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Abstract

In 1979 Haralick famously introduced a method for analyzing the texture of an image: a set of statistics extracted from the
co-occurrence matrix. In this paper we investigate novel sets of texture descriptors extracted from the co-occurrence matrix;
in addition, we compare and combine different strategies for extending these descriptors. The following approaches are
compared: the standard approach proposed by Haralick, two methods that consider the co-occurrence matrix as a three-
dimensional shape, a gray-level run-length set of features and the direct use of the co-occurrence matrix projected onto a
lower dimensional subspace by principal component analysis. Texture descriptors are extracted from the co-occurrence
matrix evaluated at multiple scales. Moreover, the descriptors are extracted not only from the entire co-occurrence matrix
but also from subwindows. The resulting texture descriptors are used to train a support vector machine and ensembles.
Results show that our novel extraction methods improve the performance of standard methods. We validate our approach
across six medical datasets representing different image classification problems using the Wilcoxon signed rank test. The
source code used for the approaches tested in this paper will be available at: http://www.dei.unipd.it/wdyn/
?IDsezione = 3314&IDgruppo_pass = 124&preview = .
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Introduction

When it comes to data, we live in unprecedented times. Across

industries and academia, companies and institutions are struggling

to handle the massive amounts of data that are accumulating daily.

This explosion of data is coming from multiple sources: sensors,

social media, the Internet, smart devices, and smart phones. Data

stockpiling is motivated in large part by the availability of

inexpensive data storage and commodity computer systems that

have nearly the computational power of earlier supercomputers

[1]. These advances in computing and the economics of ownership

have greatly accelerated research in technologies that are

producing even more raw data. This is especially the case with

computer vision [2] [3] [4], which is now a major component in

many applications, ranging from video surveillance software to

robotic systems and automatic visual inspection systems for

checking industrial products at the end of the production line.

Medical imaging, in particular, is one field that is witnessing

rapid technological growth along with a concomitant avalanche of

data. To handle this data, specialized research databases (e.g.,

HUGO, Rfam, and Cancer Cell Map) and metadatabases (e.g.,

Biograph, mGen, PathogenPortal, and ConsensusPathDB) have

been established. Machine vision technology applied to many of

these databases has the potential of revolutionizing scientific

knowledge in medicine. Already some invaluable gains have been

made in the detection of tumors and cancers. For example, in [5]

image texture information is utilized to automatically discriminate

polyps in colonoscopy images, and in [4] linear discriminant

analysis of wavelet features, which has been successfully employed

in many nonmedical applications (for instance, traffic accident

detection [6] and face identification and verification [7]), is

proving highly effective in the detection of tumors in endoscopic

images.

Texture analysis is often involved in image classification, but

there is no universally recognized definition of texture. It can be

viewed as a global pattern arising from the repetition of local

subpatterns [8] or as a region where a set of local properties or

statistics are either constant, slowly varying, or approximately

periodic [9] (for an interesting early catalogue of definitions see

[10]). Many different methods for managing texture have been

developed that are based on the various ways texture can be

characterized. Some of the highest performing methods reported

in the literature include the scale-invariant feature transform

(SIFT) [11], speeded up robust feature (SURF) [12], histogram of

oriented gradients (HOG) [13], gradient location and orientation

histogram (GLOH) [14], region covariance matrix (RCM) [15],

edgelet [16], gray level co-occurrence matrix (GLCM) [17], local

binary patterns (LBP) [18], nonbinary encodings [19], color

correlogram (CCG) [20], color coherence vectors (CCV) [21],

color indexing [22], steerable filters [23] and Gabor filters [24].

Arguably the Local Binary Pattern (LBP) operator [25] is one of

the most powerful approaches utilizing the texture information in

an image. LBP is simple, effective, and robust and is proving to be

a powerful discriminator in many medical image classification

problems. In [26], for example, LBP assigns a Marsh-like score to

endoscopical images of pediatric celiac diseases. In [27] a Support
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Vector Machine (SVM) is coupled with the LBP operator to

distinguish real masses from normal parenchyma in mammo-

graphic images. LBP has also been combined with other

descriptors useful for medical data mining purposes. In [28], for

instance, LBP is used to explore brain magnetic resonance data,

and in [29] the authors demonstrate how a combination of LBP

with other texture descriptors is effective in classifying different cell

phenotypes.

In this paper, we focus on improving one of the earliest methods

for analyzing texture: the GLCM, originally proposed by Haralick

[30] in 1979 for analyzing satellite images. Based on a set of

features, or descriptors, that are evaluated starting from a

histogram, GLCM is one of the most studied and extensively

used general approaches for texture analysis and has recently

become the focus of several research groups whose aim is to

increase the discriminability of GLCM descriptors. Some inter-

esting recent work in this area includes [31], where the authors

consider different values of the distance parameter that influences

the GLCM. In [32] features are extracted by weighted summation

of GLCM elements from areas presenting high discrimination. In

[33] descriptors are obtained from the gray level-gradient co-

occurrence matrix, formed by calculating the gradient value of

each pixel in the neighborhood of interest points. In [34] GLCM is

combined with the edge orientation co-occurrence matrix of

superior order [35], thereby taking into consideration both the

gray levels of the image pixels and such local features as edges.

Multi-scale analysis has also been performed using the GLCM.

For example, in [36] and in [37] multiple scales are considered by

changing the window size used to extract the GLCM descriptors,

and in [38] the image is rescaled to different sizes and co-

occurrence descriptors are extracted from each rescaling.

Recently the addition of color information has been evaluated

for co-occurrence matrices [39]. In [40], for instance, a colors-

gradient co-occurrence matrix (CGCM) is proposed from which

27-dimensional statistical features are extracted. In [41] superior

results are obtained on content-based image retrieval by employ-

ing a combination of the contourlet transform and the GLCM.

First, the contourlet transform is performed for four subbands of

the image, and then GLCM features are extracted from each

band. In [42] the authors propose the Gradient Magnitude based

Angle Co- occurrence Matrix for color image classification that is

based on three different types of gradients defined in the RGB

space.

Finally, some very recent work has been proposed that

combines LBP with GLCM. For example, in [43], GLCM is

constructed after LBP is applied to the image. Features are then

extracted from second-order statistical parameters of the resulting

LBGLCM matrix. Similarly, in [44], an LBP image is built after

performing a Gaussian filtering pyramid preprocessing step, and

the GLCM is constructed from the resulting LBP image.

A major difficulty encountered when analyzing texture is that

results strongly depend on image resolution and scale, an effect

that is especially problematic with edge-based approaches. One of

the goals of this work is to assess the performance improvement

that can be gained using a multi-scale approach. In the literature,

several authors have recently reported combining several multi-

scale approaches with LBP descriptors (see, for instance, [45] and

[46]). We show in this study that it is also possible to improve the

performance of different descriptors extracted from the co-

occurrence matrix by coupling them with a multi-scale approach.

Our main intention, however, is to compare different methods

for extracting features given the co-occurrence matrix (we are not

comparing and combining different pre-processing methods

applied before the co-occurrence matrix extraction). As described

in detail in section 2, the following extraction methods are

investigated:

N Extracting descriptors using the standard approach proposed

by Haralick [17];

N Extracting a set of 3D descriptors by considering the co-

occurrence matrix as a 3D shape [47];

N Extracting descriptors from different 2D shapes by considering

the co-occurrence matrix as a 3D shape: The 2D shapes are

obtained by intersecting the co-occurrence matrix with a set of

horizontal planes at given heights;

N Extracting gray-level run-length features [48];

N Directly using the co-occurrence matrix as a descriptor by

projecting it onto a lower dimensional subspace using principal

component analysis;

We improve the performance of these descriptors further by

extracting them not only from the entire original co-occurrence

matrix, but also from multiple scales of the original image obtained

by Gaussian filtering and by dividing the original co-occurrence

matrix into different subwindows and extracting features sepa-

rately from each subwindow. These descriptors are then used to

train separate SVM classifiers whose results are combined by sum

rule or weighted sum rule.

The experimental results presented in section 4 show that our

new approach improves the performance of standard methods and

some state-of-the-art approaches. We validate our approach across

six medical datasets, described in section 3, representing very

different image classification problems.

Figure 1. Images illustrating the effect of the multi-scale approach.
doi:10.1371/journal.pone.0083554.g001
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Proposed System
The focus of this paper is on extracting descriptors from the co-

occurrence matrix with the goal of enhancing the performance of

Haralick’s descriptors. Improvements are achieved by applying the

multi-scale approach that overcomes the main weakness of

texture-based features (i.e., the dependency on scale discussed in

the introduction) and by extracting features from different

subwindows of the co-occurrence matrix and then combining

them.

Each of the approaches tested in the experimental section is

explained below. In all experiments, SVM [49–51] is used as the

base classifier. In this study, linear, polynomial and radial basis

function kernels are tested. For each dataset, the best kernel and

the best set of parameters are chosen using a 5-fold cross validation

approach on the training data.

The Multi-scale Approach
Using this approach, images are generated by applying a 2D

symmetric Gaussian lowpass filter of size k (we use k = 3 and k = 5)

with standard deviation 1. As illustrated in Figure 1, the original

image is filtered to obtain a set of smoothed versions of the original

image.

The GLDM Co-occurrence Matrix
GLDM [17,30] is a particular type of co-occurrence matrix

obtained as the histogram on a 2D domain of dimension

NGL6NGL, where NGL is the number of gray levels in the image

(typically 256). In other words, the co-occurrence matrix counts

the number of gray level transitions between two pixel values such

that the bin of the histogram whose coordinates are equal to the

values of the two pixels is incremented. The way pixel couples are

determined depends on the two parameters, d and h. A value of

d = 1 and h = 0, for example, would produce pixel couples that are

adjacent to each other on the same row. In our experiments four

directions are considered: the horizontal (H), the vertical (V), the

diagonal top left-bottom right, or right-down (RD), and the top

right-bottom left, or left-down (LD).

The Standard Haralick Statistics
The idea of using statistical indicators was originally proposed in

[30]. In the experimental section, we label this approach HAR.

The following HAR indicators are evaluated:

1. Energy

2. Correlation

3. Inertia

4. Entropy

5. Inverse difference moment

6. Sum average

7. Sum variance

8. Sum entropy

9. Difference average

10. Difference variance

11. Difference entropy

12. Information measure of correlation 1

13. Information measure of correlation 2.

A set of 13 descriptors is calculated from each co-occurrence

matrix evaluated at h = {0u, 45u, 90u, 135u} and with distance

d = {1, 3}. A descriptor is obtained by concatenating the features

extracted for each distance and orientation value.

In our experimental section, we also report the performance of

several HAR variants:

N HR: features are extracted from the whole image only (note:

several comparisons of different parameters settings for HR are

reported in [47], but in this paper we use only the best

configuration reported in that study).

N HRsub: a feature set is extracted from the whole co-

occurrence matrix and from each subwindow (we use four

subwindows in this work). Each set of features is then used to

train a separate SVM. All 5 SVMs are combined by weighted

sum rule, with weight of 4 for the SVM trained on the whole

matrix, and weight of 1 for the others fours SVMs. To avoid

presenting huge table, only the results of the best four

subwindows are presented, defined using the coordinates (0,

0) to (127, 127); (128, 128) to (255, 255); (0, 128) to (255, 128);

and (0, 128) to (128, 255);

N HRsca, features are extracted from the original image and the

two filtered images The 15 SVMs are combined by weighted

sum rule, with weight of the SVMs trained using features

extracted from the original image given the value of 4, while

the other SVMs have a weight of 1.

SHAPE
The SHAPE approach explores the shape of the co-occurrence

matrix by considering it as a 3D function (see Figure 2). This

approach has been explored in detail in [52], [47], and [53]. The

main idea of SHAPE is to intersect the GLDM with a set of

horizontal planes at given heights and then derive a set of features

based on the contours of the intersection, which defines a complex

shape made up of one or more extractable blobs. The blob with

the largest area, referred to as the main blob, is selected for

extracting features and is fitted to an ellipse in order to simplify

analysis. Although this approximation of the main blob shape to

an ellipse results in some information loss, it offers the advantage

of making the comparison among curves much easier.

Level curves are considered towards the base of the co-occurrence

matrix, starting at height 1 and then going until height 19, with a

distance of 2 between two consecutive planes. Level curves are all at a

relatively low height because that region is very stable unlike the

upper part of the co-occurrence matrix, which is much more unstable

because of image noise. For this reason the co-occurrence matrix is

not normalized, since normalization to the highest bin would

introduce instabilities. Other types of normalization could be

performed with respect to the total volume of the co-occurrence

matrix, but this depends on the size of the original image, which is

constant in most cases, making the normalization useless.

For each level, a set of descriptors extracted from the ellipses

derived from the co-occurrence matrix is evaluated. The features

describing all levels are then jointly analyzed for extracting a set of

nine features that describe the evolution of the level curves (see

[47,52] for details).

These features are used to provide a characterization of the

input image and can be directly used as input for a classifier. This

is the principle exploited in the HAR approach. In the case of the

SHAPE approach, however, features are evaluated not only on the

entire co-occurrence matrix (as in [52]) but also on 12 subwindows

of the GLDM defined by the following coordinates: #1: (0, 0) to

(127, 127); #2: (128, 128) to (255, 255); #3: (0, 0) to (191, 191);

#4: (64, 64) to (255, 255); #5: (0, 0) to (95, 95); #6: (31, 31) to (95,

95); #7: (63, 63) to (127, 127); #8: (95, 95) to (159, 159); #9: (127,

127) to (191, 191); #10: (159, 159) to (223, 223); #11: (191, 191)

to (255, 255); and #12: (63, 63) to (191, 191). Several experiments

Extracting Information from Co-Occurrence Matrix
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using the entire GLDM along with these same subwindows are

reported in [47]. (Note: in the case of SHAPE, we use more than

the four subwindows because the performance of SHAPE

improves when smaller subwindows are used; this is not the case

with the other methods explored in this work).

For each of these 13 windows (counting the GLMD as a whole

along with the 12 subwindows) a different feature vector is

extracted, and these 13 descriptors are used to train 13 separate

SVMs. Results are combined by weighted sum rule, where a

weight of 1 is assigned to the first five descriptors, and a weight of

0.5 is assigned to the remainder. Each set of 13 descriptors is

derived from co-occurrence matrices evaluated at h = {0u, 45u,
90u, 135u} and, in the case when multiple values are used for the

distance, d = {1, 3}. The feature vector is obtained by concate-

nating the features extracted for each value of the distance. In the

experimental section, SH refers to the case where features are

extracted from the entire co-occurrence matrix only, while SHsub

is the method based on all 13 windows. When SHsub is coupled

with the multi-scale approach, we call this combination SHsca.

Curvature (CR)
The curvature (CR) algorithm [54] takes as input a set of edge

point samples and a set of circular masks with varying radii. CR

counts the number of samples falling in each mask when the mask

is centered on edge points representing a contour. This count is

used to obtain a measure of curvature, and these curvature

measures are then quantized in a histogram of bins of equal size

which are collected to form a feature vector.

The CR algorithm is applied to the co-occurrence matrix

considering a set of level curves starting at height 1, going until

height 15, with a distance of 3 between two consecutive planes.

For each 2D shape defined for a given height, the descriptors are

extracted from co-occurrence matrices evaluated at h = {0u, 45u,
90u, 135u}, and multiple values of d = {1, 3}. The descriptor is

obtained by concatenating the features extracted for each value of

the distance and of the orientation. In the experimental section, we

also report the performance of the following GL variants:

N CU: as in HR but using the CR features;

N CUsub: as in HRsub but using the CR features;

N CUsca: as in HRsca but using the CR features.

1.5 Gray-level Run-length Features (GL)
GL [48] derives descriptors from a run-length matrix that is

based on characteristics of the gray level runs within a given

image. A gray level run is a set of consecutive pixels with the same

value, and the run length is the number of pixels in the set. The

run-length matrix P contains in each location p(i, j) the number of

runs of length j at a given gray level i. Starting from the run-length

matrix it is possible to obtain several indicators, as explained in

[48]. In our experiments, we consider the following:

N Short Run Emphasis (SRE), evaluated as:

SRE~
1

nr

XM

i~1

XN

j~1

p(i,j)

j2

where nr is the total number of runs, M the number of gray levels,

and N the maximum run length.

N Long Run Emphasis (LRE):

LRE~
1

nr

XM

i~1

XN

j~1

p(i,j):j2

N Gray Level Nonuniformity (GLN):

GLN~
1

nr

XM

i~1

(
XN

j~1

p(i,j))2

Figure 2. Illustration of the co-occurrence matrix as a 3D
function.
doi:10.1371/journal.pone.0083554.g002

Figure 3. Illustration of image diversity with a sample image
representative of each of the six datasets.
doi:10.1371/journal.pone.0083554.g003
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N Run Length Nonniformity (RLN):

RLN~
1

nr

XN

j~1

(
XM

i~1

p(i,j))2

N Run Percentage (RP):

RP~
nr

np

where np is the total number of pixels in the image.

N Low Grey-Level Run Emphasis (LGRE):

LGRE~
1

nr

XM

i~1

XN

j~1

p(i,j)

i2

N High Grey-Level Run Emphasis (HGRE):

HGRE~
1

nr

XM

i~1

XN

j~1

p(i,j):i2

N Short Run Low Grey Level Emphasis (SRLGE):

SRLGE~
1

nr

XM

i~1

XN

j~1

p(i,j)

i2:j2

N Short Run High Grey Level Emphasis (SRHGE):

SRHGE~
1

nr

XM

i~1

XN

j~1

p(i,j):i2

j2

Table 1. Descriptive summary of the six datasets.

Name Abbreviation #Classes #Samples Sample Size Link

Histopatology HI 4 2828 Various https://www.dropbox.com/s/yli3c3tbokjdc4r/histologyDS2828.
tar.gz

Pap smear PAP 2 917 Various https://www.dropbox.com/s/rh0hj3fntd95sbp/Carcinoma.rar

Virus types classification VIR 15 1500 41641 http://www.cb.uu.se/̃gustaf/virustexture/

Breast cancer BC 2 584 various Due to their large size they are available upon request to the
authors of [58] or request from ‘‘nanni at dei.unipd.it’’

Protein classification PR 2 349 various https://www.dropbox.com/s/osvc8ab7d90nsmn/
BackboneProtein.rar

Chinese Hamster Ovary CHO 5 327 5126382 http://ome.grc.nia.nih.gov/iicbu2008/

doi:10.1371/journal.pone.0083554.t001

Table 2. Usefulness of extracting features from the co-occurrence matrix subwindows.

AUC HR HRsub GR GRsub CU CUsub LD LDsub SH SHsub

PAP 89.4 92.0 84.1 86.0 77.8 79.0 83.7 82.6 82.5 86.6

VIR 95.9 96.7 88.8 93.4 70.9 70.0 61.3 70.7 84.6 89.9

HI 87.7 88.5 87.3 88.9 67.5 65.6 – – 83.2 87.6

BC 92.7 93.6 84.9 91.9 83.1 85.1 61.6 85.7 88.8 91.8

PR 90.6 91.0 85.7 91.7 74.8 75.3 80.4 83.5 84.8 84.7

CHO 99.4 99.4 98.6 97.9 98.6 97.8 99.6 99.5 99.5 99.6

Av 92.6 93.5 88.2 91.6 78.7 78.8 – – 87.2 90.0

Due to huge memory requirements, LD is not performed on HI dataset.
doi:10.1371/journal.pone.0083554.t002
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N Long Run Low Grey Level Emphasis (LRLGE):

LRGE~
1

nr

XM

i~1

XN

j~1

p(i,j):i2

i2

N Long Run High Grey Level Emphasis (LRHGE):

LRHGE~
1

nr

XM

i~1

XN

j~1

p(i,j):i2:j2

In our system we calculate the indicators described above from

a run-length matrix that is evaluated on the GLDM. Since

multiple GLDMs are calculated at several values of h = {0u, 45u,
90u, 135u} and several values of d = {1, 3}, the GL descriptor is

obtained by concatenating all the described features for all values

of h and d. The GL approach in turn has its own orientation: all

values considered in [48] are evaluated in our system, namely

hGL = {0u, 45u, 90u, 135u}.

In the experimental section, we also report the performance of

the following GL variants:

N GR: as in HR but using the GL features;

N GRsub: as in HRsub but using the GL features;

N GRsca: as in HRsca but using the GL features.

Lower Dimensional Subspace (LDS)
In our experiments, we also use the co-occurrence matrix itself

as a descriptor. Since it is very high in dimensionality, we project it

onto a lower dimensional subspace using PCA, where 99% of the

variance is retained for input into an SVM. As in the previous

approaches, each set of features is extracted from co-occurrence

matrices evaluated at h = {0u, 45u, 90u, 135u}, and multiple values

are used for the distance, d = {1, 3}. The descriptor is obtained by

concatenating the features extracted for each value of the distance

and of the orientation.

The use the following approaches with LDS:

1. LD: as in HR but using the LDS features;

2. LDsub: as in HRsub but using the LDS features;

3. LDsca: as in HRsca but using the LDS features.

Datasets

We validate our systems across six medical datasets to assess

generality. These datasets represent different computer vision

problems. As an example of image diversity, Figure 3 shows the

different visual characteristics of sample images representative of

our six datasets.

The datasets used for evaluating approaches are the following

(notice that the RGB images are converted in gray level images):

N PAP: this Pap Smear dataset [55] contains images representing

cells that are used in the diagnosis of cervical cancer.

N VIR: this dataset [56] contains images of viruses extracted

using negative stain transmission electron microscopy. We use

the 10-fold validation division of images shared by the authors.

However, we do not exploit their mask for background

subtraction. Instead, we use the entire image for extracting

features as this method produced better results.

N HI: this Histopatology dataset [57] is composed of images

from different organs that are representative of the four

fundamental tissues.

N BC: this dataset [58] contains 273 malignant and 311 benign

breast cancer images.

N PR: this dataset, developed by [59], contains 118 DNA-

binding Proteins and 231 Non-DNA-binding proteins. Texture

descriptors are extracted from the 2D distance matrix that

represents each protein, and this is obtained from the 3D

tertiary structure of a given protein (considering only atoms

that belong to the protein backbone, see [59] for details).

N CHO: this cell dataset [60] that contains 327 fluorescent

microscopy images taken from Chinese Hamster Ovary cells

and belonging to five different classes. Images are 16 bit

grayscale of size 5126382 pixels.

Table 3. Performance gains using the multi-scale approach.

AUC HRsca GRsca CUsca LDsca SHsca

PAP 92.5 85.9 79.6 82.0 86.5

VIR 96.7 94.1 69.9 72.8 92.1

HI 89.5 89.6 66.6 – 89.6

BC 93.8 93.8 85.5 85.0 92.3

PR 91.0 92.7 76.3 83.2 87.6

CHO 99.5 97.9 98.7 99.6 99.8

Av 93.8 92.3 79.4 – 91.3

Due to huge memory requirements, LD is not performed on HI dataset.
doi:10.1371/journal.pone.0083554.t003

Table 4. Performance of fusion approaches.

AUC HRsca GRsca Old SUM2 WS2 W = 2 W = 3

PAP 92.5 85.9 92.5 91.5 92.0 91.8 91.9

VIR 96.7 94.1 96.4 96.7 96.7 96.5 96.6

HI 89.5 89.6 90.7 91.3 90.9 92.4 92.3

BC 93.8 93.8 94.9 94.6 94.5 95.1 95.0

PR 91.0 92.7 89.1 92.7 92.3 92.1 92.2

CHO 99.5 97.9 99.9 99.7 99.7 99.9 99.9

Av 93.8 92.3 93.9 94.4 94.4 94.6 94.6

doi:10.1371/journal.pone.0083554.t004

Table 5. Fusion approaches.

AUC HRsca LBP LTP MT W1

PAP 92.5 87.7 86.1 90.0 92.6

VIR 96.7 89.8 91.6 93.7 96.5

HI 89.5 92.5 92.8 93.4 94.1

BC 93.8 92.4 95.6 96.0 97.3

PR 91.0 79.8 87.8 88.4 93.2

CHO 99.5 99.9 100 100 100

Av 93.8 90.3 92.3 93.6 95.6

doi:10.1371/journal.pone.0083554.t005
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A descriptive summary of each dataset along with website links

to each dataset is reported in Table 1.

Experiments

The 5-fold cross-validation protocol is used for testing each

texture descriptor, with the exception of the VIR dataset, for

which the original testing protocol is used. The area under the

ROC curve (AUC) is used as the performance indicator because it

provides a better overview of classification results. AUC is a scalar

measure that can be interpreted as the probability that the

classifier will assign a higher score to a randomly picked positive

sample than to a randomly picked negative sample [61]. In the

multi-class problem, AUC is calculated using the one-versus-all

approach (a given class is considered as ‘‘positive’’ and all the other

classes are considered as ‘‘negative’’) and the average AUC is

reported.

The aim of the first experiment, see table 2, is to establish the

usefulness of extracting features not only from the whole co-

occurrence matrix but also from different sub-windows.

The aim of the second experiment, see table 3, is to show the

performance gains that can be achieved using the multi-scale

approach.

Examining Tables 2 and 3, the following conclusions can be

drawn:

N It is clear that all methods improve when features are also

extracted from GLCM subwindows; even the standard HR

improves when coupled with subwindow extraction (to the best

of our knowledge, this is the first paper to explore using

subwindows to extract information from the co-occurrence

matrix);

N Coupling approaches with the multi-scale approach further

improves results;

N The novel method GRsca obtains a performance similar to

HRsca;

N The ensemble proposed here, HRsca, outperforms the base

HR;

N CUsca and LDsca work well on some datasets and not on others:

when using these approaches, it would be desirable to test

them using the training data to determine whether they are

suited to a specific task. For instance, CU is more suited for

binary images than for texture images. LD is not well suited for

extracting the local information found in the co-occurrence

matrix; nonetheless, LD is able to extract some useful features.

To statistically validate of our experiments, we used the

Wilcoxon signed rank test [62]:

N HRsca outperforms HR (p-value 0.05);

N GRsca outperforms GR (p-value 0.05);

N HRsca and GRsca obtain a similar performance.

Before turning to the next set of experiments, it should be

observed that the results of CU and LD highlight the difficulty of

predicting which descriptors will work well for a given dataset; the

best way to determine this is to use the training set of each dataset

to assess performance. It is well-known in the computer vision and

machine learning communities that no stand-alone approach is

consistently superior to any other. The ‘‘no free lunch’’ theorem

states that any two learning algorithms exhibit the same

performance when error rates are averaged across all possible

problem sets (see, e.g., [63]). In our opinion, the main value of

combining different descriptors is that they offer the most feasible

way of coping with the ‘‘no free lunch’’ theorem.

The aim of the third experiment, see table 4, is to show the

performance gain that is possible by fusing different descriptors

extracted from the co-occurrence matrix. The descriptors chosen

for this experiment were the following:

N Old: the best ensemble proposed in [52] based on features

extracted from co-occurrence matrix;

N SUM2: sum rule between HRsca and GRsca. Notice: when we

combine the SVMs trained with different descriptors, the

scores of each SVM are always normalized to mean 0 and

standard deviation 1, before the fusion step.

N WS2: weighted sum rule between HRsca (weight 2) and GRsca

(weight 1);

N W = 2: weighted sum rule between SUM2 (weight 2) and SHsca

(weight 1);

N W = 3; weighted sum rule between SUM2 (weight 3) and SHsca

(weight 1);

The best result was obtained by choosing W = 3, which confirms

that all three methods (HRsca, GRsca and SHsca) extract different

information from the co-occurrence matrix. W = 3 outperforms

HRsca with p-value 0.05 using Wilcoxon signed rank test.

For comparison purposes, in Table 5, we report the results of

some of the best performing texture descriptors reported in the

literature:

N Local binary patterns (LBP) [25];

N Local ternary patterns (LTP) [64];

N Multi-threshold local quinary coding (MT) [53].

In Table 5 we also report the following fusion method:

N W1, sum rule between MT and W = 3.

It is interesting to note that the performance of the HRsca

method that we propose is similar to what can be achieved using

MT. Moreover, W1 (the ensemble of different descriptors)

outperforms all the base approaches that belong to it, leading to

a very high performing set of descriptors.

Finally, we perform experiments using SPIN features [64]

considering the GLDM as a 3D image. This method extracts

reliable features, but the performance is lower than other methods

reported in this work, e.g., HRsub. Using SPIN features

considering the GLDM as a 3D image obtains the following

results: PAP = 77.2; BC = 71.8; PR = 84.2; CHO = 93.0).

Conclusion

In this study we extended previous work reported in the

literature on texture analysis techniques based on the co-

occurrence matrix. We compared and combined different

strategies for extending the texture descriptors extracted from

the co-occurrence matrix. These methods were further improved

by combining them with a multi-scale approach based on

Gaussian filtering and by extracting features not only from the

entire co-occurrence matrix but also from subwindows. Moreover,

we proposed a novel set of features (Grey-level run-length features)

to use with the co-occurrence matrix. We also showed that our

ensemble approach improves the performance of SHAPE and

standard Haralick-based features and outperforms other stand-

alone approaches without ad hoc dataset parameter tuning. Our

proposed system was validated across six different medical image

classification problems, thereby demonstrating the generality of
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our approach. Our results were also compared with some state-of-

the-art descriptors. For all experiments SVM was used as the base

classifier.

In our opinion the most valuable result of this paper is

demonstrating that it is possible to extract even more information

from the co-occurrence matrix than has been extracted thus far.

Our study shows that it is worthwhile exploring more techniques

for deriving new descriptors from the co-occurrence matrix.

Future experiments, for instance, might examine different methods

for processing the image before extracting the co-occurrence

matrix. We hypothesize that Gabor filters and wavelet decompo-

sition will prove to be valuable preprocessing methods.
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coding for texture descriptors in sub-cellular and stem cell image classification.
Current Bioinformatics 8: 208–219.

20. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using

color correlograms. IEEE Conference on Computer Vision and Pattern
Recognition. San Jose, Puerto Rico. 762–768.

21. Pass G, Zabih R, Miller J (1996) Comparing images using color coherence

vectors. ACM international conference on Multimedia. 65–73.

22. Swain MJ, Ballard DH (1991) Color indexing. International Journal of

Computer Vision 7: 11–32.

23. Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence 13: 891–906.

24. Jain AK, Farrokhnia F (1991) Unsupervised texture segmentation using gabor

filters. Pattern Recognition Letters 24: 1167–1186.

25. Ojala T, Pietikainen M, Maeenpaa T (2002) Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns. IEEE

Transactions on Pattern Analysis and Machine Intelligence 24: 971–987.

26. Vécsei A, Amann G, Hegenbart S, Liedlgruber M, Uhl A (2011) Automated

marsh-like classification of celiac disease in children using local texture
operators. Computers in Biology and Medicine 41: 313–325.
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