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Absence seizures are generalized nonmotor epileptic seizures with abrupt onset and

termination. Transient impairment of consciousness and spike-slow wave discharges

(SWDs) in EEG are their characteristic manifestations. This type of seizure is severe in two

common pediatric syndromes: childhood (CAE) and juvenile (JAE) absence epilepsy. The

appearance of low-cost, portable EEG devices has paved the way for long-term, remote

monitoring of CAE and JAE patients. The potential benefits of this kind of monitoring

include facilitating diagnosis, personalized drug titration, and determining the duration

of pharmacotherapy. Herein, we present a novel absence detection algorithm based

on the properties of the complex Morlet continuous wavelet transform of SWDs. We

used a dataset containing EEGs from 64 patients (37 h of recordings with almost 400

seizures) and 30 age and sex-matched controls (9 h of recordings) for development and

testing. For seizures lasting longer than 2 s, the detector, which analyzed two bipolar

EEG channels (Fp1-T3 and Fp2-T4), achieved a sensitivity of 97.6% with 0.7/h detection

rate. In the patients, all false detections were associated with epileptiform discharges,

which did not yield clinical manifestations. When the duration threshold was raised to

3 s, the false detection rate fell to 0.5/h. The overlap of automatically detected seizures

with the actual seizures was equal to ∼96%. For EEG recordings sampled at 250 Hz,

the one-channel processing speed for midrange smartphones running Android 10 (about

0.2 s per 1 min of EEG) was high enough for real-time seizure detection.

Keywords: childhood absence epilepsy, EEG, wavelets, detector, portable device

1. INTRODUCTION

Typical absence seizures are brief (lasting seconds) generalized nonmotor epileptic seizures with
an abrupt onset and termination (1, 2). Transient impairment of consciousness and spike-slow
wave discharges (SWDs) in electroencephalogram (EEG) are their characteristic manifestations.
Typical absence seizures are severe in childhood (CAE) and juvenile (JAE) absence epilepsies but
mild or inconspicuous in other syndromes such as juvenile myoclonic epilepsy (JME). Typical
absence seizures are predominantly spontaneous, but in about 90% of untreated patients, they
may be provoked by hyperventilation. Sleep deprivation, photostimulation, specific geometric
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patterns, video games, and even thinking may also precipitate
them. The pathophysiology of absence seizures is fundamentally
different from other types of seizures, making their diagnosis and
treatment unique.

CAE is the most common pediatric epileptic syndrome with
an age of onset of around 6–8 years (3). It has a prevalence of 10–
15% in childhood epilepsies. In children under the age of 16 years,
the incidence rate is 1.3 to 6 per 100,000. The ictal EEG of a CAE
seizure demonstrates rhythmic 3 Hz bilateral, synchronous, and
symmetrical spike and wave discharges (SWDs) with a median
duration of approximately 10 s, which on average appear several
times per day. In pyknoleptic cases, hundreds of seizures may
occur daily (4). The 2010 Childhood Absence Epilepsy Study
showed that only 37% of all enrolled subjects were free from
treatment failure on their first medication a year after diagnosis
(5).

JAE typically begins between 10 and 16 years of age and
is usually a life-long condition. JAE seizures tend to be longer
than in CAE (lasting up to 45 s) and non-pyknoleptic (typically
occurring less than daily).

While CAE and JAE are distinct epilepsy syndromes, there is
considerable overlap between them, and the cut-off age remains
controversial. During disease, patients with JAE or patients in
the overlap group are more likely to develop generalized tonic-
clonic seizures and myoclonic attacks. In the long-term follow-
up (mean 26 years, range 3–69), only 58% of the patients with
absence seizures were in remission (6).

The diagnosis of absence seizures is laborious since it
requires analysis of long video-EEGs (on average around 30
minutes long) to detect seizures and their clinical manifestations
(consciousness impairment, motor symptoms) and abnormal
EEG background activity.

The appearance of low-cost, portable EEG devices (7) has
paved the way for long-term, remote monitoring of patients with
absence seizures. The potential benefits of this kind ofmonitoring
include facilitation of diagnosis, personalized drug titration, and
determining of duration of pharmacotherapy. The need for
automatic and reliable detection of absence seizures has long been
recognized (8). Diverse algorithms have been proposed so far to
detect seizures in animal models of epilepsy (9–12) or in human
EEG (13–21). Herein, we present a novel approach to absence
seizure detection, which is applicable both to clinical EEGs and
recordings made with portable EEG devices with a small number
of channels. The algorithm’s efficiency and robustness to motion
artifacts enable its implementation on mobile devices.

2. MATERIALS AND METHODS

2.1. EEG Recordings
Wroclaw Medical University’s Ethics Committee approved
a retrospective analysis of routine anonymized video-EEG
recordings of patients (36 with CAE and 28 with JAE) as
well as 30 EEGs of age-matched controls. Epilepsy syndrome
was established based on history, age at onset, clinical EEG
findings, and neuroimaging. EEGs were acquired with Elmiko
Digitrack (BRAINTRONICS B.V. ISO-1032CE amplifier) or
Grass Comet Plus EEG (AS40-PLUS amplifier) using 200 or 250

Hz sampling frequency. The international 10-20 standard was
used to arrange 19 Ag/AgCl electrodes (impedance below 5k�).
Total EEG duration was equal to 37 and 9 h for the patients and
controls, respectively.

We assigned patients’ EEG to either training or testing
datasets. In the first one, there were 34 recordings (22 CAE and
12 JAE) with 199 seizures (6± 4 per patient and averaged seizure
duration equal to 12 ± 4 s). In the 30 recordings of the testing
dataset (15 CAE and 15 JAE), there were 177 absence seizures (6
± 5 per patient and averaged duration equal to 12 ± 6 s). An
experienced neurologist carried out a visual EEG inspection and
marked the seizures with a 1 s accuracy.

Figure 1 provides the rationale for using the longitudinal
bipolar montage. The seizure detector was developed and tested
for two channels: Fp1-T3 and Fp2-T4.

We used three filters for EEG preprocessing: a second-order
infinite impulse response (IIR), 6th-order high-pass Butterworth
with a cutoff frequency of 0.5 Hz, and 6th-order low-pass
Butterworth with a cutoff frequency of 25 Hz. These filters
remove 50 Hz power line noise, EEG baseline drift, and muscle
artifacts, respectively.

2.2. Continuous Wavelet Transform
The continuous wavelet transform (CWT) of a signal s(t) is an
integral transform:

T[s](a, t0) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(

t − t0

a

)

dt (1)

with the basis functions ψ(a, t0) = ψ(t − t0/a), known as
wavelets, that are translated and scaled version of the mother
functionψ(t) (22). Motivated by the results of the previous study
(23), as a mother function, we use the complex Morlet wavelet
(24, 25):

ψ(t) = 1

π1/4
e2π ifcte−t2/2 (2)

whose Fourier transform ψ̂(f ) is given by

ψ̂(f ) =
√
2 4
√
πe−2π2(f−fc)2 . (3)

The real parameter fc is called the center frequency
since it is equal to the maximum point of the wavelet’s
Fourier power spectrum. The scale a corresponds to the
following pseudofrequency:

fa =
fc

a
. (4)

As we can see in Equations (2, 3), the wavelets are localized both
in time and frequency domains. This dual localization makes
CWT particularly applicable to the detection of transient events
such as absence seizures.

Seizure detection is based on the properties of the

instantaneous wavelet power
∣

∣T[s](a, t0)
∣

∣

2
normalized by

signal’s variance σ 2:

w(n)(fa, t0) =
∣

∣T[s](a, t0)
∣

∣

2
/σ 2. (5)
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FIGURE 1 | Three monopolar EEGs illustrate the difficulties of absence seizure detection in a single channel. (A) is a textbook example of prominent, generalized

SWDs. The amplitude of spikes (B) or slow waves (C) may be small and SWDs may be pronounced only in a handful of channels. (D–F) show the advantages of

using the longitudinal, bipolar montage which in most cases augments both spikes and slow waves of SWDs.

If we apply the convolution theorem to Equation (1), then it is
apparent that the Fourier transform of T[s](a, t0) is the pointwise
product of the Fourier transforms of the signal and wavelet.
Thus, it is possible to calculate CWT by taking the inverse
Fourier transform of such a product. We used this approach in
the MATLAB function, presented in Supplementary Materials,
which calculates the complex Morlet CWT (25). We included
the listing to facilitate the reproduction of the results and
avoid confusion related to erroneous normalization of the most
popular Python and MATLAB CWT implementations. We will
discuss this problem in a forthcoming publication.

For the most commonly used wavelets, such as the complex
Morlet, the analytical expression for their Fourier transform is
known. Therefore, in the presented function, we calculate only

the FFT of the signal and use Equation (3) to obtain the wavelet’s
FFT spectrum.

The complex Morlet CWT of the preprocessed Fp1-T3 and
Fp2-T4 channels was calculated without signal partitioning.

2.3. Detection Algorithm
The detection of an absence seizure (Figures 2A,E), defined as an
SWD lasting for more than 2 s (26), proceeds in two steps. First,
we locate the train of slow waves and then verify that there are
epileptic spikes embedded in it. One can see in the scalogram
Figure 2B that when the wavelet’s pseudofrequency is close to
that of an absence (∼ 3 Hz), then the wavelet power forms a
prominent ridge. We refer to the time interval during which
the power exceeds the chosen threshold TE as the slow-wave
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FIGURE 2 | The complex Morlet wavelet analysis of absence slow wave (B–D) and spikes (F–H). For clarity, absence EEG is presented at the top of both columns

(subplots A,E). The density map (B) shows the time evolution of normalized wavelet power for pseudo-frequencies in [2.5, 5] Hz range. The 2.7 and 3.3 Hz cuts

(Continued)
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FIGURE 2 | (marked with the white horizontal dashed line) are plotted in subplot (C) with the blue and orange lines, respectively. We refer to time intervals during

which the wavelet power for these frequencies exceeds the predetermined threshold (represented in (C) by the red dashed horizontal line) as the slow-wave

envelopes. For a given seizure, the total envelope is obtained by merging 2.7 and 3.3 Hz envelopes as shown in (D). The right column shows the complex Morlet

analysis with parameters tuned to spike detection. The prominent ridges in wavelet power density map (F) and peaks in 15.3 Hz cut (G) are manifestations of seizure’s

spikes. The white horizontal dashed line in (F) corresponds to the spike frequency 15.3 Hz obtained in the grid search. The train of unit pulses in (H) indicates time

intervals during which wavelet power for 15.3 Hz is greater than the spike threshold value (marked in subplot (G) with the red dashed horizontal line). An absence is

detected whenever the epileptic spikes are found in the slow-wave envelope (I).

envelope. This envelope is a unit boxcar function that takes on
one whenever the power is greater than TE. As the frequency of
SWDs is subject-dependent and may even slightly vary during a
seizure (15), we construct two envelopes with wavelet frequencies
flow and fhigh (Figure 2C) andmerge them as shown in Figure 2D.
The merging amounts to a pointwise application of a logical OR
function to both envelopes.

For a suitably chosen pseudofrequency fspike, the wavelet

power w(n)(fspike) peaks around the position of epileptic spikes
(Figure 2F). If the percentage of samples PT within the final
envelope for which the wavelet power is greater than TS, we
conclude that there are spikes (Figure 2H) within the envelope
(Figure 2I). Such the envelope delineates the absence seizure.

In some cases, w(n)(fspike) may also be elevated for high-
amplitude artifacts. To reduce the number of false positives, we
modified the original algorithm. We do the following amplitude
check and disregard all envelopes for which:

• More than 10% of the samples have amplitudes outside the
range [−500 µV, 500 µV] (in the differential montage epileptic
spikes can have amplitudes of the order of hundreds µV).

• Any sample is outside the range [–1,000 µV, 1,000 µV].

For envelopes shorter than 5 s, we also calculate the variance
of w(n)(fspike) to detect the wavelet power pulsatility of absence
(Figure 2G). If such variance is greater than TV , the detector flags
the envelope as a seizure. We refer to such a comparison as the
wavelet variance check.

Figure 3 shows the flowchart of the final absence
seizure detection algorithm. The proposed algorithm may
be used independently for channels Fp1-T3 and Fp2-T4.
Alternatively, the seizure envelopes from these two channels may
be superposed.

2.4. Determination of Algorithms’
Parameters
We determine flow, fhigh, and TE by maximizing the overlap of
slow-wave envelopes with the absence seizures from a training
dataset disregarding possible false detections.

Using these values, we search for the maximum of the
following objective function:

O(fspike,TS, PT) = OVRf − PERR− 0.5× FDET − FDETC (6)

to find fspike, TS, and PTS – spike detection parameters. In Eq
(6), OVRf is the percentage overlap of slow-wave envelopes with
seizures. PERR is the percentage of the number of false positive
samples in a given EEG. FDET and FDETC are the number of
false detections for the patients and controls, respectively.

The form of the objective function follows two requirements.
The first is that we want to overlap the slow-wave envelope
with the seizure as accurately as possible. The second is that
in patients, false positives can be associated with epileptiform
discharges with no clinical manifestations. Therefore, in Eq
(6), the weight assigned to the patients’ false detection penalty
(FDET) is half of that given to the controls. We arbitrarily chose
the 1:2 weight ratio.

TV can be determined in the following way. We calculate the
variance of w(n)(fspike) for the controls’ EEGs. Then, we calculate
the mean and standard deviation of the distribution. Finally, TV

is set to the mean increased by three standard deviations (TV =
0.05).

We determined the slow-wave and spike detection parameters
using the exhaustive grid search.

2.5. Software Implementation
The seizure detection software was implemented both in
MATLAB (R2018a) and Java. In the latter case, we wrote a
desktop version (which can be run on any computer with Java
virtual machine) and a mobile version for Android smartphones.
In Java software, we used the class FastFourierTransformer from
Apache Commons Math Library (version 3.6.1). Testing and
performance benchmarking was performed on a desktop PCwith
AMDRyzen 7 3700X 8-Core processor runningWindows 10 and
Samsung S9 mobile phone (4GB of RAM and 2.8 GHz Samsung
Exynos 9810 8-Core processor) with Android 10.

3. RESULTS

Using two-step (slow-wave envelope and spike detection)
optimization on the training dataset, we obtained the following
model parameters flow = 2.7 Hz, fhigh = 3.3 Hz, TE = 0.05,
fspike = 15.3 Hz, TS = 0.012, PTS = 12%. After the parameters
were determined, we lowered the value of TV from 0.05 to 0.008.
This change is explained in Discussion section.

The seizure detector had 98.5% and 96.6% sensitivity
for the training and testing datasets, respectively (see
Supplementary Tables 1, 2). The corresponding false detection
rates were equal to 0.9/h and 0.4/h. The overlap OVR of the
detected and actual seizures was good for both datasets (97% ±
6% and 95% ± 10%). The percentage error PERR that accounts
for both false positives and erroneously extended slow-wave
envelopes was equal to 0.9%± 0.7% for both datasets.

Supplementary Table 3 shows that both the amplitude
and wavelet variance checks contribute to the false
detection reduction.

Frontiers in Neurology | www.frontiersin.org 5 June 2021 | Volume 12 | Article 685814

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Glaba et al. Absence Seizures Detection Algorithm

FIGURE 3 | Absence seizure detection flowchart. Once the slow-wave envelope is present in an analyzed EEG segment, the detector checks whether there are

epileptic spikes embedded in it. The amplitude and the normalized wavelet power variance checks are also performed to eliminate artifacts.

In Supplementary Table 4, we compare the execution times of
three absence seizure detector implementations. The execution
time is determined by the efficiency of an FFT function, which
is used to calculate the continuous wavelet transform. Matlab is
renowned for its FFT implementation. Thus, it is not surprising
that for the longest segment (N = 218), the Matlab version of
the detector ran almost 16 and 19 times faster than the Java
software running on Windows 10 and Android 10 (0.18 s vs.
2.79 s and 3.41 s). Interestingly enough, for shorter segments,
the detector ran faster on the mid-range Android device than
on the PC. Nevertheless, the single-channel Android processing
speed of 0.2 s per minute of EEG is adequate for real-time
seizure detection.

4. DISCUSSION

It has long been recognized that long-term EEGmonitoring is the
most reliable method for absence detection (27). Parents notice
only about 6% of daytime seizures, and very often, teachers are

the ones who recognize the CAE/JEA beginning (28). The 2010
Childhood Absence Epilepsy Study (5) has provided a compelling
rationale for using portable EEG devices in the management of
CAE/JEA patients. This randomized controlled trial showed that
only 37% of all enrolled subjects were free from treatment failure
on their first medication a year after diagnosis.

In the last two decades, many researchers have investigated
absence seizure detection (13–17, 20). The datasets in these
studies were small–the analyzed SWDs came from nine patients
(range 2–20). On average, there were 70 seizures longer than 2
s (range 2–158). In all but one algorithm (20), discrete wavelet
transform was used for signal preprocessing. Machine learning
was used in 3 of 4 detectors. On average, 11 features were
extracted from 15 EEG channels.

Kjaer et al. (19) used an experimental EEG setup with 3
electrodes for 24-h EEG monitoring of 6 patients (593 seizures).
Their support vector machine detected 98.4% SWD’s with 0.23/h
false detection rate using 10 features of five-level db4 wavelet
EEG decomposition.
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FIGURE 4 | Examples of false absence seizure detection in the EEG of the patients (A,B) and controls (C,D). The epileptiform discharges in (A,B) were not

accompanied by the clinical manifestations. (C) shows a rare example of a muscle artifact classified as an absence. A prominent spike-and-wave in (D) appeared in a

healthy subject’s EEG.

The absence seizure detection algorithm presented in this
work is unique because it exploits the apparent traits of SWDs
and EEG motion artifacts. Despite the simplicity, its 97.6%
accuracy matches that of black-box machine learning classifiers.

Our experience indicates that frequent, albeit not excessively
long, EEG home monitoring is feasible in pediatric patients as
long as an EEG wearable is easy to put on and is comfortable.
This study used the bipolar channels Fp1-T3 and Fp2-T4 for
seizure detection because they approximately corresponded to
the Muse headband electrode placement. On the one hand,
this choice seems to be rational given absence seizures are
usually well pronounced in the frontal regions (29) and the
large spacing between the electrodes augments the characteristic
features of SWDs as shown in Figure 1. On the other hand, Fp1
and Fp2 channels are prone to muscle and eyeblink artifacts.
There were 26 and 8 false detections in the patients and
controls, respectively. In the patients, all false detections were
associated with epileptiform discharges, which did not yield
clinical manifestations. Half of the errors in the control group
were caused by the prominent SWDs. We show the examples of
misclassified EEG segments in Figure 4. We used the stringent
value TV = 0.05 for the determination of the model parameters.
Once we realized that false detections are not caused by motion
artifacts, for classification, we lowered this parameter to 0.008 to
maximize the detection sensitivity (for TV = 0.05, the sensitivity
was equal to 93% with the false detection rate 0.4/h). Some

pediatricians agree that sensitivity of 90% and false detection rate
of 1/h are clinically acceptable (19).

Unlike previous studies, the false detection rate was not
determined by the motion artifacts. We would like to emphasize
that the presented seizure detection was performed on clinical
EEGs, which is the main limitation of this study. The question
arises as to whether the amplitude and wavelet variance checks
would be equally effective in eliminatingmotion artifacts in EEGs
acquired with wearable devices in home settings. It is worth
mentioning that the false detection rate can be reduced by using
secondary electrodes for artifact cancellation (30) and employing
different single-channel artifact detectors (31, 32). As most
commercial EEG bands have MEMS accelerometers, one may
also explore the possibility of incorporating head acceleration in
the artifact removal algorithm. However, the connection between
EEG artifacts and head movement is not always apparent (33).

In a recent study, Dan et al. presented an absence seizure
detector based on a linear multichannel filter that was
precomputed offline in a data-driven fashion based on the
spatial-temporal signature of the seizure and peak interference
statistics (21). The performance of this detector depends on the
number of channels (from 3 to 18) used in the calculations. For
the three channels, the accuracy was equal to 95% with a 0.4/h
false detection rate. The authors set the minimum seizure length
to 3 s (34). It is worth pointing out that for this absence duration
threshold, the two-channel detector described in this work had
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the false detection rate equal to 0.5/h (18 and 6 false detections
for the patients, and controls, respectively.

To the best of our knowledge, we used the most diverse set
of CAE/JAE EEGs (37 h of recordings from 64 patients) for
development and testing. The overlap of automatically detected
seizures with the actual seizures was high (about 96%). The poor
overlap in some patients is predominantly caused by a very small
amplitude of the epileptic spikes. Consequently, the detector does
not classify such SWD trains as absence seizures. At the end of
the seizure, the frequency of SWDs can decrease far below the
canonical value of 3 Hz. In this case, the slow-wave envelope is
shorter than expected. The frequency drop during the seizure
leads to its sfragmentation.

For EEG recordings sampled at 250 Hz, the one-channel
processing speed for midrange smartphones running Android
10 was high enough (about 0.2 s per 1 min of EEG) for real-
time seizure detection. We found that the detection accuracy was
highest for a sliding 30 s EEG buffer, which was shifted by 10 s.

Absence seizure manifestations are mild compared to other
epileptic syndromes. Consequently, the rationale for using
seizure detectors in CAE/JAE patients is different. Emphasis
may be shifted from detection alerts to the facilitation of drug
titration and side effects elimination. Unobtrusiveness and ease
of use are particularly important for pediatric patients, who may
be more willing to tolerate regular EEG measurements if they
are incorporated into daily routines such as watching cartoons,
playing mobile games, or listening to music.

It is worth pointing out that remote seizure monitoring will be
one of the elements of personalized CAE/JAE treatment. There is

a growing interest in the development of biomarkers of treatment
response and side effects (35). These problems are the subject of
our research (36).
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