
METHODS
published: 16 March 2022

doi: 10.3389/fnbot.2022.851847

Frontiers in Neurorobotics | www.frontiersin.org 1 March 2022 | Volume 16 | Article 851847

Edited by:

Yong Li,

Nanjing University of Science and

Technology, China

Reviewed by:

Zhenguo Yang,

Guangdong University of Technology,

China

Hao Su,

Beihang University, China

Xiaoya Zhang,

Nanjing University of Science and

Technology, China

*Correspondence:

Chongwen Wang

wcwzzw@bit.edu.cn

Received: 10 January 2022

Accepted: 31 January 2022

Published: 16 March 2022

Citation:

Wang C and Wang Z (2022)

Unsupervised Facial Action

Representation Learning by Temporal

Prediction.

Front. Neurorobot. 16:851847.

doi: 10.3389/fnbot.2022.851847

Unsupervised Facial Action
Representation Learning by
Temporal Prediction
Chongwen Wang* and Zicheng Wang

School of Computer Science, Beijing Institute of Technology, Beijing, China

Due to the cumbersome and expensive data collection process, facial action unit (AU)

datasets are generally much smaller in scale than those in other computer vision fields,

resulting in overfitting AU detection models trained on insufficient AU images. Despite

the recent progress in AU detection, deployment of these models has been impeded

due to their limited generalization to unseen subjects and facial poses. In this paper, we

propose to learn the discriminative facial AU representation in a self-supervised manner.

Considering that facial AUs show temporal consistency and evolution in consecutive

facial frames, we develop a self-supervised pseudo signal based on temporally predictive

coding (TPC) to capture the temporal characteristics. To further learn the per-frame

discriminativeness between the sibling facial frames, we incorporate the frame-wisely

temporal contrastive learning into the self-supervised paradigm naturally. The proposed

TPC can be trained without AU annotations, which facilitates us using a large number

of unlabeled facial videos to learn the AU representations that are robust to undesired

nuisances such as facial identities, poses. Contrary to previous AU detection works,

our method does not require manually selecting key facial regions or explicitly modeling

the AU relations manually. Experimental results show that TPC improves the AU

detection precision on several popular AU benchmark datasets compared with other

self-supervised AU detection methods.

Keywords: facial action unit recognition, self-supervised learning, contrastive learning, temporal predictive

coding, representation learning

1. INTRODUCTION

Facial expression recognition technology offers the opportunity to seamlessly capture the expressed
emotional experience of humans and facilitates unique human-computer interaction experiences.
Over the past decades, facial expression recognition and analysis have been a hot research topic
in the field of computer vision and human-computer interaction. To precisely characterize facial
expressions, Ekman et al. developed the facial action coding system (FACS) (Ekman and Friesen,
1978). FACS has been widely used for describing and measuring facial behavior and has been the
most comprehensive, anatomical system for describing facial expressions. FACS defines a detailed
set of about 30 atomic non-overlapping facial muscle actions, i.e., action units (AUs). Almost any
anatomical facial muscle activity can be characterized via a combination of facial AUs. Automatic
AU detection has been a vital task for facial expression analysis, with a variety of applications in
psychological and behavioral research, mental health assessment, and human-computer interaction
(Bartlett et al., 2003; Zafar and Khan, 2014). Therefore, a reliable AU detection system is of vital
importance for precise human emotion analysis.
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Benefiting from the promising advancement in deep learning
research, the performance and accuracy of AU detection has
been improved by virtue of the convolutional neural network
(CNN) based approaches in recent years (Li et al., 2017a,b,
2018a,b, 2020a; Corneanu et al., 2018; Jacob and Stenger, 2021).
However, the CNN-model-based AU detection approaches are
quite data starved. What is worse is that AU annotation is
time-consuming, labor-intensive, cumbersome, and error-prone.
Thus, many existing works propose to exploit the auxiliary
information for precise AU detection, e.g., Yang et al. (2021)
proposed to use the semantic embedding and visual feature
(SEV-Net) for AU detection. SEV-Net obtains AU semantic
embeddings through both intra-AU and inter-AU attention
components to capture the relationships among words within
each sentence that describes individual AU. Li and Shan (2021)
use the categorical facial expression images as auxiliary training
data to boost the AU detection performance in a meta-learning
manner. These pioneering works have inspired us to use a large
amount of unlabeled facial videos to learn the AU representation
unsupervised, as the unlabeled facial videos are easy to obtain
and they consist of a large amount of subjects with diverse
facial expressions.

Recently, self-supervised learning (SSL) has shown promising
potential in learning discriminative features from the unlabeled
data via various different manually defined pretext tasks (Wang
et al., 2020; Cai et al., 2021; Hu et al., 2021; Kotar et al., 2021;
Luo et al., 2021; Sun et al., 2021). For the task of AU detection,
Li et al. (2019b) proposed to predict the optical flow caused by
AUs and poses between two randomly sampled facial frames in a
video sequence. The optical flow of the AUs and poses are then
linearly combined to obtain the overall displacements between
the two sampled faces. Lu et al. (2020) leveraged the temporal
consistency to learn the AU feature via a self-supervised temporal
ranking constraint. To capture the AU correlations in an input
facial image, Yan et al. (2021) disentangled the global feature
into multiple AU-specific features via a contrastive loss and then
compute the feature for each AU by aggregating the features from
the other AU-specific features with a transformer component. To
bridge the performance gap between the fully supervised and self-
supervised AU detection methods, we propose a self-supervised
pseudo signal based on the temporally predictive coding (TPC)
to capture the temporal characteristics of the AUs. Specially,
we construct a model that combines an AU feature extraction
network with a convolutional gated recurrent unit (GRU) unit
(Zonoozi et al., 2018), and a prediction head on top of the GRU
that can make temporal predictions. We train the constructed
model via TPC loss, which will be detailed in Section 3.1.

To further learn the per-frame discriminativeness between
the sibling facial frames within a video clip, we propose a
frame-wisely temporal contrastive learning mechanism. The AU
detection model is tasked to perceive the temporal consistency
and frame-wisely discriminativeness self-supervised. The AU
detection backbone is trained end-to-end with the linear
combination of the two contrastive losses on the unlabeled
facial videos. Afterward, we additionally train a linear classifier
with the pre-trained AU detection backbone with the scarce
AU annotations.

In summary, the core contributions of this work can be
summarized as follows:

1. We introduce self-supervised TPC for facial AU
representation learning. TPC does not rely on AU annotations
to learn the discriminative AU representations.

2. To further enhance the discriminability of the AU
representation, TPC consists of a frame-wisely temporal
contrastive learning constraint. TPC is capable of perceiving
the temporal consistency and frame-wisely discriminativeness
self-supervised.

3. Experimental results demonstrate the advantages of the
proposed TPC over other state-of-the-art self-supervised
AU detection methods on two popular AU datasets. Image
retrieval results show that the learned AU representation in
TPC is superior in spotting and capturing the AU similarities
between different faces.

2. RELATED WORK

A number of AU detection approaches have been proposed
recently (Zhao et al., 2016; Li et al., 2017a,b; Li and Shan,
2021). AU detection approaches are deep learning-based mostly.
Since AU actually means the movement of the facial muscles,
many approaches detect the active/inactive states of AUs locally
(Zhao et al., 2016; Li et al., 2017a,b). Among them, Zhao
et al. (2016) used a locally connected convolutional layer to
learn the AU-specific convolutional filters. SEV-Net (Yang et al.,
2021) exploited the AU semantic word embedding as the
auxiliary labels. FAUT was (Jacob and Stenger, 2021) proposed to
capture the relationships between AUs via a transformer. These
supervised AU detectionmethods needmanually labeled training
facial data. As training images are scarce, these methods often
overfit on a specific dataset and cannot generalize well.

Recently, self-supervised (Wiles et al., 2018; Li et al., 2019b,
2020b; Lu et al., 2020) and weakly-supervised (Peng and Wang,
2018; Zhao et al., 2018) methods have been proposed to learn the
deep learning-based models from unlabeled or partially labeled
images. The former usually adopts the manually defined pseudo
supervisory signals to learn the facial AU representation (Li
et al., 2019b, 2020b; Lu et al., 2020). Among them, Fab-Net
(Wiles et al., 2018) was trained to map a source facial frame
to a target facial frame via estimating an optical flow field
between the source and the target faces. Twin-cycle autoencoder
(TCAE and TAE) (Li et al., 2019b, 2020b) were proposed to
learn the pose-invariant facial action features by estimating the
respective optical flows for the poses and AUs via the cycle-
consistency in the image and representations. Lu et al. (2020)
proposed a temporally sensitive triplet-based metric learning to
learn the facial AU representations via capturing the temporal
AU consistency. It actually learns to rank the neighboring faces
from the sequential frames in the correct order. Our proposed
TPC differs from previous methods in three aspects. First, TPC
is self-supervised in the pre-training stage. Second, TPC does
not crop the regional AU features to learn the region-specific
AU feature. Instead, it uses an abundant number of unlabeled
videos to enhance the AU detection performance. Finally, TPC
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FIGURE 1 | Main idea of the proposed self-supervised temporally predictive coding (TPC) for facial AU representation learning. Given a facial sequence with T faces,

we use the preceding T1 faces as input and exploit the left faces for temporal prediction. Besides, we randomly sampled some triplets in each facial sequence to

perceive the temporal consistency and frame-wisely discriminativeness self-supervised. ψ takes the context representation ct as input and estimates the features for

the future frame recursively. Better viewed in color and zoom in.

is proposed to encode the temporal dynamics and consistencies
to encode the characteristics of the facial AUs.

3. METHOD

Figure 1 illustrates the main framework of the proposed TPC
for AU representation learning. Given an input facial sequence
sampled from an unlabeled facial video, TPC first extracts the
convolutional feature maps of each face via a commonly-used
backbone network such as ResNet-50. Second, TPC learns the
discriminativeness between different facial frames via temporal
contrastive learning. We will introduce the proposed TPC and
present the temporal contrastive learning paradigm in our
proposed TPC as below.

3.1. Temporal Predictive Coding
Videos are very appealing as a data source for self-supervision
as there are many forms of pseudo signal. In detail, the self-
supervision in the video sequence generally originates from
three types: spatial, spatio-temporal, and sequential. Among
the three kinds of self-supervised signal, spatial supervision
can be derived from the structures in the static frame, spatio-
temporal supervision naturally reflects the correlation across
the different frames, and sequential supervision signifies the
temporal coherence. Therefore, we exploit the sequential self-
supervision to learn a robust model for facial AU detection that is
capable of capturing the temporal dynamics as well as temporal
consistency of the facial AUs.

Let X = {xt}
T
t=1 denotes a consecutive sequence of T

facial frames within an unlabeled video, where xt ∈ R
H×W×C

means the input t-th facial image of size H × W × C. Our
goal here is to learn a model that predicts a slowly varying

semantic representation based on the recent past. As illustrated
in Figure 1, we partition a facial video clip into two parts: input
part I and output part O:

I = {xt}
T1
t=1, (1)

O = {xt}
T
t=T1+1, (2)

where T1 is the length of the input facial sequence. First, a
backbone network f (.) maps each facial frame xt to its latent

convolutional map representation et ∈ R
H′×W′×C′

, organized
as height × width × channels. Then, we use a convolutional
GRU to aggregate the sequential latent representations into a
context representation ct . Mathematically, GRU uses the same
gated principal of LSTM but with a simpler architecture. The
below equations describe the mathematical model for the GRU:

zt = σ (Whzht−1 +Wxzet + bz), (3)

rt = σ (Whrht−1 +Wxret + br), (4)

ĥt = 8(Wh(rt ⊙ ht−1)+Wxet + b), (5)

ct = ht = (1− zt)⊙ ht−1 + z ⊙ ĥt , (6)

where ht is the hidden state, rt and zt are the reset gate value and
update gate value at frame t. The functions σ (.) and 8(.) denote
the sigmoid and tangent activation functions, respectively. The
reset gate rt can decide whether or not to forget the previous
activation. ⊙ means the element-wise multiplication. Figure 2
shows the main idea of the convolutional GRU.

With the encoded context representation ct , we exploit
a prediction head ψ to predict the convolutional latent
representation of the feature. In detail, ψ takes the context
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FIGURE 2 | Illustration of the convolutional gated recurrent unit (GRU).

representation ct as input and estimates the features for the future
frame recursively:

et+1 = ψ(ct), (7)

et+2 = ψ(ct+1), (8)

where ct means the context feature from time step 1 to t, and
et+1 means the estimated latent convolutional feature of the time
step t + 1. Similarly, we can predict the latent convolutional
feature maps for the t + 2 facial frame, in a recursive manner.
Such a recursive TPC manner enforces the prediction to be
conditioned on all previous predictions and observations. The
intuition behind the TPC is that the model is tasked to infer
future AU semantics from the context representations ct and
thus ct has to encode temporal consistency and dynamics of the
facial AUs.

The learning of the TPC is accomplished via a noise
contrastive estimation, where our goal is the classify the real
from the noisy samples. We denote the feature vector in each
spatial location of the encoded and the predicted convolutional
feature maps as ei,k and êi,k, where i denotes the temporal index
and k means the spatial index in the convolutional features,
k ∈ {(1, 1), (1, 2), · · · , (H′,W′)}. Finally, we can formulate the
learning objective as follows:

Lpred = −
∑

i,k

log
exp(êi,k · ei,k)

∑

j,m exp(êi,k · ei,m)
. (9)

The goal of Lpred is to classify the positive pair (êi,k, ei,k) among a
set of constructed pairs. A positive pair consists of two elements
that are located in the same spatial location and at the same time
step. All the other pairs (êi,k, ej,m) that satisfy (i, k) 6= (j,m) are
negative pairs. Lpred is optimized such that the similarities of the
positive pairs are higher than the similarities of the negative pairs.
While the proposed TPC can spot the temporal consistency and
dynamics of the input facial sequences, the discriminativeness

of the nearby facial frames can be further enhanced so that the
encoded AU representation can be more discriminative. We will
explain how we use the temporal contrastive learning paradigm
to achieve this goal in the next section.

3.2. Temporal Contrastive Learning
To learn the frame wisely discriminativeness of the input
facial images, we introduce a temporal contrastive learning goal
by adding multiple triplet losses (Schroff et al., 2015), each
measuring the pairwise distance between the adjacent frames
to the anchor frame. Learning to rank through triplet loss
actually trains an AU detection backbone that learns to make the
distance between the anchor and the positive face smaller than
the distance between the anchor and the negative face.

Let us denote a triplet that consists of three facial frames as
(xa, xp, xn), where xa, xp, and xn mean the anchor face, positive
sample, negative sample, respectively. Note that xa, xp, and xn are
consecutive facial frames randomly sampled from the input facial
sequence X = {xt}

T
t=1. Intuitively, (xa, xp) should have more

similar facial expressions than (xa, xn) because the time interval
is smaller between xa and xp. Inspired by intuition, we randomly
sampled M triplets from the input facial sequence X and expect
that the sum of M triplet losses would enable the AU detection
backbone to learn to perceive the facial expression difference in
the nearby facial frames. The learning target of the proposed
temporal contrastive learning paradigm can be formulated as:

Ltcl =
[

D(f (xi,1a ), f (x
i,j
p ))− D(f (xi,1a ), f (x

i,j+1
n ))+m

]

+
, (10)

where D is the cosine similarity of the input frame pairs. i is the
sequence index, j is the frame index within the i-th input facial
sequence. m is the margin that ensures Ltcl will not be zero until
the difference between the distances of the negative and positive
frame from the anchor is greater than m. For each training facial
sequence with T faces, we randomly sampled P triplets.

3.3. Overall Training Objective of TPC
For pre-train, we use the linear combination of Lpred and Ltcl

as below:

Ltotal = Lpred + λLtcl, (11)

where λmeans the importance of the temporal triplet loss, which
will be discussed in the experimental section.

For AU detection, we finetune the pre-trained model with the
annotated AU labels. Mathematically, we exploit the multi-label
sigmoid cross-entropy loss for optimizing the AU classification
head and the pre-trained backbone model, which can be
formulated as:

L
AU = −

M
∑

m

zm log ẑm + (1− zm) log(1− ẑm), (12)

whereM denotes the number of facial AUs. zm denotes the m-th
ground truth AU annotation of the input AU sample. ẑm means
the predicted AU score. zi ∈ {0, 1} means the labels w.r.t the ith
AU. 0 means the AU is inactive, and 1 means the AU is active.
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4. EXPERIMENT

4.1. Implementation Details
We adopted ResNet-18 (He et al., 2016) as the backbone network
for pretrain. We optimized the proposed backbone model via a
batch-based stochastic gradient descentmethod. During training,
we set the batch size as 64 on 4 GPU units and the initial learning
rate as 0.001. For each video, we randomly sampled T = 10
consecutive faces for training, we used the first 8 eight faces as
the input and the left 2 faces for prediction. Additionally, we
randomly sampled P = 4 triplets from each facial sequence for
temporal contrastive learning. During finetuning, we dropped
the convolutional GRU and added a linear classifier layer for
AU prediction. We set the momentum as 0.9 and the weight
decay as 0.0005. We use the popular Voxceleb dataset (Nagrani
et al., 2020) for pre-training. The dataset consists of about 6,000
subjects and hundreds of thousands of videos. All the videos only
contain a subject with varying expressions and no AU or facial
expression annotations.

4.1.1. Datasets and Evaluation Metric
For AU detection, we adopted the denver intensity of
spontaneous facial action (DISFA) (Mavadati et al., 2013)
and binghamton-pittsburgh 3D dynamic spontaneous facial
expression database (BP4D) (Zhang et al., 2013) datasets. BP4D
consists of a total of 328 videos recorded for 41 subjects (18
men and 23 women). A total of 8 different experimental tasks
are evaluated on the 41 subjects, and their spontaneous facial
AUs variations were recorded in the videos. There are nearly
14,0000 frames with 12 facial AUs labeled. DISFA contains 27
participants. Each participant is asked to watch a video to elicit
his/her facial expressions. The facial AUs are annotated with
intensities ranging from 0 to 5. There are about 130,000 AU-
annotated images in the DISFA dataset by setting the images with
intensities greater than 1 as active. For the two datasets, the facial
images are split into 3-fold in a subject-independent manner. We
used the 3-fold cross-validation and adopted 12 AUs in BP4D and
8 AUs in DISFA dataset for evaluation.

We adopted F1-score to evaluate the performance of the
proposed AU detection method. The F1-score can be calculated
as F1 = 2RP

R+P , where R and P, respectively, denote the recall and
precision. We also use the average F1-score over all the evolved
AUs (Ave) to evaluate the overall facial AU detection precision.

4.2. Experimental Results
For the supervised methods, we compare the proposed TPC
with deep region and multi-label (DRML) (Zhao et al., 2016),
enhancing and cropping net (EAC-Net) (Li et al., 2017b), deep
structure inference network (DSIN) (Corneanu et al., 2018), local
relationship learning with person-specific shape regularization
(LP-Net) (Niu et al., 2019), semantic relationship embedded
representation learning (SRERL) (Li et al., 2019a), uncertain
graph neural networks (UGN) (Song et al., 2021), semantic
embedding and visual feature net (SEV-Net) (Yang et al., 2021)
and facial action unit detection with transformers (FAUT) (Jacob
and Stenger, 2021), meta auxiliary learning (MAL) (Li and
Shan, 2021). It is worth noting that some of the AU detection

approaches (Li et al., 2017b, 2019a; Corneanu et al., 2018;
Jacob and Stenger, 2021) learn the AU-specific representations
with exclusive CNN branches via cropping the local facial
regions. SEV-Net (Yang et al., 2021) proposes to learn robust
visual features for AU detection via introducing the auxiliary
AU descriptions. UGN (Song et al., 2021) learn to model the
uncertainty of the AU annotations.

For the self-supervised methods, we compare the proposed
TPC with TCAE (Li et al., 2019b), TAE (Li et al., 2020b), triplet
ranking loss (TRL) (Lu et al., 2020). Among the compared
methods, in TRL (Lu et al., 2020) proposed an aggregate ranking
loss by taking the sum of multiple triplet losses to allow pairwise
comparisons between the adjacent facial frames. In TRL, they
learn to rank the faces through triplet loss involves training an
encoder that learns to force the distance between the anchor
face and the positive face smaller than the distance between the
anchor face and the negative face.

Table 1 shows the AU detection accuracy comparison of our
TPC and previous methods on BP4D dataset. TPC obtains
comparable AU detection accuracy in the average accuracy. In
detail, TPC shows its superiority over DRML, EAC-Net, DSIN,
LP-Net, with +12.8%, +5.2%, +2.2%, +0.1% improvements,
respectively. Notably, TPC does not rely on facial landmarks
to extract specified local facial regions, which will bring out a
heavy computation burden in the training and inference phase.
Besides, TPC does not need to use auxiliary AU description word
embeddings or a large amount of annotated facial expression
data for auxiliary learning. As different AUs are associated with
specific facial muscles and corresponds to fine-grained local facial
regions, learning region-specific AU representations is beneficial.
The success of the region-based AU detection approaches (Li
et al., 2017b, 2019a, 2020b; Corneanu et al., 2018; Jacob and
Stenger, 2021) have verified the benefits of the region-based AU
detection approaches. We will explore this in future work.

Table 2 shows the AU detection accuracy comparison of our
TPC and previous methods on the DISFA dataset. TPC achieves
slightly superior AU detection accuracy with the best state-of-
the-art self-supervised AU detection methods in the average F1
score, with 0.8% improvements over TAE, 7.3% improvements
over TCAE, and 12.9% improvements over TRL. Notably, TPC
shows its superiority in AU1 (Inner Brow Raiser), AU2 (Outer
Brow Raiser), AU6 (Cheek Raiser), AU12 (Lip Corner Puller),
and obtains comparable AU detection performance in AU9 (Nose
Wrinkler) and AU25 (Lips part). In summary, the benefits of the
proposed TPC over other self-supervised AU detection methods
can be summarized in 2-fold. First, TPC explicitly learns to
encode the temporal evolution and consistency of the facial
Aus in the temporal sequences. The self-attention mechanism
in the transformer modules is capable of perceiving the local to
global interactions between different facial AUs. Second, TPC
incorporates the frame-wisely temporal contrastive learning into
the self-supervised paradigm to further learn the per-frame
discriminative-ness between the nearby facial frames. Thus,
TPC is capable of perceiving the temporal consistency and the
frame-wisely discriminativeness of the facial AUs self-supervised.
The consistent improvements over other self-supervised AU
detection methods have verified the feasibility of TPC. We will
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TABLE 1 | Action unit (AU) detection accuracy of the proposed temporally predictive coding (TPC) and state-of-the-art approaches on BP4D dataset.

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Ave

DRML Zhao et al. (2016) 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

EAC-Net Li et al. (2017b) 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

DSIN Corneanu et al. (2018) 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

LP-Net Niu et al. (2019) 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0

UGN Song et al. (2021) 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3

SRERL Li et al. (2019a) 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9

FAUT Jacob and Stenger (2021) 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2

SEV-Net Yang et al. (2021) 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9

MAL Li and Shan (2021) 47.9 49.5 52.1 77.6 77.8 82.8 88.3 66.4 49.7 59.7 45.2 48.5 62.2

TCAE Li et al. (2019b) 43.1 32.2 44.4 75.1 70.5 80.8 85.5 61.8 34.7 58.5 37.2 48.7 56.1

TAE Li et al. (2020b) 47.0 45.9 50.9 74.7 72.0 82.4 85.6 62.3 48.1 62.3 45.9 46.3 60.3

TRL Lu et al. (2020) 42.3 24.3 44.1 71.8 67.8 77.6 83.3 61.2 31.6 51.6 29.8 38.6 52.0

TPC (Ours) 43.2 44.6 52.8 72.6 71.9 84.9 86.9 64.8 50.3 61.5 55.6 43.7 61.1

The best results in the supervised and self-supervised methods are illustrated in Bold.

TABLE 2 | Action unit detection accuracy of the proposed TPC and state-of-the-art approaches on the DISFA dataset.

Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Ave

DRML Zhao et al. (2016) 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-Net Li et al. (2017b) 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5

OFS-CNN Han et al. (2018) 43.7 40.0 67.2 59.0 49.7 75.8 72.4 54.8 51.4

DSIN Corneanu et al. (2018) 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6

SRERL Li et al. (2019a) 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9

LP-Net Niu et al. (2019) 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9

FAUT Jacob and Stenger (2021) 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5

SEV-Net Yang et al. (2021) 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8

UGN Song et al. (2021) 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0

MAL Li and Shan (2021) 43.8 39.3 68.9 47.4 48.6 72.7 90.6 52.6 58.0

TCAE Li et al. (2019b) 15.1 15.2 50.5 48.7 23.3 72.1 82.1 52.9 45.0

TAE Li et al. (2020b) 21.4 19.6 64.5 46.8 44.0 73.2 85.1 55.3 51.5

TRL Lu et al. (2020) 18.7 27.4 35.1 33.6 20.7 67.5 68.0 43.8 39.4

TPC (Ours) 22.8 30.8 59.6 53.9 42.7 75.3 82.1 51.6 52.3

The best results in the supervised and self-supervised methods are illustrated in Bold.

TABLE 3 | Ablation studies on the BP4D and DISFA datasets.

Methods BP4D DISFA

Lpred 58.7 49.8

Ltcl 57.9 50.8

λ = 10.0 55.2 47.1

λ = 1.0 59.3 48.6

λ = 0.1 61.1 52.3

carry out an ablation study to investigate the contribution of the
two components in TPC in the next section.

4.2.1. Ablation Study
Table 3 shows the ablation experimental results. In Table 3, we
show the accuracy variations with a different self-supervised
components, and show the influence with different λ. As shown
in Table 3, TPC shows the best AU detection performance
with the linear combination of Lpred and Ltcl with λ = 0.1.
It means both components in TPC contribute to its success
in learing discriminative AU representations. Without
either of the two self-supervised targets, TPC will show
degraded AU detection accuracies. Besides, TPC also suffers
from low accuracy with λ = 1.0 and λ = 10.0, which
suggests the two self-supervised learning targets should
be appropriately balanced to achieve the discriminative
AU representations.
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5. CONCLUSION

Within this paper, we aim to propose a self-supervised pseudo
signal based on TPC to capture the temporal characteristics
of the facial AUs in the sequential facial frames. To further
learn the per-frame discriminativeness between the nearby faces,
TPC incorporates the frame-wisely temporal contrastive learning
into the self-supervised paradigm. The proposed TPC can be
pre-trained without AU annotations, which facilitates making
use of a large amount of unlabeled facial videos to learn
the AU features that are robust to other undesired nuisances.
Compared with supervised facial AU detection methods, TPC
obtains comparable AU detection performance. Besides, TPC
is superior to other self-supervised AU detection approaches.
For future work, we will explore learning to perceive the
regional and structural AU features in the temporal contrastive
learning paradigm.
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