it is the most 
extensively used form in FFPE tissue proteomics; 
subsequently all references to PEG in this article are to the 
20 000 form. The aim of this study was to evaluate the effects 
of PEG within the protein extraction buffer using label-free 
LC-MS/MS analysis of manually micro-dissected FFPE 
human colorectal carcinoma (CRC) resection samples. The 
sample pellets were also tested for residual protein, which 
was not extracted in the whole cell protein lysates (WCPLs).

Methods
Ethical considerations
Ethics clearance was obtained from the Health Research 
Ethics Committee of Stellenbosch University (ethics reference 
number: S17/10/203) and Biomedical Science Research 
Ethics Committee of the University of the Western Cape 
(ethics reference number: BM17/7/15). All patient specimens 
were anonymised before being archived for long-term storage 
and before they were accessed for the study. Patient consent 
was not required since it was a retrospective study using 
archival tissues.

Formalin-fixed paraffin-embedded human 
colorectal carcinoma samples
This study conducted from August 2017 to July 2019, 
included retrospectively chosen human colorectal resection 
specimens acquired from the department of Anatomical 
Pathology at Tygerberg Hospital in Western Cape, South 
Africa. The specimens were preserved as FFPE blocks when 
the tissue was resected and archived between January 2016 
and December 2017. Due to retrospective collection of the 
samples, the exact pre-analytical factors, such as the handling, 
fixation times and conditions, and storage conditions, were 
unknown and could not be accounted for. Table 1 shows the 
details of the three patient cases selected.

To ensure tissue quality and comparability, a pathologist 
reviewed the patient tissue sections after haematoxylin and 
eosin staining to select only specimens that had carcinomas 
with more than 90% viable tumour nuclei (Figure 1). Patient 
samples were also classified and diagnosed with low-grade 
or high-grade colorectal carcinoma after haematoxylin and 
eosin staining.

TABLE 1: Details of the three FFPE patient cases selected for analysis at the 
South African National Bioinformatics Institute, University of the Western Cape, 
Bellville, South Africa, from August 2017 to July 2019.
Meta data tags Patient 1 Patient 2 Patient 3

Block year 2017 2016 2016
Patient age (years) 60 47 60
Gender Female Male Male
Diagnosis Adenocarcinoma Adenocarcinoma Adenocarcinoma
Grade Low-grade High-grade Low-grade
Stage IIIB IIIB IIA
Location Right colon Right colon Right colon
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Protein extraction and purification
To overcome the effects of formaldehyde cross-linking, 
we  opted to combine protein extraction techniques that 
employed the use of antigen retrieval, strong detergent 
concentration, as well as a synthetic polymer for protein 
precipitation (PEG 20 000). For protein purification before 
LC-MS/MS analysis, we used the Single-Pot Solid-Phase-

enhanced Sample Preparation (SP3)19,20 method, which 
ensures minimal sample loss during processing and was also 
found to be highly sensitive, therefore requiring less starting 
material (tissue).12,19,20

The equivalence of 23 mm3 of manually micro-dissected FFPE 
tumour tissue was cut and processed for each patient case 
(Figure 2). Protein was extracted using a solution that 
consisted of 50 mM of ammonium bicarbonate (pH 8.0) and 
2% sodium dodecyl sulphate (SDS) and either with or without 
the addition of 0.5% PEG. To further determine protein 
extraction buffer efficiency, the sample pellets were also 
assessed for residual proteins that were not extracted in the 
initial extraction. In total, 12 samples were analysed, including 
the WCPLs as well as the sample pellets (Figure 2).

The method used for sample processing, protein extraction 
and protein yield quantification was modified from the 
protocols used by Scicchitano21 and Wiśniewski22 and 
previously described in more detail by Rossouw.12 Both 
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FIGURE 2: Summarised workflow and experimental design followed at the South 
African National Bioinformatics Institute, University of the Western Cape, 
Bellville, South Africa, from August 2017 to July 2019. FFPE colorectal carcinoma 
tissue from three patients were cut at 25 µm thickness and tumour areas were 
manually micro-dissected for analysis. From each patient FFPE block, 4 tissue 
sections (each 25 µm thick and equivalent to approximately 23 mm3 tissue) were 
used per experimental sample. Protein extraction buffer, with or without the 
addition of PEG, was used to extract protein. Sample pellets were analysed for 
residual protein by further protein extraction (using 4% SDS), followed by protein 
quantification and subsequent sample processing (for LC-MS/MS analysis) by the 
HILIC/SP3 method. WCPLs from each patient were quantified and processed by 
the HILIC/SP3 sample preparation method, followed by MS analysis. The mass 
spectra generated were then analysed during the data analysis phase. 

b

c

a

FIGURE 1: Colon adenocarcinoma tissue specimens analysed at the South 
African National Bioinformatics Institute, University of the Western Cape, 
Bellville, South Africa, from August 2017 to July 2019. Microscopic images of 
haematoxylin and eosin-stained colon tissue sections of patient resection 
specimens analysed in this study: patient 1 (a), patient 2 (b) and patient 3 (c) at 
100× magnification. 
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WCPLs and sample pellets were subsequently processed by 
the hydrophilic interaction liquid chromatography (HILIC)/
SP3 magnetic bead digestion method,19 before LC-MS/MS 
analysis (Figure 2).

The MagReSyn® (ReSyn Biosciences, Edenvale, Gauteng, 
South Africa) HILIC/SP3 method (using on-bead digestion) 
was used for protein purification and tryptic digestion 
(peptide generation) prior to LC-MS/MS analysis. The 
method was modified from the protocol used by Hughes19 
and previously described in more detail by Rossouw.12

Mass spectrometry analysis
Mass spectrometry analysis of each sample’s peptides was 
performed using the Q-Exactive quadrupole-Orbitrap (Thermo 
Fisher Scientific, Waltham, Massachusetts, United States), 
which was coupled with a Dionex Ultimate 3000 nano-UPLC 
system as described before by Rossouw.12 Using XcaliburTM 
(version 4.2) (Thermo Fisher, Waltham, Massachusetts, United 
States), spectral data was collected in a data-dependent manner 
and details are shown in Supplementary document – Table S1.

Identification of peptides and proteins
The raw spectral data were converted into ‘mascot generic 
format’ (Matrix Science, London, United Kingdom), which is 
a standard format used for tandem MS data that converts the 
raw data into a simpler format for subsequent database 
searches, using msConvert (ProteoWizard, Palo Alto, 
California, United States).23 X!Tandem (version 2015.12.15.2)24 

(The Global Proteome Machine Organization, Winnipeg, 
Manitoba, Canada), MS Amanda (version 2.0.0.9706)25 
(Protein Chemistry Facility IMP/IMBA/GMI, Vienna, 
Austria), and MS-GF+ (version 2018.04.09)26 (Pacific 
Northwest National Laboratory, Richland, Washington, 
United States) were used to identify peak lists from MS/MS 
spectra.12 SearchGUI (version 3.3.3)27 (Computational Omics 
and Systems Biology Group, Ghent University, Gent-
Zwijnaarde, Belgium) was used to allow for simultaneous 
searches. A concatenated target-decoy28 version of the Homo 
sapiens (73101, > 99.9%), Sus scrofa (1, < 0.1%) complement of 
the UniProtKB29 reference proteome (UP000005640; 9606-
Homo sapiens) (version downloaded on 29/10/2018) was 

used for protein identifications. SearchGUI generated the 
decoy sequences. The identification settings are shown in 
Table 2 and the certificate of analysis lists all algorithms 
settings used and validation thresholds (Supplementary 
document 3 – File S1). PeptideShaker (version 1.16.31)30 
(Computational Omics and Systems Biology Group, Ghent 
University, Gent-Zwijnaarde, Belgium) was used to infer 
peptide and protein identifications from spectrum 
identification data and validated at 1% false discovery rate 
estimated using the decoy hit distribution. D-score31 and 
phosphoRS score32 (threshold of 95.0 as implemented in 
the  compomics utilities package33) were used to score 
post-translational modification localisations. Adequate or 
acceptable reproducibility or reliability, as it pertains to the 
results (including Figure 3a and 3c), was defined as the 
observable extent (measured, for example, as the standard 
deviation) of stability within measured data points when 
measurements are repeated under similar experimental 
conditions.

Data analysis
Data were analysed and graphically visualised and displayed 
using Pandas, NumPy and Matplotlib Python packages 
(Python Software Foundation, Wilmington, Delaware, United 
States), as well as Microsoft Excel (Microsoft Corporation, 
Redmond, Washington, United States).

The merged lists of either peptide sequences or protein 
accession numbers (individual as well as protein groups) 
identified in each sample group and experimental condition 
were processed using Venny (version 2.1.0)34 (BioinfoGP 
Service, Universidad Autónoma de Madrid, Madrid, 
Spain), which calculated and visually displayed the 
percentage overlap.

To determine the qualitative reproducibility of each 
experimental condition, the peptide identification overlap 
(Supplementary document – Figure S1) was computed using 
the peptide sequences identified for each sample from the 
data set (regardless of peptide abundance). From these 
results, the physicochemical properties of the peptides 
(unique as well as shared) for all conditions were assessed for 
each patient (Supplementary document – File S2).

Spectrum counting abundance indexes were estimated using 
the Normalised Spectrum Abundance Factor35 as generated 
by the PeptideShaker software.27,36 The Normalised Spectrum 
Abundance Factor values were normalised to facilitate 
comparisons and then used to calculate the Pearson’s 
correlation coefficient, for each pair of experimental 
conditions compared with regard to differential protein 
abundance, to determine the level of correlation between 
samples (Supplementary document – Figure S2).

ProPAS (version 1.1)37 (State Key Laboratory of Proteomics, 
Beijing Institute of Radiation Medicine, Beijing, China) 
was  used to calculate the physicochemical properties 
(hydropathicity [Kyte and Doolittle scale],38 molecular weight 

TABLE 2: Peptide and protein identification settings at the South African National 
Bioinformatics Institute, University of the Western Cape, Bellville, South Africa, 
from August 2017 to July 2019.

Parameter Settings

Trypsin digestion Specific, maximum of 2 missed cleavages
MS1 tolerance 10.0 ppm
MS2 tolerance 0.02 Da
Fixed modifications Methylthio of C (+45.987721 Da)
Variable modifications Oxidation of M (+15.994915 Da), Deamidation of N and Q 

(+0.984016 Da)
Fixed modifications 
(refinement procedure)

Methylthio of C (+45.987721 Da)

Variable modifications 
(refinement procedure)

Acetylation of protein N-term  
(+42.010565 Da), Pyrolidone from E  
(--18.010565 Da), Pyrolidone from Q (--17.026549 Da), 
Pyrolidone from carbamidomethylated C (--17.026549 Da)

MS1, first stage of mass spectrometry; MS2, second stage of mass spectrometry; 
ppm, parts per million; Da, Dalton; C, cysteine; M, methionine; N, asparagine; 
Q, glutamine; N-term, N-terminal; E, glutamic acid.
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and isoelectric point) of identified peptides for each sample 
analysed. Sample physicochemical characteristics were 
assessed and visualised using box and whisker plots.

Gene Ontology (GO) analysis was performed using protein 
annotations retrieved from Ensembl (www.ensembl.org) 
and GOSlim UniProtKB-GOA (www.ebi.ac.uk/GOA) with 
hypergeometric testing to determine GO term significance. 
The protein extraction buffers’ (with or without addition of 
PEG) protein selection bias, as well as residual proteins of 
the sample pellets, was assessed with regard to subcellular 
localisation, using GO analysis. Results from the GO 
annotation were visualised with a bar plot showing 
percentages of proteins belonging to each GO term and 
their location.

The percentages of missed cleavages for all samples were 
calculated and graphically visualised and displayed using 

Pandas, NumPy and Matplotlib Python packages (Python 
Software Foundation, Wilmington, Delaware, United 
States).

Results
Effect of polyethylene glycol on peptide and 
protein identification
We processed the FFPE colonic resection tumour tissues of 
three patients (diagnosed as indicated in Table 1). For all 
three patients, non-fractionated LC-MS/MS analysis showed 
that overall, the WCPLs extracted with 2% SDS and PEG had 
lower numbers of identifications at both the peptide and 
protein levels (validated peptides = 6840 [± 588 standard 
deviation {s.d.}]) and validated proteins = 2302 (± 127 s.d.) 
(Figure 3a and Figure 3c). On the other hand, the WCPLs 
extracted without PEG showed higher numbers of 
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FIGURE 3: Numbers of identified peptides and proteins from WCPLs and pellets, compared between different protein extraction buffers with or without addition of PEG 
at the South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa, from August 2017 to July 2019. (a) Box and whiskers plot 
showing the number of peptides identified (for all three patient samples) per condition – Pellet with PEG (4% SDS), Pellet without PEG (4% SDS), WCPL with PEG (2% SDS), 
WCPL without PEG (2% SDS). (b) Venn diagram depicting the distribution of identified peptides (for all three patient cases) among all conditions. (c) Box and whiskers plot 
showing the number of proteins identified (for all three patient samples) per condition. (d) Venn diagram depicting the distribution of identified proteins (individual and 
protein groups) (for all three patient cases) among all conditions. (–PEG) refers to protein extracted without PEG and (+PEG) refers to protein extracted with PEG. Red 
boxplots refer to pellet samples extracted with PEG; Purple boxplots refer to pellet samples extracted without PEG; Blue boxplots refer to WCPL samples extracted with 
PEG; Green boxplots refer to WCPL samples extracted without PEG. 
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identifications (validated peptides = 7058 [± 649 s.d.] and 
validated proteins = 2314 [± 230 s.d.]) with adequate 
reproducibility (Figure 3a and Figure 3c). The pellet samples 
extracted with 4% SDS showed higher overall variability at 
both peptide and protein levels. However, the numbers of 
peptide and protein identifications were high for pellets 
extracted without PEG (validated peptides = 5999 [± 2176 
s.d.] and validated proteins = 1893 [± 555 s.d.]) and for pellets 
extracted with PEG (validated peptides = 4778 [± 1764 s.d.] 
and validated proteins = 1564 [± 456 s.d.]) (Figure 3a and 
Figure 3c).

For overlap calculated from merged lists of peptide 
sequences, 27.1% of identified peptides were shared or 
overlapped between all the experimental conditions 
(Figure  3b). Lower percentages of unique peptides were 
identified for the pellets (8.7% without PEG and 3.7% with 
PEG), compared to the WCPLs (10.3% without PEG and 
11.8% with PEG). For overlap calculated from merged lists of 
protein accession numbers (individual as well as protein 
groups), 38% of identified proteins were shared or overlapped 
between all the experimental conditions. Lower percentages 
of unique proteins were identified for the pellets (5.1% 
without PEG and 3.5% with PEG), compared to the WCPLs 
(9.4% with and without PEG).

No substantial differences were observed for the 
physicochemical properties of the peptides for each patient 
(Supplementary document – File S2). All experimental 
conditions yielded comparable relative protein abundances, 
indicating that protein extraction with and without PEG did 
not introduce a substantial observable bias with regard to 
proteome composition.

Evaluation of protein physicochemical 
properties and GO analysis
The hydropathicity scales of all identified peptides generated 
from each experimental condition were similar (Figure 4a). 
The majority of proteins extracted (with and without PEG) 
and processed via the HILIC/SP3 method were hydrophilic, 
since the average hydropathicities of all samples were 
negative (in accordance with the Kyte and Doolittle scale38 
and as described by Farias39). Some differences were observed 
between pellet samples and WCPLs (extracted with and 
without PEG). The pellet samples seemed slightly more 
hydrophobic or neutral (closer to 0) in nature compared to 
the WCPLs. However, neither the addition nor omission of 
PEG from the protein extraction buffer affected or showed a 
substantial hydropathicity preference or selection bias with 
regard to extracted peptides. The molecular weight ranges 
(majority > 1000 Dalton [Da] and < 2000 Da)  (Figure 4b), as 
well as isoelectric point (pI) ranges (majority above pI 4 and 
below pI 7) (Figure 4c) of identified peptides were overall 
similar for all samples and experimental groups compared.

Overall, similar GO functional annotation profiles were 
obtained for all samples (Figure 5). The majority of proteins 
were preferentially extracted from the cytoplasm (< 90%), 

organelles (> 90%), intracellular region (> 90%) and 
extracellular region (> 60%).

Assessment of sample preparation  
method reproducibility and trypsin  
digestion efficiency
All samples had a majority (> 80%) of fully cleaved peptides 
(0 missed cleavages), with approximately < 20% peptides with 
1 missed cleavage, and approximately < 5% peptides with 
2  missed cleavages (Figure 6). In addition, the HILIC/SP3 
sample preparation method shows a similar range of missed 
cleavages in all samples and experimental conditions analysed.

Discussion
In this present study, the samples processed using PEG in the 
protein extraction buffer had overall lower peptide and protein 
identifications. Using HeLa cells, Wiśniewski13 found that the 
addition of PEG to the protein extraction buffer improves 
protein extraction efficiency of samples that contained sub-
microgram to microgram amounts of protein. However, 
PEG’s  ability to improve protein extraction efficiency was 
compromised when processing cell lysates that contained 
more than 10 μg of protein. Furthermore, Shen3 found that the 
addition of PEG to FFPE rat tissues, which contain > 10 μg 
protein, failed to increase the amount of peptide and protein 
identifications. As our study extracted protein in the range of 
approximately 400 μg – 900 μg per sample (Supplementary 
document – Table S2), it would explain why PEG’s extraction 
efficiency was compromised and resulted in lower overall 
peptide and protein identifications.

The number of peptide (6840–7058) and protein (2302–2314) 
identifications reported here for the WCPLs fall within the 
range of previously published studies and are higher than 
those reported by Sprung40 (approximately 400–500 protein 
groups identified for triplicate samples). Craven41 identified 
between 1335 and 1945 proteins on average for four biological 
replicates, as well as Bronsert4 who identified between 3850 
and 4210 peptides and between 765 and 1003 proteins on 
average for five biological replicates. On the other hand, 
Wiśniewski13 identified more than 6000 proteins (extracted 
using PEG) from the analysis of three FFPE colon cancer 
patient samples and they also reported higher identifications 
elsewhere using peptide fractionation.22,42 Overall, the 
standard deviations reported here for the WCPL samples fall 
within approximately 10% of the sample means. Nel43 
reported similar or higher variances between triplicate 
technical replicates of a bacterial cell culture, as did 
Wiśniewski13 for human cell lines. However, sample variance 
and standard deviations were not explicitly reported for the 
aforementioned FFPE clinical sample studies.

Our results indicate that the majority of proteins were 
extracted in the initial WCPLs. Therefore, the extraction 
buffer containing 2% SDS and the extraction protocol used 
was sufficiently efficient to extract the majority of proteins 
from the patient samples; the main differences occurred due 
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to the addition of PEG to the extraction solution. Tanca1 used 
technical replicates only for their study and found a similar 
variance in peptide identification overlap, ranging from as 

low as 26.6% for all experimental conditions to 32.6% overlap 
between one set of replicates from the same tissue block 
(patient). Our results showed similar levels of overlap 
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between biological replicates of different tissue blocks 
(patients), excluding the pellet samples (which were not the 
main focus of the study). In addition, shared or common 
peptides and proteins between the pellet samples and WCPLs 
are due to soluble fraction or liquid (containing protein) 
remaining trapped within the sample pellets, after protein 
extraction and homogenate clarification (by centrifugation).44 
Furthermore, the unique peptides of the pellet samples may 
also, in part, be attributed by the higher SDS concentration 
(4% SDS) used for extraction, since other studies have found 
greater protein extraction efficiency by using higher SDS 
concentrations.4,41,42,45

Trypsin digestion efficiency influences the molecular weight of 
peptides.46 However, all samples in this current study were 
subjected to the same digestion protocol. Therefore, our results 
show that the addition or omission of PEG to the protein 
extraction buffer did not affect end-result molecular weight 
distributions, nor were there any significant differences in 
molecular weight distributions of residual proteins from the 
pellets. Overall, neither the addition nor omission of PEG to the 

protein extraction solution had any selection bias with regard 
to extracted proteins’ physicochemical properties. Similar 
results were observed by Hughes19 and Moggridge.47 After 
processing protein extracts using the HILIC/SP3 method, they 
found no obvious bias with regard to the molecular mass, 
isoelectric point or average relative hydropathicity of resultant 
isolated peptides. In addition, GO analysis did not indicate any 
bias with regard to protein enrichment either. The HILIC/SP3 
protocol also generated low percentages of missed cleavages 
across all samples, indicating that the workflow was sufficiently 
reproducible and efficient at removing any interfering 
chemicals (such as PEG and SDS). Batth,48 Hughes49 and 
Moggridge47 have also demonstrated the sensitivity, 
reproducibility and efficiency of the HILIC/SP3 sample 
preparation method in removing sample contaminants for 
optimal recovery of peptides for LC-MS/MS analysis.

Limitations
The current study had access to tissue samples that were not 
limited with regard to sample volumes and concentrations 
required for MS analysis compared to, for example, limited 
samples such as fine needle biopsies. Therefore, it was neither 
feasible nor cost-beneficial for us to determine the effects of 
PEG at < 10 µg protein, since this was not compatible with the 
material we had available, and did not fall within the scope 
of the present study or studies stemming from it.12

Conclusion
Using FFPE human colorectal cancer resection tissue, we 
demonstrated that the addition of 0.5% PEG to protein 
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extraction buffer resulted in overall lower peptide and 
protein identifications, compared to buffer without the 
addition of PEG. In addition, protein samples extracted 
without PEG showed higher reproducibility, and the 
addition of PEG to the protein extraction buffer generated 
lower percentages of  unique peptides remaining in the 
sample pellets. By expanding on previous studies that only 
analysed FFPE animal tissues and human cells, we have 
demonstrated that high protein concentrations (> 10 µg) 
from FFPE human colon tissue also compromises the 
function of PEG. The data from this study, together with our 
recently published selection of protein purification protocols 
for different FFPE block ages,12 should provide pathologists 
with an optimised methodological approach to exploit the 
use of archival FFPE tissue blocks.
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