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Abstract

Ubiquinone (UQ) has been considered as an electron mediator in electron transfer that generates ATP in Rhizobium under
both free-living and symbiosis conditions. When mutated, the dmtH gene has a symbiotic phenotype of forming ineffective
nodules on Astragalus sinicus. The gene was isolated from a Mesorhizobium huakuii 7653R transposon-inserted mutant
library. The DNA sequence and conserved protein domain analyses revealed that dmtH encodes demethylmenaquinone
(DMK) methyltransferase, which catalyzes the terminal step of menaquinone (MK) biosynthesis. Comparative analysis
indicated that dmtH homologs were present in only a few Rhizobia. Real-time quantitative PCR showed dmtH is a bacteroid-
specific gene. The highest expression was seen at 25 days after inoculation of strain 7653R. Gene disruption and
complementation tests demonstrated that the dmtH gene was essential for bacteroid development and symbiotic nitrogen
fixation ability. MK and UQ were extracted from the wild type strain 7653R and mutant strain HK116. MK-7 was accumulated
under microaerobic condition and UQ-10 was accumulated under aerobic condition in M. huakuii 7653R. The predicted
function of DmtH protein was confirmed by the measurement of methyltransferase activity in vitro. These results revealed
that MK-7 was used as an electron carrier instead of UQ in M. huakuii 7653R bacteroids.
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Introduction

In bioenergetic chains, diverse chemical types of quinones, such

as ubi-, plasto-, mena-, rhodo-, caldariella- or sulfolobus-quinones

have been identified as membrane-bound, mobile hydrogen

carriers in different species. Ubiquinone (UQ) is the dominant

quinone species in a/b/c-proteobacteria. The majority of strictly

aerobic Gram-negative bacteria contain exclusively UQ [1,2,3].

Menaquinone (MK) is most widely distributed in most Gram-

positive bacteria and anaerobic Gram-negative bacteria. Because

MK is the only quinone in the early branching of phylogenetic tree

archaeal and bacterial phyla, MK was speculated to be the

ancestral type of quinone in bioenergetic systems [4]. It was

deduced that the evolutionary transition of bioenergetic chains

from high-potential MK to low-potential UQ in the proteobacter-

ial phylum had drived by rising levels of dioxygen 2.5 billion years

ago, and bioenergetic ambivalence of the respective organisms

which work both on MK-and on UQ-pools, was necessary in

transition proceed [5]. For example, E. coli and closely related

species can switch between MK-and UQ-based bioenergetic

chains in response to varying growth conditions. In E. coli, UQ

and MK perform distinct functions. UQ-8 is used as the main

quinone in aerobic respiration [6]. However, under anaerobic

conditions, MK-8 and demethylmenaquinone-8 (DMK-8) are

synthesized as electron transferring quinones [7,8].

In most bacteria, MK is derived from chorismate which is

comed from the shikimate pathway. Chorismate is initially

converted into isochrismate and then into 2-succinyl-6-hydroxyl-

2, 4-cyclohexadiene-1-carboxylate (SHCHC). SHCHC is dehy-

drated into o-uccinylbenzoate, and linked with CoA, then

converted into 1,4-dihydroxy-2-naphthoate(DHNA). DHNA is

added prenyl side chain into DMK, and DMK is converted into

MK by S-adenosylmethionine-dependent methylation[9,10]. In

this pathway, DMK methyltransferase are encoded by menG genes

(Figure1). Recently, an alternative microbial MK biosynthetic

pathway was discovered whose genes have no homology to men

genes, which were identified in Streptomyces [10]. In E. coli, the ubiE

gene catalyzes the common C methylation step in MK and UQ

biosynthesis [11]. The E. coli mutant strain AN70 containing the

ubiE401 mutation lacks both UQ and MK and instead produces

only DMK [12].

Rhizobium, classfied as the Gram-negative a-proteobacteria, is

strictly aerobic under free-living but is microaerobic as bacteroids

in nodules. Rhizobium contains diverse and complicated respiratory

electron transport systems to cope with free-living and symbiosis

conditions. Under aerobic conditions, BradyRhizobium japonicum

transfers electrons from the ubiquinone (UQ) pool to the O2-

reducing aa3-type terminal oxidase via the FeS protein-cyto-

chrome bc1 complex and a membrane-bound cytochrome c

[13,14]. Under microaerobic and bacteroid conditions diverse

electron transport pathways were reporteds for B. japonicum, and

one of the mainstream chains was that a cbb3-type-terminal oxidase

transferred electrons from Fes/bc1 to O2 [15]. In a different study,

when nitrous oxide was supplied as the terminal electron acceptor,

electrons flowed from the UQ pool to nitrous oxide via

cytochrome bc1 [16]. In the electron transport pathway of
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Rhizobium trifolii, flavoprotein lies between NADH and UQ, and b-

cytochromes transfer electrons from UQ to O2 [17]. These reports

suggested that UQ was an electron mediator to oxidize NAD(P)H

in Rhizobium cultured under different conditions.

Mesorhizobium huakuii can establish a nitrogen-fixing symbiosis with

Astragalus sinicus and form indeterminate nodules. M. huakuii has a

strict specificity for A. sinicus which makes this species important for

studies on the molecular mechanism of symbiotic nitrogen fixation.

We previously constructed a transposon mutagenesis library by

random insertion of the Tn5-B12S into the M. huakuii 7653R

genome [18]. A new gene, dmtH, was isolated from the mutagenesis

library which mutant formed ineffective nodules on A. sinicus. The

DNA sequence and conserved protein domain analyses revealed that

dmtH encodes DMK methyltransferase, which catalyzes the terminal

step of MK biosynthesis. The result is interesting,because no

Rhizobium has been reported to operate electron transfer containing

both MK and UQ thus far. We hypothesized that a few of Rhizobia

may use MK as electron carrier under symbiosis conditions. In this

study, we identified dmtH function by symbiotic phenotype and

protein enzymatic activity assays in vitro. The results suggested that

dmtH encoded a DMK methyltransferases and MK was biosynthe-

sized in M. huakuii bacteroids. The implications of these findings for

the functions of dmtH and MK in bacteroid metabolism and

symbiosis are also discussed.

Results

Cloning and sequence analysis of the dmtH gene
The flanking sequence of the transposon insertion site was

amplified by TAIL-PCR, from the mutant strain HK115

(nod+fix2). After sequencing, a homology search revealed that a

consensus sequence was present only in some isolates of Rhizobium.

Since the genome of M. huakuii has not still been sequenced, a pair

of specific primers, dmtUP and dmtLOW were designed, which

were based on the homologous sequences of M. loti MAFF303099,

to amplify a 750-bp fragment including the complete ORF

sequences from the genome of wild-type strain 7653R. This gene

was designated as dmtH (GenBank accession no. JN400272). The

dmtH gene is predicted to encode a 249-amino acid polypeptide

with an expected molecular mass of 27.3 kDa and a pI value of

5.4. The homology analysis of the DmtH protein showed that had

99% identity to the function-unknown gene mll2332 from M. loti

MAFF303099, and another similar proteins were annotated as

demethylmenaquinone methyltransferase proteins in M. opportu-

nistum WSM2075 (94% identity), R. leguminosarum bv. trifolii

WSM1325 (90% identity) and R. etli CFN42 (88% identity).

DmtH homology protein also presented in other bacteria as

annotated demethylmenaquinone methyltransferase, such as

Amycolatopsis mediterranei U32 (59% identity), Roseiflexus sp. RS-1

(49% identity) (Figure S1, S2). The dmtH gene was also discovered

that had no homology to men genes, whereas had 47% identity and

64% Positives with annotated demethylmenaquinone methyltrans-

ferase gene of Streptomyces lividans TK24. In Streptomyces, MK

biosynthetic pathway was identified and whose genes have no

homology to men genes(10). We thus assumed that the DmtH

protein encoded DMK methyltransferase, which catalyzes meth-

ylation at the terminal step in MK biosynthesis.

Construction of dmtH null mutant HK116 and symbiotic
phenoytpe identification

To confirm that the function of the dmtH gene in nodulation

and nitrogen fixation ability was disrupted by the transposon

insertion, a dmtH gene null mutant was constructed by the

homologous recombination method, and one mutant strain,

HK116, which formed ineffective nodules on A. sinicus, was

obtained. The disruption of dmtH in mutant strain HK116 was

verified by PCR. The symbiotic phenotype of the disruptant

HK116 was examined by plant growth test (Figure 2 and Table 1).

The results showed that HK116 formed small abnormal white

nodules with a host plant, but lacked nitrogen-fixing ability.

Nitrogenase activity of the nodules induced by HK116 was

undetectable, and the number of nodules remarkably decreased

compared to wild type 7653R.

Microscopic analysis in nodules
Paraffin section of the nodules induced by HK116 showed a

clearly decreased number of bacteroids in nodules (Figure 3). Since

a few symbiosomes were contained in the nodule infection zone (II

zone) and the II–III interzone, further ultrastructural comparisons

between nodules induced by HK116 and by 7653R were

performed by transmission electron microscopy. Consistent with

the light microscope observation, bacteroids were mainly located

in the II zone and were degraded in the nitrogen fixation zone

(III). Many symbiosomes in the nodules infected by HK116 were

aberrant and the bacteroid membrane showed incrassation.

Bacteroid sizes were smaller than in the wild type nodules. In

the bacteroids, much poly-b-hydroxybutyrate (PHB) was distinctly

observed (Figure 3). These changes showed that the dmtH gene is

necessary to achieve efficient symbiotic interaction between M.

huakuii and A. sinicus.

Complementation of the disruptant HK116
Complementation studies were carried out by cloning the dmtH

gene into the broad host range vector pBBRgus. The disruptant

strain HK116 transformed with pBBRgus-dmtH was inoculated on

A. sinicus. HK116 harboring pTRgus-dmtH, which was designated

HK116C, formed normal nodules and restored nitrogen-fixing

ability to the host plant (Table 1). Light and transmission electron

microscopy showed that bacteroids in root nodules induced by

HK116C had similar numbers and configuration to wild type

nodules, except for a slightly smaller size (Figure 3).

Figure 1. Methylation reactions in the biosynthetic pathway of MK. The length of the isoprenoid side chain (n) varies depending on the
species. SAM, S-adenosyl-L-methionine; SAH, S-adenosyl-L-homocysteine; DMK, demethylmenaquinone; MK, menaquinone.
doi:10.1371/journal.pone.0028995.g001
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Quantification of dmtH gene expression by real-time
RT-PCR

The relative expression level of the dmtH gene in root nodules

collected at several time points after inoculation, and in free-living

cultures was estimated by quantitative real-time PCR (Figure 4).

The results show that the dmtH gene had much lower expression

levels under free-living conditions, and was specifically expressed

in bacteroids during symbiosis. The expression of the dmtH gene

achieved the highest level in nodules at 25 days after inoculation

(dai). These results indicated that dmtH gene expression was

induced by symbiosis, and was indispensable for bacteroid

development and nitrogen fixation, but was not needed for the

free-living growth and metabolism of Rhizobia.

Analysis of menaquinone and ubiquinone in 7653R and
mutant HK116

Recent studies have shown no evidence of the presence of MK

in Rhizobium. The function of DmtH protein was hypothesized to

participate in the biosynthesis of MK in 7653R, and the dmtH gene

was specifically expressed in bacteroids. Therefore, we compared

and identified the electron carrier used under free-living and

symbiotic conditions. Quinone was extracted from 7653R and

mutant HK116 growing under aerobic and microaerobic

conditions and extracts were analyzed by reverse-phase high-

performance liquid chromatography (HPLC) and mass spectrom-

etry (MS). The results demonstrated that UQ-10 accumulated in

7653R and HK116 under aerobic conditions, but when growing

conditions were switched from aerobic to microaerobic, MK-7 was

confirmed to be produced in the wild type strain 7653R but was

not in the extract from mutant HK116, in which the content of

UQ-10 was also significantly decreased (Figure 5), and the result of

MS further confirmed MK-7 and UQ-10 were accumulated in

7653R in microaerobic respiration. These results indicated that

MK was synthesized only in bacteroids of wild type 7653R and not

produced in free-living cells, implying that the bacteroids use MK

as the specific electron carrier under symbiosis conditions to

accommodate metabolic changes during development and nitro-

gen fixation.

Methyltransferase activity measurement of DmtH protein
in vitro

To identify the enzymatic activity of the DmtH protein as a

DMK methyltransferase that catalyzes methylation in MK

biosynthesis, an overexpression plasmid pETdmt for the dmtH

gene was constructed and transformed into recipient strain E. coli

Rosetta 2(DE3). The target protein was overexpressed after

inducing with isopropyl b-D-thiogalactopyranoside and purified

(Figure 6).

Because the substrate specificity of the methyltransferase is not

stringent for the prenyl side chain of demethyl-MK [9,19], DMK-

8 of E.coli JC7623D4-1, which accumulated only DMK-8 but not

MK-8 (Figure 7A), was used as the substrate of DmtH protein

activity test. A crude homogenate of E.coli JC7623D4-1 was

prepared. S-adenosyl methionine (SAM) was used as the methyl

donor. The reaction system, with the crude E.coli JC7623D4-1

homogenate, purified DmtH protein and SAM, was incubated at

Table 1. Symbiotic phenotypes of M. huakuii wild type strain 7653R, mutant strain HK116 (Nod+ fix2), and complemented strain
HK116C.

Strain M. huakuii
Plant dry wt.
(mg plant21)

No. of nodules
per plant

Nodule fresh wt.
(mg plant21)

Acetylene reduction activity
(nmol of ethylene plant21 h21)

7653R 44.28a 21.50a 27.38a 2.55a

HK116 12.45b 11.08b 6.9b 0

HK116C 43.71a 22.44a 26.81a 2.47a

Control 11.08b 0 0 0

*Data are the average of five replicates
a,bValues in each column followed by the same letter are not significantly different (P,0.05).
Control: plants not inoculated with rhizobia strain.
doi:10.1371/journal.pone.0028995.t001

Figure 2. Plant growth test of the symbiotic ability of the disruptant HK116 on A. sinicus. (A) Control plant not inoculated Rhizobium. (B)
Plant inoculated by HK116 formed pseudonodules and yellow leaves. (C) Control plant inoculated by the wild type 7653R. (D) Plant inoculated by
complemented strain HK116C restored nitrogen-fixing ability.
doi:10.1371/journal.pone.0028995.g002

Novel Gene for Menaquinone Biosynthesis
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37uC for 1 h, and the products analyzed by HPLC and MS. MK-8

was found in the reaction products in addition to DMK-8

(Figure 7B, 8 and Figure S5). This showed that DmtH had

methyltransferase activity to transfer a methyl group from SAM to

DMK-8, indicating that the dmtH gene had a function similar to

the ubiE gene.

Discussion

In 1960 s–1980 s, studies were carried out on the electron

transfer mechanisms of Rhizobium. UQ was considered to be the

electron carrier operating electron transfer in free-living cells and

bacteroides. In vitro, menadione could substitute for UQ to reduce

cytochrome b [20], but no evidence was obtained for the presence

of MK in Rhizobia [21]. In previous reports, work focused on the

electron transfer pathway of BradyRhizobium sp., but with little on

Mesorhizobium.

In this work, the function of the dmtH gene was identified and

characterized by gene disruption, symbiotic phenotype, functional

complementation, gene expression pattern and DMK methyl-

transferase activity measurement in vitro. The results showed that

Figure 3. Paraffin section and ultrastructure observations of 5-week-old nodules formed by wild type strain 7653R, disruptant
HK116, and complemented strain HK116C. (A) Paraffin section of normal nitrogen-fixation nodules formed by wild type strain 7653R. (B)
Paraffin section of nodules induced by disruptant HK116 strains in which the dmtH gene was disrupted and nitrogen-fixation ability lost; bacteroids
are mainly located in II zone. (C) Paraffin section of nodules induced by the complemented strain HK116C with restored nitrogen-fixation ability. (D)
Ultrastructure of normal bacteroids in nodules induced by wild-type 7653R. (E) Ultrastructure of aberrant bacteroids in nodules induced by disruptant
HK116, with smaller size, incrassated membrane, and visible PHB granules in bacteroid cells. (F) Ultrastructure of function-restored bacteroids in
nodules induced by the complemented strain HK116C.
doi:10.1371/journal.pone.0028995.g003

Figure 4. Expression patterns of dmtH gene in free-living cells
and symbiotic nodules. Gene expression levels were examined by
real-time RT-PCR. Nodules were collected on different days after
inoculation with 7653R. Expression levels of dmtH were highest in
nodules at 25 dai, and hardly expressed in free-living cells. Histograms
represent quantification of the products normalized to the constitutive
control rnb. The experiment was repeated three times.
doi:10.1371/journal.pone.0028995.g004

Novel Gene for Menaquinone Biosynthesis
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UQ-10 accumulated under aerobic conditions, while synthesis of

MK-7 was induced under microaerobic conditions in strain 7653R

when NO3
+ was supplied as terminal electron acceptor. Since the

dmtH gene was mainly expressed during symbiosis, we assume that

MK-7 was produced only in the bacteroids with little in free-living

cells.

Also supporting MK as a quinone pool in bacteroids was the

ultrastructural of nodules induced by HK116, in which PHB was

accumulated and the membrane in bacteroids was also incras-

sated. M. huakuii form indeterminate nodules on host plants and do

not accumulate visible PHB granules during symbiosis. PHB

granules are synthesized during the initial stage of invasion and

used in the process of bacteroid differentiation [22]. Intracellular

PHB may fuel cell division and growth during root infection and

invasion [23]. PHB granules accumulating in bacteroids implied

that the metabolism of the carbon source or energy was shifted.

Normally, intracellular PHB as a carbon and energy source can be

metabolized in the TCA cycle for NADH production, which then

flows into the electron transfer chain for ATP formation during

root infection and invasion. However, in the symbiosis of the

disruptant HK116, MK could not be synthesized, which led to

obstruction of the electron transfer chain. To allow continued

operation of the TCA cycle, NAD(P)H was channeled into other

biosynthesis reactions, such as PHB synthesis, for use as reducing

equivalents.

During nitrogen fixation, the bacteroid is supplied with C4-

dicarboxylates as a carbon resource by the plant [24], and

bacteroids carry the carbon resources into the TCA cycle to

produce reducing equivalents and ATP for driving nitrogen

fixation [25,26]. Therefore, NADH synthesized from metabolites

supplied by host plant, did not flow into the electron delivery

chain to produce ATP for nitrogen fixtion in the disruptant

HK116 bacteroids lacking DMK methyltransferase. Instead, the

NADH was used for synthesis of PHB and long-chain fatty acids,

which further facilitated their accumulation. Thus, abnormal

morphologies and structures of bacteroids, such as smaller size,

membrane incrassation and PHB granules, were observed

(Figure 4). Therefore, the obstruction of MK biosynthesis and

the electron transfer chain in bacteroids, caused impairment of

the generation of ATP, and Rhizobia could not carry out the

normal differentiation program in nodules, losing nitrogen

fixation ability.

In E. coli, UQ is the electron-transferring quinone in aerobic

respiration, and MK in anoxic conditions. Correspondingly, two

dehydrogenases that transfer electrons from NADH to the

respiratory chain are present in cells. NDH-1 type dehydrogenase,

which is a multisubunit complex, is expressed under anaerobic

conditions, reducing fumarate and using MK as an electron

acceptor. NDH-2 dehydrogenase, a monomeric protein smaller

than NDH-1, oxidizes succinate and reduces UQ [27,28,29]. If

MK was used as an electron carrier in bacteroids of Rhizobia, two

dehydrogenases would also be expected to participate in oxido-

reduction reactions in free-living and symbiosis modes, as reported

for R. leguminosarum [30]. This study isolated two different NADH-

dependent dehydrogenses, DH1 and DH2, from R. leguminosarum.

The DH1 complex, like the NDH-1 type dehydrogenases with a

molecular mass of 550 kDa, is a specific-bacteroid membrane

component. The DH2 complex, with a molecular mass of

Figure 5. HPLC analyses of MK and UQ from wild type strain 7653R and disruptant HK116 under aerobic and microaerobic
conditions. (A) UQ-10 was accumulated in 7653R a under aerobic condition. (B) UQ-10 was accumulated in HK116 under aerobic condition. (C) MK-7
was accumulated in wild type strain 7653R when culturing conditions were shifted to microaerobic for 24 hours. (D) MK-7 was not produced in
disruptant HK116 under microaerobic condition.
doi:10.1371/journal.pone.0028995.g005

Novel Gene for Menaquinone Biosynthesis
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110 kDa, is present in both bacteroids and free-living bacteria.

This implies that MK could act as an electron carrier in

bacteroids. In agreement with our findings, the dmtH gene was

distributed only in a few of Rhizobium genomes including

Mesorhizobium sp., R. leguminosarum and R. etli, by homology analysis

and Southern blotting (Figure S3), which showed that MK was not

a commonly trait in most Rhizobia.

In previous report, MK was considered to represent the

ancestral type of quinone in proteobacteria, and MK-to-UQ

transition which had occurred 2 billion years ago probably

proceeded via ambivalent organisms which can use both types of

bioenergetic chains[5]. The phenomena was observed in E. coli

and closely related species. Recently the c-proteobacterium

Shewanella ANA-3 was reported to perform bioenergetic electron

transport from lactate to arsenate based on a MK-pool[31]. The

Halorhodospira species H. halophila, one of photosynthetic members,

was also proved to contain both UQ and MK, and operate the

photosynthetic cycle based on MK-pool which was not a common

trait of Halorhodospira/Ectothiorhodospira, and other subclasses of

Halorhodospira worked on UQ bioenergetic chains when grown

phototrophically [5]. According to the findings, we guessed M.

huakuii maybe one of ambivalent organisms. In proceeding of the

Rhizobium evolvement, the difference of host plants appears to

influence bacteroid physiological transition. Rhizobium could form

indeterminate nodules in galegoid legumes and deteterminate

nodules in nongaleoid legumes. Using recombinant Rhizobium

strains nodulating both two legume types, bacteroid cell cycle and

differentiation had shown to be controlled by the host plant in the

Rhizobium–legume symbiosis [32]. M. huakuii has a strict host

specificity and only form nodules in A. sinicus which imply M.

Figure 6. Mass spectrum of quinine compounds from M. huakuii 7653R cultured under microaerobic condition. (A) The mass spectrum
of MK7 which showed that MK7 was accumulated in M. huakuii 7653R under microaerobic respiration. (B) The mass spectrum of UQ-10 which showed
that UQ-10 was accumulated in M. huakuii 7653R.
doi:10.1371/journal.pone.0028995.g006

Novel Gene for Menaquinone Biosynthesis
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huakuii taking on lower evolution status in all Rhizobia,therefore still

perform energy-conserving chains based on MK pools.

Rhizobium have complicated branched electron transfer networks

that enable them to grow under different environments, such as

the four branched respiratory chains found in B. japonicum [15],

and two branched pathways in Rhizobium trifolii [17]. In our

studies, MK-7 was confirmed to play an important role as a

quinone pool in M. huakuii bacteroids, which implies that more

complicated branched electron transfer networks exist in Rhizobia.

Detailed information on the full respiratory chain of Mesorhizobia,

particularly the pathway used under symbiosis, requires further

research.

Materials and Methods

Media and growth conditions
E. coli strains were cultured in Luria-Bertani (LB) medium at

37uC. Rhizobia were grown in tryptone yeast medium (TY) at

28uC. When required, the following antibiotics were used:

ampicillin (Ap) 100 mg/ml; spectinomycin (Spe) 50 mg/ml;

tetracycline (Tet) 15 mg/ml; gentamicin (Gm) 20 mg/ml; and

kanamycin (Kan) 50 mg/ml.

Cloning and sequence analysis of dmtH gene
The genome of M. huakuii has not still been sequenced at

present, hence thermal asymmetric interlaced PCR (TAIL-PCR)

was used to amplify the flanking regions of Tn5-B12S from the

genome of the original symbiosis defective mutant HK115

(nod+fix2). Techniques were performed as previously described

[18]. TAIL-PCR products were cloned into plasmid vector pMD-

18T (Tarkara, DaLian, China) and sequenced. This gene was

designated as dmtH (GenBank accession no. JN400272). Two

oligonucleotides, dmtUP (59-ATGACGCATACCTCCGACATC-

39) and dmtLOW (59-CTAATTTGGGTTCCCCAAGC-39) were

designed to amplify the 750-bp DNA sequences containing the

full-length ORF of dmtH gene from total DNA of M. huakuii

7653R. Nucleotides and protein homology searches were carried

out by BLAST analysis (http://www. ncbi. nlm. nih.gov/BLAST).

The protein-conserved domains were predicted using the Inter-

ProScan server of EBI (http://www.ebi.ac.uk/InterProScan).

Construction of dmtH null mutant
Primers used to PCR-amplify a segment of 7653R genomic

DNA containing the dmtH ORF with 200 bp of flanking sequence

on either side of the coding sequence were: dmtUP1: 59-

TCAATTTCAACCGGAGTCC-39; dmtLOW1: 59-GACCTGG-

TTTCGCGCGCG-39. The resulting PCR product (1.1 kb) was

ligated into pMD-18T to generate pMDdmtH. A 950-bp fragment

containing a Km-resistance cassette was amplified from plasmid

pMH1701 by PCR with primers kanNcoIU (59-TTTCCATGGG-

CAAAGCCACGTTGTGTCT-39; the NcoI restriction site is

underlined ) and kanNcoIL (59-TTTCCATGGAGAAAAACT-

CATCGAGCA-39; the NcoI restriction site is underlined). The

Km-resistance cassette was inserted into the unique NcoI site of the

dmtH gene in pMDdmtH to create plasmid pMDdmtH-Km. A 2.1-

kb fragment containing dmtH and the Km cassette was cut from

pMDdmtH-Km and subcloned into pJQ200 mp18 using PstI and

XbaI restriction sites. The resulting suicide plasmid, pJQdmtH-Km,

was conjugated into M. huakuii 7653R by tri-parental mating with

a helper plasmid pRK2013 [33]. A dmtH double-crossover

recombinant was selected using the sac mutagenesis strategy as

previously described [34]. The disruption of dmtH in mutant strain

HK116 was verified by PCR and plant nodulation experiment.

Complementation
For the symbiotic function complementation test, the dmtH gene

was amplified with 7653R total DNA as the template using the

following two primers: dmtUP2: 59- ACTCTCGAGTAATCTA-

GACTGAACGAGGAGGTCGACGATGACGCATAC-39 (the

Figure 7. Overexpression of the dmtH gene in E. coli and target
protein DmtH purification. The DmtH protein was separated on an
SDS-polyacrylamide gel. E. coli Rosetta 2(DE3) harboring pET28a was
used as the control (lane 1). E. coli Rosetta 2(DE3) harboring pETdmt was
incubated with 28 KDa DmtH protein (lane 2). DmtH protein was
incubated after purification (lane 3). Protein markers are on the right.
doi:10.1371/journal.pone.0028995.g007

Figure 8. HPLC analyses of quinone compounds for testing
DmtH peotein activity. (A) DMK-8 was extracted from E.coli
JC7623D4-1(ubiE: Kanr) but MK-8 was not formed; (B) MK-8 was
synthesized in vitro in the reaction system by purified DmtH protein,
SAM and E.coli JC7623D4-1 cell homogenate at 37uC for 1 h.
doi:10.1371/journal.pone.0028995.g008
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XhoI restriction site is underlined), dmtLOW2: 59- ACTCTC-

GAGCTAATTTGGGTTCCCCAA -39 (the XhoI restriction site

is underlined). The amplified fragment digested with XhoI was

cloned into the previously modified vector pBBRgus, in which gusA

was inserted into the broad-host-range plasmid pBBR1MCS5

under the Lac promoter [35]. The recombinant plasmid pBBRgus-

dmt was obtained, and transferred into mutant strain HK116 by

triparental mating. Transconjugants were used to inoculate

seedlings of A. sinicus to test for ability to restore the symbiotic

phenotype of HK116.

Plant growth and nodulation experiment
Seeds of A. sinicus cultivar XY202 were surface sterilized for

5 min in 75% ethanol, soaked for 20 min in 2% sodium

hypochlorite, and rinsed extensively with sterile water. Plants

were grown in pots filled with sterile sand containing nitrogen-free

Fahraeus solution [36]. Cultivation was carried out in a controlled-

environment chamber (18 h light and 6 h darkness at 22 and

20uC, respectively) for 35 days. Nodules were collected for

paraffin-embedded section slides, electron microscopy and nitro-

genase activity examination. Nitrogenase activity was measured by

gas chromatography (GC) as acetylene reduction activity as

previously described [37].

Microscopic analysis
Light and transmission electron microscopic studies of nodules

were performed as follows. For paraffin sections, root nodules were

dehydrated in ethanol and xylene, embedded in paraffin wax,

serial-cut longitudinally, and slides were stained with toluidine

blue, then observed with a light microscope. For electron

microscopy, after nodules were fixed with 2.5% glutaraldehyde,

postfixed in 1% osmium tetroxide, rinsed, dehydrated and

embedded in London resin white, ultra-thin sections were taken

and examined in a Hitachi H-7650 transmission electron

microscope.

Quantification of dmtH gene expression by real-Time
RT-PCR

To determine the relative dmtH gene expression level, total

RNA was isolated with Trizol reagent from free-living M. huakuii

7653R cultured in TY liquid medium and plant nodules, which

were harvested from A. sinicus inoculated with wild type strain

7635R after 10, 15, 20, 25, 30, 35 and 40 days. Quantitative real-

time PCR was performed using the SYBR Premix ExTaq (Takare,

Dalian, China) on the iCycler iQ5 Multicolor Real-Time PCR

Detection System (primers: 59-CATCTATCCCAATGCCGT-

CAAC-39 and 59-CGAGAACTCTTCCCAATCGTG-39) (Bio-

Rad, Hercules, CA, USA). Expression levels were normalized

using rnpB gene as internal control (primers: 59- AAGGCCG-

CAAGTGAGGAAAGTC-39 and 59-GGTTTACCGTGCCGC-

TCCTGTTG-39). Data were analyzed by the relative quantifica-

tion method (22DDCT) to calculate expression and reactions were

performed in triplicate.

Extraction and analysis of MK and UQ in 7653R and
mutant HK116

Cells grown for extraction were cultured aerobically in a 500-ml

flask containing 100 ml of basal medium (glucose 20 g/l, peptone

5 g/l, yeast extract 3 g/l, malt extract 3 g/l ) at 28uC and

200 rpm for 20 h, then shifted to low O2 by sealing the flask with a

stopper through which a cannula was inserted to allow continuous

sparging of the culture with a compressed gas mixture of

prepurified N2 (.99%), the indicated amount of O2, and

10 mM KNO3, which was added to the culture under micro-

aerobic conditions. After culturing for 36 hours microaerobically,

cells were harvested by centrifugation, and quinones were

extracted with methanol/ethyl acetate (1:1) and evaporated in

vacuo [38]. Lipid extracts were resuspended in 1 ml of ethyl

acetate per 3 liters of culture. The obtained materials were

analyzed HPLC (Waters) and MS (API5000) with an isopropanol-

methanol (1:1) mobile phase and quinones were monitored by

UV/Vis absorption spectroscopy at 248 and 270 nm. Standards of

MK4, MK-7, MK9 and UQ-10 were used as controls (Figure S4)

(Seebio, China).

Methyltransferase activity assay of DmtH protein in vitro
To obtain adequate amounts of target protein for activity

measurements, we constructed the overexpression plasmid pETdmt

for the dmtH gene. Two oligonucleotide primers 59-CTCGAGTC-

TAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATA-

CGATGACGCATACC-39 (the XbaI restriction site is underlined)

and 59- ATAACTCTCGAGATTTGGGTTCCCCAA-39 (the

XhoI restriction site is underlined) were synthesized, and used to

amplify dmtH. PCR products were cloned into the pET28a vector

digested with XbaI and XhoI. The resulting plasmid, named

pETdmt, was transformed into E. coli Rosetta 2(DE3) for the

overexpression of the target protein DmtH. Expression, extraction

and purification of DmtH protein was carried out by standard

methods on Bio-Rad Biologic LP apparatus [39].

E. coli JC7623D4-1, which contains only DMK but no MK, was

kindly supplied by Professor Catherine F. Clarke of University of

California. Crude homogenates of E. coli JC7623D4-1 cells were

prepared as a reaction substrate for DmtH protein activity assays.

As described previously, JC7623D4-1 cells grown into late

exponential phase in LB medium were centrifuged, suspended in

a solution of 25 mM Tris-HCl buffer pH 7.7 containing 1 mM

EDTA and 10 mM 2-mercaptoethanol (2 ml/g of wet cells), and

disrupted with a Branson sonifier [9].

The DmtH protein reaction mixture contained, in a total

volume of 10 ml, 4 ml of crude homogenate of JC7623D4-1 cells,

0.1 M Tris-HCl buffer (pH 8.0), 10 mM MgCl2, 10 mM

dithiothreitol, 10% aqueous Triton X-100 (to give a final

concentration of 0.5% Triton X-100), 10 nmol S-adenosyl-L-

methionine (SAM) and 1 mM dmtH product. After incubation at

37uC for 1 h, the reaction was stopped by addition of 10 ml of

0.1 M acetic acid in methanol. The reaction products were

extracted with 40 ml methanol/chloroform (1:1) and evaporated

in vacuo. The lipid extracts were resuspended in 0.5 ml of

chloroform/liter of culture, and analyzed by HPLC and MS.

Supporting Information

Figure S1 Multiple sequence alignment of the DmtH
protein and the homologous sequence. Columns that are

dark represent identical residues, lighter black represent similar

residues in function. The numbers on the upper indicate the

positions of amino acids. Protein names are indicated to the left of

the alignment. These proteins come from Moserhizobium. loti

MAFF303099 (mlr2332), Moserhizobium opportunistum WSM2075

(MesopDRAFT_4419), Rhizobium leguminosarum bv. viciae

WSM1325 (RLeq4868), Rhizobium etli CFN42 (RHE_PE00095),

Amycolatopsis mediterranei U32 (AMED3148), Roseiflexus sp. RS-1

(RoseRS_2046), Thermomicrobium roseum DSM 5159 (trd_1944),

Roseiflexus castenholzii DSM 13941 (Rcas_3023), Streptomyces lividans

TK24 (SlivT_010100003505), Streptomyces ghanaensis ATCC 14672

(SSFG_00363), Burkholderia phytofirmans PsJN (Bphyt_4892).

(TIF)
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Figure S2 Homology tree of DmtH homologs. The

homology tree was constructed using MEGA5.04 software

(Tamura K, 2011). The scale bar indicates 10% substitutions

per site.

(TIF)

Figure S3 Southern blot analysis of dmtH gene in
different Rhizobium genomes. The total genomic DNA of

tested strains were digested for at least 3 h with 5-10 U of

restriction enzyme PstI and BamHI per mg of DNA. Digested

genomes were subjected to electrophoresis and transfer to nylon

membranes, then hybridized to a 32P-labeled probe. The tested

strains was Agrobacterium tumefaciense IAMI 3129 (A. tum),

Sinorhizobium medicae USDA 1037 (S. med), Sinorhizobium meliloti

USDA 2011 (S. mel), Sinorhizobium saheli LMG 7837 (S. sah),

Rhizobium leguminosarum LRP 5045 (R. leg), Sinorhizobium fredii

HN01 (S. fre), Mesorhizobium loti 541 (M. lot), Sinorhizobium arboris

HAMBI 1552(S. arb), Azorhizobium caulinodans USDA 4892 (A.

cau). (A) the electrophoresis map of BamHI-digested genomic

DNA. (B) the electrophoresis map of PstI-digested genomic DNA.

(C) BamHI-digested DNA hybridised with probe dmtH. (D) PstI-

digested DNA hybridised with probe dmtH. The Southern blot

shows that dmtH gene is present in R. leguminosarum LRP 5045 and

M. loti 541.

(TIF)

Figure S4 HPLC of the pure standard MK-4, MK-7, MK-
9 and UQ-10.

(TIF)

Figure S5 Mass spectrum of quinine compounds from
E.coli JC7623D4-1 and the reacting system of testing
DmtH peotein activity. (A) Mass spectrum of DMK-8 which

was accumulated in E.coli JC7623D4-1 but no MK-89 MS found.

(B) Mass spectrum of MK-8 which was tested from in reaction

system. The result showed MK-8 was synthesized in the reaction

system and DmtH had the the function of methyltransferase.

(TIF)
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