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Abstract: We aimed to investigate the occurrence of acquired AmpC β-lactamases (qAmpC), and
characterize qAmpC-producing Enterobacteriaceae from different non-clinical environments in Portugal.
We analysed 880 Enterobacteriaceae resistant to third-generation cephalosporins recovered from 632
non-clinical samples [healthy human and healthy animal (swine, chickens) faeces; uncooked chicken
carcasses; aquatic and trout aquaculture samples]. Bacterial and qAmpC identification, antibiotic
susceptibility, clonal (PFGE, MLST) and plasmid (S1-/I-CeuI-PFGE, replicon typing, hybridization)
analysis were performed using standard methods. The occurrence of qAmpC among Enterobacteriaceae
from non-clinical origins was low (0.6%; n = 4/628 samples), corresponding to CMY-2-producing
Escherichia coli from three healthy humans (HH) and one uncooked chicken carcass (UCC). We
highlight a slight increase in CMY-2 human faecal carriage in the two periods sampled [1.0% in
2013–2014 versus 0% in 2001–2004], which is in accordance with the trend observed in other European
countries. CMY-2-producing E. coli belonged to B22-ST4953 (n = 2, HH), A0-ST665 (n = 1, HH) or
A1-ST48 (n = 1, UCC) clones. blaCMY-2 was identified in non-typeable and IncA/C2 plasmids. This
study is one of the few providing an integrated evaluation of the qAmpC-producing Enterobacteriaceae
occurrence, which was low, from a very large collection of different non-clinical origins. Further
surveillance in contemporary collections can provide an integrated epidemiological information of
potential shifts in reservoirs, transmission routes and mechanisms of dissemination of blaqAmpC in
non-clinical settings.
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Enterobacteriaceae resistant to third-generation cephalosporins are endemic in many parts of
the world, mainly by the production of extended-spectrum β-lactamases (ESBLs) or acquired
AmpC β-lactamases (qAmpC) [1]. While the occurrence and characterization of ESBL-producers
across different niches has been characterized in detail, far less data concerning qAmpC-producing
Enterobacteriaceae are available. In fact, existing studies have been focused particularly on clinical
niches, and/or specific bacterial species (Escherichia coli, non-typhoidal Salmonella) and/or qAmpC-types
(mostly CMY-2) [2,3], while the occurrence of qAmpC-producing Enterobacteriaceae across different
non-clinical settings is barely known.

In Portugal, DHA-1 and CMY-2 are the most commonly found qAmpC-types among
Enterobacteriaceae associated with hospital- or community-acquired human infections, although a
recent increase in CMY-2 was observed in recent years (44%, 2010–2013 versus 6%, 2002–2008) [1]. Since
blaCMY-2 is the most common qAmpC-type among non-clinical niches [3], we aimed to investigate the
occurrence of qAmpC producers among a very large collection of Enterobacteriaceae isolates resistant to
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third-generation cephalosporins, recovered from a wide range of non-clinical samples, spanning the
periods described above [1].

We analysed 880 Enterobacteriaceae isolates resistant to third-generation cephalosporins recovered
from different non-clinical samples (n = 628): (i) healthy human faeces; (ii) healthy livestock
animal faeces (78 swine, 44 chickens), (iii) uncooked chicken carcasses for human consumption,
(iv) water/wastewater samples of aquatic environments, (v) and water/sediment/feed samples of
trout aquaculture environments (Figure 1). Samples were collected from different regions of
Portugal, and processed as described [4–7]. Briefly, the aliquots of uncooked chicken carcasses
(0.2 mL) and aquaculture samples (0.1 mL) pre-enriched in buffered peptone water, and aliquots
of the remaining samples (0.2 mL of human or animal faeces, 0.1 mL of wastewaters, filters from
filtered water of aquatic environments) were seeded on CHROMagarTM Orientation/MacConkey
agar plates supplemented with ceftazidime (1 mg/L) or cefotaxime (1 mg/L) [4–7]. Representative
Enterobacteriaceae isolates (oxidase negative, approximately one to five unique morphotypes per
plate) were recovered from the agar plates supplemented with antibiotics. qAmpC producers were
preliminary identified by phenotypic criteria and/or polymerase chain reaction and the sequencing
of genes coding for qAmpC enzymes (CMY, MOX, FOX, LAT, ACT, MIR, DHA, ACC) [1]. Bacterial
identification, antibiotic susceptibility testing, and blaqAmpC genetic context were performed in qAmpC
positive isolates as previously described [1]. Clonal relatedness was investigated by XbaI-PFGE and
MLST (http://enterobase.warwick.ac.uk/species/index/ecoli), and E. coli phylogenetic groups were
identified [1]. Plasmid analysis included replicon typing, S1-/I-CeuI-PFGE and hybridization [1].
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Figure 1. Number and type of samples (number of Enterobacteriaceae isolates resistant to third-generation
cephalosporins; year of collection) analysed in this study.

We identified four CMY-2-producing E. coli recovered from three healthy humans [1 female (aged
65) and 2 males (aged 25 and 67)], and one uncooked chicken carcass (Table 1). This represents a
very low occurrence (0.6%; n = 4/628 samples) of qAmpC producers in the samples analysed. It is of
note that, although the human faecal carriage rate of qAmpC-producers was low, a slight increase
between 2001–2004 (0%) and 2013–2014 (1.0%; n = 3/312) was identified, possibly suggesting a higher
colonization density that should be monitored. The current rate (1.0%) is comparable to those reported
in a few other European countries [8].

http://enterobase.warwick.ac.uk/species/index/ecoli
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Table 1. Features of CMY-2-producing E. coli recovered from non-clinical origins in Portugal.

Origin (Sample) a Year of
Collection PhG b ST/CC/PFGE-Type c Genetic Environment of

blaCMY-2

Plasmid Replicon Content
[Inc Family (Size in kb)] Resistance to

Non-β-Lactams f
Associated

with blaCMY-2
Other

HH (33) 2014 B22 ST4953/EC2 ∆ISEcp1-blaCMY-2-blc-sugE ND d FII + I1 GEN, NET, TOB, STR,
TET, CHL, NAL, CIP, SUL

HH (34) 2014 B22 ST4953/EC2 ∆ISEcp1-blaCMY-2-blc-sugE ND d FII GEN, NET, TOB, STR,
TET, CHL, NAL, CIP, SUL

HH (97) 2014 A0 ST665/EC3 ISEcp1-blaCMY-2-blc-sugE NT e (75) K + B/O STR, TET, NAL, SUL

UCC (6) 2003 A1 ST48/CC10/EC4 ISEcp1-blaCMY-2-blc-sugE A/C2 (150) - KAN, GEN, TOB, STR,
TET, CHL, SUL

a HH, healthy humans; UCC, uncooked chicken carcass; b PhG, E. coli phylogenetic group; c ST, Sequence Type, CC, clonal complex; d ND, not determined due to multiple plug
degradations; e NT, non-typeable; f CIP, ciprofloxacin; CHL, chloramphenicol; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; NET, netilmicin; STR, streptomycin; SUL,
sulphonamides; TET, tetracycline; TOB, tobramycin.



Pathogens 2020, 9, 273 4 of 5

The absence of qAmpC producers among livestock animals (swine, chickens) is surprising since
livestock animals are known as reservoirs of blaCMY-2 [3], which might be explained by the low
number of analysed samples from each period. However, the detection of CMY-2-producing E. coli
in an uncooked chicken carcass (n = 1/20; 5.0%), is of note since it can have either animal origin or
cross-contamination of meat by humans during processing or at retail. In any case, this rate can be
underestimated considering the low number of samples tested, and highlights the need of further
monitorization in animals or at retail settings. To the best of our knowledge, this study represents the
first analysing such a diverse and representative sample from aquatic environments, with the absence
of qAmpC producers suggesting a particularly low burden in the Portuguese setting.

CMY-2-producing E. coli belonged to phylogroups B22 (n = 2, HH), A0 (n = 1, HH) or A1 (n = 1,
UCC) (Table 1). The indistinguishable PFGE pattern found among B2-ST4953 E. coli isolates recovered
from two-family related individuals (husband and wife), indicates a common source for CMY-2
faecal carriage or human-to-human transmission. The other two A-E. coli isolates were assigned to
ST665 (A0) and ST48 (A1), the latter belonging to the clonal complex 10. These clones have been
sporadically identified as CMY-2 producers from clinical (ST665 in South Africa) or non-clinical (ST48
in Tunisia and Poland) settings [9–11], or associated with other mechanisms of antibiotic resistance
(e.g., ESBL/carbapenemase production or plasmid-mediated colistin resistance) in different reservoirs
(hospitals, animals or food products) [11,12], further supporting circulation of these clones along the
food chain. All the CMY-2-producing E. coli isolates were multidrug-resistant (non-susceptible to at
least one agent in three or more antimicrobial categories tested). CMY-2 was identified in frequently
reported genetic contexts (∆ISEcp1/ISEcp1-blaCMY-2-blc-sugE) (1) (Table 1). When characterizable,
plasmids carrying blaCMY-2 were identified as IncA/C2 (150 kb) (Table 1), a plasmid type previously
associated with blaCMY-2 among clinical isolates in our country [1].

To the best of our knowledge, this is one of the few studies that determined the occurrence
of qAmpC-producing Enterobacteriaceae among environmental, animal and human niches. Our
data confirm the presence of qAmpC producers outside the clinical setting in our country and
highlight the need for further surveillance in contemporary collections, that will provide integrated
epidemiological information on potential shifts in reservoirs, trends of qAmpC-producers and blaqAmpC,
and transmission routes among different reservoirs.
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11. Zając, M.; Sztromwasser, P.; Bortolaia, V.; Leekitcharoenphon, P.; Cavaco, L.M.; Ziȩtek-Barszcz, A.;
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