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A B S T R A C T   

The SARS-CoV-2 (COVID-19) pandemic has placed unprecedented demands on entire health systems and driven 
them to their capacity, so that health care professionals have been confronted with the difficult problem of 
ensuring appropriate staffing and resources to a high number of critically ill patients. In light of such high- 
demand circumstances, we describe an open web-accessible simulation-based decision support tool for a bet-
ter use of finite hospital resources. The aim is to explore risk and reward under differing assumptions with a 
model that diverges from most existing models which focus on epidemic curves and related demand of ward and 
intensive care beds in general. While maintaining intuitive use, our tool allows randomized “what-if” scenarios 
which are key for real-time experimentation and analysis of current decisions’ down-stream effects on required 
but finite resources over self-selected time horizons. While the implementation is for COVID-19, the approach 
generalizes to other diseases and high-demand circumstances.   

1. Introduction 

The novel COVID-19 pandemic has created an unpreceded global 
strain on healthcare systems. This crisis has exacerbated already existing 
tensions within hospital systems which need to balance costs, quality of 
care, capacity and efficiency [2,7,9,25,28,29,32,39,52,56,58,61]. 
Overcrowded intensive care units (ICUs) present a complex challenge to 
administrators who are plagued by having to judge who will receive 
treatment and who will not, since admitting a patient today means 
potentially not being able to admit a needier patient tomorrow [50,53, 
63,66]. By way of a simple example, a 100-bed hospital currently 85% 
full will quickly exceed capacity if they admit more than a single patient 
per day given a roughly 13-day average stay for COVID-19 patients. 
Similarly, staffing [26,38], medications and equipment including ven-
tilators, extracorporeal membrane oxygen (ECMO) and dialysis ma-
chines [8,54] are all finite resources. 

The admission and discharge dilemma deepens as the decision’s 
down-stream effects on the short-term demand of these limited in-house 
resources are difficult to predict due to various interdependent time- and 
space-varying factors. For instance, patient heterogeneity represents a 

challenge since demand depends on each patient’s length of stay (LOS), 
which requires knowledge of individual patient pathways [64], and LOS 
itself affects possible configurations of staffing. For example, patient 
characteristics such as age and comorbidities impact disease severity, 
and general ward-based care requires different staff and equipment 
support than does intensive care. Next, short-term demand of in-house 
resources also depends on required combinations of health care pro-
viders and ancillary staff, as well as physical resources and medications 
needed at a particular time [55,57,60]. Other factors affecting 
short-term demand’s unpredictability are the increase in efficacy of 
treatments and knowledge, and quantitative uncertainty of new 
COVID-19 patients. The latter is attributed to altering case rates, for 
instance as a result of local community outbreaks, emerging variants 
[48], related change in vaccine efficacy [20], and success in the vaccine 
rollout [36]. A further factor for uncertain short-term demand is that 
decisions about who will be admitted and discharged may alter over 
time as health care systems approach capacity [63,66]. Indeed, and as 
with COVID-19, understanding of the disease and of the efficacy of 
various treatment options varies with the course and duration of the 
outbreak. 
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The aforementioned factors render recent research on models that 
solely predict the number of COVID-19 patients as requiring extension to 
act as a support tool for decision makers in resource management. 
Among those models, there are predictions of rates of community-based 
diseases [1,6,30,31,62], rates of hospitalization [22,41,65] and ICU 
demand [19,33,44,59], which are often based on estimated epidemic 
curves [21,35,37]. Another hurdle in using such general models for 
in-house resource prediction is the fact that operations are facility spe-
cific, e.g., academic health systems such as the University of California, 
San Diego (UCSD) and non-academic facilities typically compose teams 
very differently and adapt them to current demand. 

Simply, there is a lack of systematic integration of current decision’s 
impact on future capacity, associated staff and ancillary support re-
quirements, and hence absence of methodical support for health care 
professionals in their decision making. To address this gap of resource 
provision and allocation, and initiate a broad collaboration, as advo-
cated for in e.g. Ref. [42], UCSD Emergency and Pulmonary Medicine 
chiefs specified their challenges and wishes to engineers at UCSD Jacobs 
School of Engineering, to model down-stream effects via randomized 
“what-if” scenarios with local inputs over self-selected time horizons, 
using an open easy-to-use web application. In this way, our developed 
tool explores the level of uncertainty by randomized simulations and 
hence helps to quantify the likelihood of hitting constraints or, alter-
natively, underusing capacity. A related feature is the ability to adjust 
descriptors of patient and process evolution, primarily modeled by the 
LOS probability. Overall, our tool allows healthcare workers to explore 
the effects of their decisions under different circumstances in order to 
provide valuable insights and crucial data for decision-making and 
contingency planning early on. In addition, as user inputs may be 
aligned to predicted infection rates provided by general models such as 
those introduced above, our tool leverages recent research under 
consideration of facility-specific factors and constraints. While we focus 
here on COVID-19 and its attendant resource implications pertinent to 
our Southern California, the approach is amenable to other high-stress 
extended emergencies. A number of limitations and refinements, 
including tuning with data, is presented toward the end. We emphasize 
that the focus of this work is the presentation of the tool itself and the 
benefits of using “what-if” scenarios with sensible and computable 
densities. A validation of predicted consumed resources against data will 
be part of a future investigation. 

A remarkable recent paper on optimal hospital care scheduling 
models each individual patient as a scalable dynamic program [18]. The 
model encodes health and treatment conditions and considers resource 
constraints. However, the model requires known transition probabilities 
between patient states; these probabilities are unavailable for many 
regions. Further, the computationally costly optimal solution of the 
dynamic program does not allow the user to examine different scenarios 
in real time. 

2. Methods 

To support local health system administrators and division chiefs in 
the problematic decision of admitting and discharging COVID-19 pa-
tients, and in the corresponding contingency planning, we describe a 
tool that uses local inputs to simulate demand for finite and inter- 
dependent resources such as staff, medication and medical equipment 
under different circumstances over a self-selected time horizon in a 
stochastic fashion. Stochasticity is an essential ingredient and refers to 
the randomness of individual patient response, which is aggregated and 
smoothed over the many patients to permit an exploration of all 
possible, including rare, outcomes. In the remaining part of this section, 
we present the tool in more detail. 

Given our requirement of an easy-to-use graphical interface, the 
ability to conduct randomized “what-if” experiments with different 
configurations of staffing, infrastructure support and intervention stra-
tegies (for example, a change in protocol for who is to be ventilated) and 

independence of operating systems, a web application (Fig. 1) has been 
developed that provides “what-if” simulations of finite resource re-
quirements based on anticipated new arrivals and user input. 

2.1. User inputs 

The resource requirements are computed given user-specified input 
parameters: prediction time, number of initial patients per day and 
arriving COVID-19 patients per day, number of consultations per patient 
per day, resource consumption per patient per day, and average number 
of days in the ICU, on ECMO, ventilator and dialysis. The web applica-
tion’s simple user interface, manageable number of input parameters, 
real-time computation, graphical display of output variables, and intu-
itive visualizations render it a useful tool for most health systems. The 
interface is depicted in the figure below. The particular selection of input 
parameters is based on the likelihood of shortages of resources that have 
occurred during the pandemic at UCSD health system, primarily caused 
by COVID-19 patients. 

On the left side, the input variables are selected, displayed and set. 
The output of the simulation is pictured on the right side of the figure. 
The inputs specify the parameters of the simulation and the outputs the 
associated random resource consumption. The views are user selected. 

2.2. Outputs 

The user specifications are used as inputs to the simulation to predict 
the required number of resources per shift, assuming two shifts per day. 
Currently, we consider propofol, dexmedetomidine, fentanyl, morphine, 
morphine [oral], oxycodone, cisatracurium and vecuronium as critical 
medication. Additionally, the model computes the required number of 
computer-aided tomography (CT) scans, magnetic resonance imaging 
(MRI) scans, personal protective equipment (PPE), ventilators and 
ECMO circuits per day. A further simulation output is the required 
number of consultations per day. In this way, the simulation is inde-
pendent of particular team constellations. As with the inputs, the choice 
of outputs is motivated by the corresponding likelihood of hitting con-
straints at UCSD health system, primarily related to COVID-19 patients. 

2.3. The simulation 

Towards a computation of required resources, our tool generally 
differentiates between patients being in the ICU but not undergoing 
invasive mechanical ventilation (“ICU Bed”), being in the ICU on a 
ventilator (“Ventilated”) and being in the ICU on ECMO (“ECMO”). For 
patients on “ECMO” the user specifies the average number of days in the 
ICU, on ECMO and on dialysis, respectively. The average is a parameter 
of the Erlang distribution. This distribution is familiar from telecom-
munications and the modeling of arrivals of multiple calls [13]; hence 
the connection between blocked calls and resources. It is well suited to 
describe the number of days in the ICU/on ECMO/dialysis as its support 
is strictly positive, i.e., the probability of negative numbers of days is 
zero, and it has a tunable long tail, i.e., it accommodates the possibility 
of some patients being in the ICU/on ECMO/dialysis for a long time 
while most patients remain substantially a shorter time period in the 
respective stage. Similarly, for patients in the category “Ventilated” the 
user selects the average number of days in the ICU, on a ventilator and 
on dialysis, respectively, also based on distinctly parametrized Erlang 
distributions. For the category “ICU Bed” the user defines the average 
days in the ICU and on dialysis, related to the Erlang distribution, too. To 
keep the inputs manageable, we assume that patients on ECMO addi-
tionally require a ventilator for an average of three days after being on 
ECMO, that patients in the “Ventilated” category do not require ECMO 
and that patients in the category “ICU Beds” neither need ECMO nor a 
ventilator. 

Given the user-specified averages and number of new arrivals per 
day per category, for each arriving patient the tool randomly assigns a 
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number of days in the ICU, on ECMO, dialysis and ventilator, drawing 
from the corresponding Erlang distribution using the formula [14], 

E(k, μ)= −
1
μ log

∏k

i=1
Ui,

with random variable Ui uniformly distributed between zero and one, 
and μ (k) commonly known as the rate (shape) parameter. The simple 
form is a result of the fact that the Erlang distribution can be expressed 
as a sum of k independent exponentially distributed random variables. 
For the initial patients, the same procedure applies, but is followed by a 
random selection uniformly between zero and the initially assigned 
number of days. The randomly assigned time durations for each patient 
and corresponding use of resources defined by the other user inputs, 
when aggregated over the number of patients, determine the simulation 
outputs. A more detailed description of our algorithm is provided in the 
flow chart of in Fig. 2. Therefore, the randomly generated model outputs 
change even in the case of identical input parameters and support the 
user in understanding the variance of the underlying process. Since the 
simulations are computed in real-time, they can, of course, be run 

multiple times to assess this outcome variability. 

3. Results 

The web application is an open web-accessible tool that provides 
predictions of resource consumption through “what-if’ scenarios based 
on local user specifications and circumvents the task of accurate local 
predictions of new COVID-19 patients and disease progression. The use 
of Erlang distributions respects the stochastic nature of the underlying 
disease progression. The user interface of our tool, which is displayed in 
Fig. 1, is optimized for mobile and as well as desktop devices via a 
responsive design and can be accessed from any operating system; the 
computations are performed on the web host computer in real time. The 
visualizations of the distributions related to the user-selected averages 
provide an intuitive understanding of the input variables (Fig. 4). 

The option of exporting the simulation results to a CSV file enables 
connectivity to other software suites. Our focus is on “what-if” scenarios 
and the presentation of the tool itself rather than its validation against 
data of COVID-19 patients. Thus, we will include a quantitative analysis 

Fig. 1. User interface of web application numbat.ucsd.edu/~sven/covid with user-selected input variables on the left-hand side and model outputs on the right-hand 
side. Changes in input variables re-initialize a new simulation with instantaneous corresponding model outputs. 
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against real-world data and commercial tools in this area in a future 
work. 

4. Discussion 

The main feature of our tool is the accommodation of stochasticity 
related to the patient development while using user-provided deter-
ministic information on arriving patients and corresponding resource 
consumption, leading to computationally fast “what-if’ scenarios. This 
modeling approach supports the decision maker in several ways. 

4.1. Assistance for decision makers 

As commented on in the introduction, even with an accurate model 
of the outbreak progression of the regional population including disease 
severity and required PPE such as CHIME [46], a deterministic and 
aggregated nature allows at best an assessment of the short-term average 
number of arriving patients and related staff and resource requirements. 
However, it is difficult to model each individual, their corresponding 
medical history and status, and myriad important facility-specific 

external factors such as local community outbreaks, traffic patterns, 
transportation schedules, local policies etc. common in health care set-
tings [3,23,24]; R [27,43]. Consequently, without any support, it is an 
intractable challenge for decision makers to predict the highly varying 
staff and resource requirements and provide any statistical smoothing 
over many patients. Additionally, data-based models face their own 
challenges as availability, reliability and viability of different data types 
limit their accuracy, such as representativeness, bias, uncertainty, time 
delay and local differences [49,55]. 

Therefore, our tool does not attempt to predict the number of 
arriving patients and related required staff and resources but, instead, 
assists the decision maker by solving the in-house problem of what 
happens if a certain number of COVID-19 patients arrives in need of a 
certain treatment, based on which staff and resource requirements are 
computed. This “what-if” scenario takes into account stochasticity of 
disease progression by drawing a sample from user-adjusted set of dis-
tributions. In this way, through a repetitive execution of different sce-
narios that in the user’s opinion may occur, potentially informed by an 
outbreak progression model such as CHIME, our tool conveys the sto-
chastic nature of the underlying process and helps the user preparing for 

Fig. 2. Simplified flow chart of simulation with green-gradient boxes related to user inputs, blue-gradient boxes as computations and black diamonds as if- 
conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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future demand and contingency planning. 
The stochastic nature is captured by allowing patient variability 

through different categories and their associated LOSs, modeled through 
Erlang distributions. These distributions are well-suited for our purpose. 
Firstly, they possess two parameters which directly determine the mean 
value and the shape, notably the significant tail probability of very long 
stays, as shown in Fig. 3, which places the density in the super-gaussian 
category [11]. Secondly, the closed-form description stated earlier al-
lows to efficiently generate random samples using a standard random 
number which is crucial for real-time ensemble approaches such as ours. 

A further problem the tool tackles deals with the utility function the 
decision maker is required to maximize. It permits the user to specify 
and plot all of the variables of interest to inform the practitioner’s 
judgment. More precisely, by admitting new COVID-19 patients the user 
faces a multivariate, time-varying, multiobjective optimization prob-
lem; balancing costs, quality of care, capacity and efficiency [2,7,9,25, 
28,29,32,39,52,56,58,61]. A quantitative formulation of the overall 
criterion and constraints is generally difficult as it depends on each 
user’s preferences and institutional regulations, as well as unknown 
disease progressions and new arrivals. However, our web application 
supports the user in determining their individual utility function 
through “what-if” scenarios by computing the criteria of required staff 
and resources. This can be leveraged by the user, assuming their 
expertise in assessing the requirements’ correlations to other criteria of 

their individual utility function and hence weighting them amongst each 
other. 

4.2. Clinical needs and consequences 

Hospital and ICU strain is associated with worse patient outcomes 
and this has been more pronounced by COVID-19 [16,34]. During this 
pandemic, healthcare administrators have been forced to make de-
cisions about resource allocation and staffing when needs, or anticipated 
needs, have outstripped resources. Inappropriate distribution and 
shortages of equipment have resulted in patient harm, provider burnout 
and economic damage to hospital systems. A clear benefit of our tool is 
to help in surge planning and assist administrators in preparing for 
“what if” scenarios regarding future resource needs, and staff acquisition 
and allocation. It enables hospital systems to prepare for future needs 
more accurately and plan how to use finite resources more appropriately 
when faced with patient care surges as has occurred during this 
pandemic. This would prevent undesirable scenarios, such as rationing 
of care in the ICU or unproven methods of administering care, such as 
splitting ventilators between patients. 

Even if such resources are present, an adequate number of healthcare 
workers, such as respiratory therapists, nurses and physicians are 
required to provide high-quality care. Prior data have demonstrated a 
clear relationship between appropriate number of healthcare workers 
and improved outcomes and quality of care [4,45,47]. Additionally, 
proper staffing levels may decrease provider burnout, a major public 
health concern caused by the current pandemic [40,51]. Our tool can 
help determine the number of healthcare workers required to appro-
priately staff a hospital during a surge or predicted surge and inform 
administrators of the need to reach out to federal or state agencies, if 
required for emergency assistance. In this way, patient outcomes may be 
improved by determining the optimal number of healthcare providers 
required to appropriately staff ventilators and ECMO circuits required to 
provide quality care. 

Similarly, hospitals can plan accordingly to adjust their services if 
such a tool can predict down-stream effects of anticipated demand via 
“what-if” simulations in real time. For example, in anticipation of a 
COVID-19 surge in the spring, many health systems cancelled elective 
procedures and surgeries in order to free inpatient care space. Because 
these services provide a large positive margin to the hospital bottom 
line, when the COVID-19 surge did not materialize in Spring 2020 in 
many regions, hospitals suffered significant financial losses, potentially 
impairing their ability to continue operations [5,12,15]. Use of this tool 
may help guide administrators in real time to determine an appropriate 
time and number of elective procedures that can be safely performed 
without causing harm to COVID-19 patients. 

Additionally, this tool can help administrators more appropriately 
respond to and redistribute resources if an anticipated surge does not 
occur. For example, during the initial surge in New York City, many 

Fig. 3. Set of Erlang distributions for different shape parameters k and scale 
parameters mu with positive support, mean of k/μ and variance of k/μ2. Long 
tails are related to a large variance and can be accommodated by appropriately 
choosing parameters k and μ. 

Fig. 4. The average number of days in the ICU, on ECMO and dialysis is visualized by their respective probability density functions. Changes in average days such as 
that from 14 to 24 in ICU (picture on the left/right-hand side) lead to a direct change in the related probability density function. 
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hospital systems outside of New York extensively stockpiled resources 
and changed staffing models for a surge that was either delayed or never 
came [17]. 

4.3. Limitations 

Although we are confident that our tool provides meaningful pre-
dictions about resource availability, we acknowledge several limita-
tions. First, we limited the number of inputs to the tool and recognize 
that other hospital systems may have other inputs that are critical to 
resource allocation. Next, we did not prospectively validate our findings, 
however, as mentioned above, our objective is to provide healthcare 
workers with “what if” scenarios. Finally, we realize that newer thera-
pies for COVID19 may impact parameters such as need and duration for 
life-support therapies (e.g. ECMO, dialysis). However, we are able to 
adjust these if significant changes arise. 

4.4. Refinements 

The simulation app can be improved by more exact modeling 
capturing more detail of the observed resource usage. However, there is 
a utility-verisimilitude tradeoff which needs to be preserved to address 
the time availability of the users. The following adaptations are 
envisaged.  

i. The densities used could be replaced by those fitted to real-world 
data capturing experience. These would replace the two- 
parameter Erlang densities and could be removed from the list 
of items required to be user input. This would not add significant 
computational burden and improve both utility and credibility. 
Particularly, this might apply to duration of dialysis and to known 
delays which are better modeled by specific densities different 
from Erlang.  

ii. At present, the user specifies the patient arrival rates. This could 
be amended to include an option to access online community 
databases.  

iii. Both features above could be included to provide a warm start for 
the user before exploring further scenarios.  

iv. Variants of the app tailored to emergencies different from COVID- 
19 could be developed. Earthquakes and other multiple-casualty 
incidents are pertinent examples. The resource demands would 
change to reflect the nature of the events.  

v. Further, as explained above, discretionary factors at the hospital 
level might be incorporated as policies in the simulation. These 
might include changes to treatment of elective surgeries or to the 
adoption of different discharge routes to long-term acute care 
facilities. 

Each of these modifications would be adopted to adjust the input and 
evolution of the scenarios, while preserving the utility of the app. 

5. Conclusion 

This publication presents an accessible, flexible tool that meets the 
need of local health care professionals for a more systematic examina-
tion of down-stream effects of current decisions under varying and 
interdependent conditions, to detect a shortage of finite resources such 
as staff, medication and medical equipment early on. This is achieved by 
randomized “what-if” scenarios which support the user’s understanding 
of the stochastic nature and of the resultant aggregated statistics. In this 
way, the tool provides assistance during the decision process for 
resource provision and allocation as well as contingency planning. 
Future studies are required to validate the findings of our tool. 
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