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Abstract
Background: Negative air pressure ventilation has been used to maintain adequate functional
residual capacity in patients with chronic muscular disease and to decrease transpulmonary
pressure and improve cardiac output during right heart surgery. High-frequency oscillation (HFO)
exerts beneficial effects on gas exchange in neonates with acute respiratory failure. We examined
whether continuous negative extrathoracic pressure (CNEP) combined with HFO would be
effective for treating acute respiratory failure in an animal model.

Methods: The effects of CNEP combined with HFO on pulmonary gas exchange and circulation
were examined in a surfactant-depleted rabbit model. After induction of severe lung injury by
repeated saline lung lavage, 18 adult white Japanese rabbits were randomly assigned to 3 groups:
Group 1, CNEP (extra thoracic negative pressure, -10 cmH2O) with HFO (mean airway pressure
(MAP), 10 cmH2O); Group 2, HFO (MAP, 10 cmH2O); and Group 3, HFO (MAP, 15 cmH2O).
Physiological and blood gas data were compared among groups using analysis of variance.

Results: Group 1 showed significantly higher oxygenation than Group 2, and the same oxygenation
with significantly higher mean blood pressure compared to Group 3.

Conclusion: Adequate CNEP combined with HFO improves oxygenation with less impact on
blood pressure than high-frequency oscillation alone in an animal model of respiratory failure.

Background
Continuous negative extrathoracic pressure (CNEP)
applied around the chest was been shown to be effica-
cious in the treatment of respiratory failure in infants [1-
5]. CNEP can produce increased functional residual
capacity and may lead to increased cardiac output by
increasing cerebral venous return and decreasing pulmo-

nary vascular resistance [6,7]. However, wide use of this
technique has not been seen in the neonatal field, as cre-
ating negative pressure around the fragile chest wall is dif-
ficult in neonates.

High-frequency oscillation (HFO) has been shown to pre-
vent both acute and chronic lung injury in neonatal man-
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agement. Specifically, HFO has been shown to reduce the
incidence of chronic lung disease in very low birth weight
infants [8-10]. Studies of surfactant deficiency in animal
models have demonstrated that volume recruitment is
one of the important lung protective strategies during
HFO [11,12].

In the present study, we hypothesized that CNEP com-
bined with HFO would offer greater improvements in
oxygenation than HFO alone in a rabbit model of sur-
factant depletion.

Materials and methods
Animal model
The study protocol was approved by the Institutional Ani-
mal Care and Committee of Nagano Children's Hospital,
Nagano, Japan. Eighteen adult white Japanese rabbits
weighing 2.0–2.5 kg were used for this study. All animals
were premedicated by intramuscular administration of
ketamine (10 ml/kg) and xyladine (5 mg/kg). The periph-
eral ear vein was cannulated using a 24-gauge angiocathe-
ter for intravenous anesthesia and infusion of medication.
Animals were placed in a supine position during the entire
study period. A 3.5-Fr endotracheal tube without cuff
(Mallinckrodt, St. Louis, Missouri, USA) was inserted into
the trachea and tied to prevent gas leak. The carotid artery
was cannulated using a 22-gauge angiocatheter and con-
nected to a blood pressure monitor (Polygraph System;
Nihon Koden, Tokyo, Japan) to monitor arterial blood
pressure and heart rate, and to obtain arterial blood sam-
ples for blood gas analysis. Anesthesia was provided by
continuous intravenous infusion of ketamine (5 mg/kg/
h) and paralysis was maintained using pancuronium (0.1
mg/kg/h). Mechanical ventilation was performed using a
time-cycled, pressure-limited ventilator (Humming II;
Metran, Saitama, Japan). Animals were administered 10%
glucose in 0.45% saline solution at 3 ml/kg/h throughout
the study period without any colloid or catecholamine.

Measurements
Oxygen saturation, heart rate and blood pressure were
monitored continuously using a pulse oximeter (Nihon
Koden, Tokyo, Japan). Tidal volume (Vt) was measured
intermittently using a low-dead space hot-wire pneumota-
chograph (Aivision Laminar Flow Meter LFM-317;
Metabo, Lausanne, Switzerland). Arterial blood gas sam-
ples were analyzed intermittently (0, 30, 60, 90 and 120
min). Blood pressure, heart rate and ventilator settings
were recorded before and after lung injury and at 30-min
intervals during the 120-min study period.

Experimental protocol
After obtaining baseline measurements, acute respiratory
failure was induced by repeated lung lavage with aliquots
of 30 ml/kg of warmed normal saline. Lavage was consid-

ered adequate if PaO2 was <80 mmHg by 15 min after last
lavage with the following ventilator settings: FiO2 1.0 at a
respiratory rate of 30 breaths/min with positive end expir-
atory pressure (PEEP) of 5 cmH2O; peak inspiratory pres-
sure (PIP) to maintain Vt of 15 ml/kg; and inspiratory
time of 1.0 s. To induce severe and stable lung injury, ani-
mals were ventilated mechanically for 60 min at the above
settings.

To determine the adequate CNEP level combined with
HFO (mean airway pressure (MAP), 10 cmH2O) in our
study, we conducted a preliminary examination of oxy-
genation at each CNEP level (extra thoracic negative pres-
sures: -5 cmH2O; -10 cmH2O; and -15 cmH2O) combined
with HFO. CNEP (-5 cmH2O) combined with HFO
showed no change in oxygenation compared with HFO
alone. CNEP combined with HFO (MAP, 10 cmH2O)
showed the same oxygenation level at -10 cmH2O or -15
cmH2O.

From these preliminary results, we decided to use CNEP (-
10 cmH2O) in our experimental protocol. Animals were
randomly allocated to 3 therapy groups. Group 1 used
CNEP (extra thoracic negative pressure -10 cmH2O) with
HFO (MAP 10 cmH2O). CNEP (RTX; Medivent, London,
UK) settings were as follows: CNEP at -10 cmH2O and
neonatal size selected for the cuirass. HFO settings were as
follows: MAP at 10 cmH2O and pressure amplitude
adjusted to maintain PaCO2 between 35 and 55 mmHg at
a frequency of 15 Hz. Group 2 used HFO alone at MAP 10
cmH2O, and Group 3 used HFO alone at MAP 15 cmH2O.

Statistical Analysis
All results are expressed as mean ± standard deviation,
and were compared using analysis of variance (ANOVA)
for repeated measures with Scheffé's test. Values of p <
0.05 were considered statistically significant.

Results
Baseline and post-injury data were similar in all 3 groups.
Changes in PaO2 over time are shown in Figure 1. In
Group 1 (-10 cmH2O CNEP with HFO; MAP 10 cmH2O),
PaO2 increased after starting CNEP and was significantly
higher than in Group 2 (HFO; MAP, 15 cmH2O) (p <
0.05). Group 3 (HFO; MAP 15 cmH2O) displayed similar
PaO2 to Group 1. Changes in MAP during the observation
period are shown in Figure 2. Mean arterial pressure was
significantly lower in Group 3 than in Group 1 (p < 0.05)
throughout the experimental period.

Discussion
PEEP is generally accepted to increase transpulmonary
pressure, thus increasing lung volume and reopening
some previously collapsed lung units. An alternative
approach to increasing transpulmonary pressure, and
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thus lung volume, is represented by application of nega-
tive pressure around the chest. Randomized trials to assess
the benefits of CNEP and standard care in preterm infants
have been described [3]. Telford et al. reported long-term

outcomes after neonatal CNEP [5]. They showed that
death or sever disability was equally distributed between
CNEP group and standard treatment group. Full IQ did
not differ significantly between groups, but mean per-
formance IQ was higher in the CNEP group. CNEP was
also useful in more mature infants with other types of res-
piratory failure [1,2]. In the treatment of acute lung injury,
application of CNEP increased transpulmonary pressure,
thus achieving improved lung function similar to that
obtained with PEEP. As opposed to PEEP, which increases
intrathoracic pressure, CNEP increases transpulmonary
pressure by decreasing intrathoracic pressure, rather than
by increasing airway pressure. CNEP has favorable effects
on permeability and hydrostatic pulmonary edema [6,7].
In a sheep model inoculated with Pseudomonas bacteria,
CNEP decreased hydrostatic filtration pressure and lung
lymph flow [13]. In dogs with pulmonary edema induced
by oleic acid, CNEP increased extravascular lung water
volume, but did not change central blood volume [14].
Shekerdemian et al. reported that CNEP improved cardiac
output in children after cardiac surgery [15-17]. However,
CNEP has been not widely used in neonatal intensive care
unit, as extrathoracic devices are not easy to fix to the chest
wall of neonates, and maintaining constant extrathoracic
negative pressure is difficult.

HFO is a gentler mechanical ventilation approach with
very low tidal volume and fixed mean airway pressure,
which decreases the pressure swing in the peripheral air-
ways and alveoli, and may result in a reduction of lung
injury. HFO started after birth can prevent the develop-
ment of chronic lung disease in very low birth weight
infants at high risk for respiratory distress syndrome [8-
10]. Sustained increases in MAP could induce rapid, large
increases in PaO2 in the lungs, exhibiting some hysteresis
in pressure/volume relationships [11,12]. However,
higher MAP utilized during HFO could conceivably
impede venous return and lead to hypotension. In
neonates, this might result in intracranial hemorrhage
[18].

Although the present study was limited by a lack of direct
measurement of transpleural pressure and cardiac output,
we showed that adequate CNEP combined with HFO
results in the same level of oxygenation and significantly
higher mean blood pressure compared with high MAP
HFO-only groups. In neonate, high MAP HFO easily affect
on circulation and need volume expander or catecho-
lamine to keep adequate blood pressure. Although, fur-
ther experiments are needed to develop a more
comfortable and useful cuirass that can be adjusted to
individual neonatal chest size for long-term use in human
neonate, we can try this ventilator combination in
neonate who has severe respiratory and circulatory failure.
Based on these experimental data, we speculate that ade-

Changes in mean arterial pressureFigure 2
Changes in mean arterial pressure. (Diamond) Group 1: 
CNEP (-10 cmH2O) with low-MAP (10 cmH2O) HFO. (Cir-
cle) Group 2: Low-MAP (10 cmH2O) HFO. (Square) Group 
3: High-MAP (15 cmH2O) HFO. *p < 0.05 Group 1 vs. 
Group 3.

Figure 2

Changes in oxygen index (OI) in experimentsFigure 1
Changes in oxygen index (OI) in experiments. (Dia-
mond) Group 1: CNEP (-10 cmH2O) with low-MAP (10 
cmH2O) HFO. (Circle) Group 2: Low-MAP (10 cmH2O) 
HFO. (Square) Group 3: High-MAP (15 cmH2O) HFO. *p < 
0.05 Groups 1, 3 vs. Group 2.

Figure 1 
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quate CNEP might play a role as a continuous volume
recruitment maneuver during HFO or change in pulmo-
nary blood flow or increases in cardiac output. Some arti-
cles have described comparative evaluations of
hemodynamic effects for CNEP and positive end-expira-
tory pressure [19-22], no studies appear to have shown
the combined effects of CNEP and HFO on oxygenation
in an animal model of lung injury. We hope to look at
adequate circulation in CNEP with HFO in further exper-
iments.

We conclude that adequate CNEP combined with HFO
improves oxygenation with less impact on blood pressure
than HFO alone in an animal model of surfactant deple-
tion.
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