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Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a
substrate protein are modified to form a thioester with a palmitoyl group—is a significant
post-translational biological process. This process regulates the trafficking, subcellular
localization, and stability of different proteins in cells. Since palmitoylation participates in
various biological processes, it is related to the occurrence and development of multiple
diseases. It has been well evidenced that the proteins whose functions are palmitoylation-
dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may
be a potential source of novel therapeutic drugs for the related diseases. Many
researchers have reported palmitoylation of proteins, which are crucial for host-virus
interactions during viral infection. Quite a few explorations have focused on figuring out
whether targeting the acylation of viral or host proteins might be a strategy to combat viral
diseases. All these remarkable achievements in protein palmitoylation have been made to
technological advances. This paper gives an overview of protein palmitoylation
modification during viral infection and the methods for palmitoylated protein detection.
Future challenges and potential developments are proposed.

Keywords: post-translational modification, S-palmitoylation, viral infection, virus-host interaction,
detection methods
1 INTRODUCTION

Protein lipidation is an important post-translational modification in which lipid moieties are
covalently attached to proteins. This process increases the hydrophobicity of proteins, thereby
resulting in changes in protein conformation, stability, membrane association, localization, and
binding properties. Palmitoylation refers to the covalent modification of proteins with palmitoyl
groups. S-palmitoylation of proteins, which is one of the most common forms of palmitoylation,
occurs when saturated C16 fatty acids covalently attach to the side chains of cysteine residues
through unstable thioester-bonds (Fukata and Fukata, 2010; Blanc et al., 2013; Hentschel et al., 2016;
Resh, 2016; Zaballa and van der Goot, 2018). Studies have shown the existence of more than 40
different molecular types of free fatty acids, including a variety of long-chain/short-chain, saturated/
unsaturated acids, that can participate in the esterification of proteins (Quehenberger et al., 2010).
Palmitoylation of proteins is a reversible dynamic process, and depalmitoylation occurs when,
under certain conditions, the thioester bond is hydrolyzed, and the palmitate is separated from the
gy | www.frontiersin.org January 2022 | Volume 12 | Article 8215961

https://www.frontiersin.org/articles/10.3389/fcimb.2022.821596/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.821596/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.821596/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xujun@henau.edu.cn
mailto:xujun0828@126.com
https://doi.org/10.3389/fcimb.2022.821596
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.821596
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.821596&domain=pdf&date_stamp=2022-01-27


Li et al. Protein Palmitoylation and Viral Infection
cysteine residue. This kind of reversible modification is present
in all eukaryotes, including mammals, plants (Hemsley, 2017),
and parasites (Blanc et al., 2013; Brown et al., 2017; Corvi and
Turowski, 2019); it regulates trafficking (Linder and Deschenes,
2007; Daniotti et al., 2017; Ernst et al., 2018; Tortosa and
Hoogenraad, 2018; Sun et al., 2020), localization (Gamage
et al., 2017; Sada et al., 2019; Nakamura et al., 2020), stability
(Gok et al., 2020; Wang et al., 2020), interaction (Zaballa and van
der Goot, 2018), and signal transduction of proteins (Zheng
et al., 2012; Globa and Bamji, 2017; Zingler et al., 2019).

Furthermore, palmitoylation modification is associated with
various kinds of diseases, such as neurological diseases
(Alzheimer’s disease, Huntington’s disease, and schizophrenia)
(Sanders and Hayden, 2015; Cho and Park, 2016), infectious
diseases, and even cancer (Blanc, Blaskovic et al., 2013;
Hornemann, 2015; Resh, 2017). In recent years, considerable
reports have shown that the glycoproteins of almost all of the
enveloped viruses have at least one S-acylated site (Gadalla and
Veit, 2020). Also, the role played by palmitoylated viral proteins
in the infection process has been discussed from different angles
(Veit, 2012; Veit et al., 2013; Sobocinska et al., 2017). Therefore,
it is important to develop reliable and practical detection
methods to analyze the palmitoylation modification of
proteins. Researchers have utilized the latest technologies and
have made considerable progress in exploring the pathogenesis
of diseases related to palmitoylation (Brigidi and Bamji, 2013; Gu
and Robinson, 2016; Gao and Hannoush, 2018; Peng and Hang,
2019). However, in the last decade, only a few research teams
have systematically reviewed the detection methods of
palmitoylation (Lanyon-Hogg et al., 2017; Gao and Hannoush,
2018; Zaballa and van der Goot, 2018; Lu and Fang, 2020). This
paper reviewed the palmitoylation modification and the different
analytical methods to detect palmitoylated proteins. The
palmitoylation of proteins related to viral infection was
emphasized, and future research prospects were reviewed.
2 PROTEIN PALMITOYLATION/
DEPALMITOYLATION CYCLE

2.1 S-Palmitoylation
S-palmitoylation is a post-translational modification of proteins
resulting from the covalent attachment of the palmitoyl chain to
a cysteine residue(s) of proteins through a reversible thioester
bond. This unique reversible process can act as a molecular
switch, just like phosphorylation or ubiquitination (Blaskovic
et al., 2013). Due to the obvious heterogeneity with other fatty
acids linked to cysteine residues, the fatty acylation process is
generally known as “thioacylation” or “S-acylation” rather than
palmitoylation (Linder and Deschenes, 2007). Although “S-
palmitoylation” implies that cysteine residues are only
modified by 16:0 fatty acids, in the cell, they can also be
modified by long-chain fatty acids with different degrees of
unsaturation (Thinon et al., 2016; Greaves et al., 2017). S-
palmitoylation of some proteins (e.g., cytosolic proteins) helps
them acquire hydrophobic anchors, resulting in an improved
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
association with membrane, trafficking, and localization. In
many cases, palmitoylation of key cellular transmembrane
proteins also occurs, including adhesion molecules,
tetraspanins, G-protein-coupled receptors, receptor ligands,
and viral glycoproteins (Blaskovic et al., 2013). In theory,
palmitates should be added to the N-terminal of cysteine
residues—known as N-palmitoylation—to form a more stable
and irreversible structure. However, N-palmitoylation is rare in
natural viral proteins, and its biological function has not been
explored so far. Therefore, unless specified, palmitoylation of
proteins usually refers to S-palmitoylation at the cysteine site.

Since the identification of the first protein to have undergone
S-palmitoylation, nearly a thousand eukaryotic proteins have
been identified as the substrates of palmitoylation (Blanc et al.,
2015; Blanc et al., 2019). Some experts in this field have reviewed
the roles of S-palmitoylation in synaptic plasticity, membrane
trafficking, and physiological processes, such as metabolism, cell
death, cell polarity and migration, cancer, and innate immunity
(Chamberlain and Shipston, 2015; Daniotti et al., 2017; Zareba-
Koziol et al., 2018); therefore, this part will not be discussed here.

2.2 Palmitoylation/Depalmitoylation:
A Dynamic Reversible Cycle
S-palmitoylation is a reversible and dynamic modification;
palmitoyl acyltransferases (PATs) catalyze the addition of
palmitic acid, while the removal of palmitic acid is mediated
by acyl protein thioesterases (APTs) (Figure 1). Since PATs
contain Zn2+ binding domains and conserved “Asp-His-His-
Cys” (DHHC) motifs, they are considered to be part of the
zDHHC group of enzymes (Mitchell et al., 2006; Gottlieb and
Linder, 2017). The first discovered palmitoyl transferases are
Erf2p and Erf4p of Saccharomyces cerevisiae and are identified as
Ras protein acyltransferases (Ras PAT). Erf2p, containing
conserved DHHC-cysteine-rich domain, forms a complex with
Erf4p to function as the effectors of Ras protein in the
endoplasmic reticulum (ER) membrane (Lobo et al., 2002;
Roth et al., 2002). Since then, twenty-three human DHHC
proteins have been identified or predicted to form a
protein superfamily.

The zDHHC enzymes, usually present in Golgi membrane or
ER, catalyzes the palmitoylation process of substrate proteins;
this is a two-step process, where palmitate is transferred onto the
thiol group of cysteine from cytosolic palmitoyl-CoA by PAT.
First, the Asp and His act as a proton shuttle, thereby converting
the Cys residue of the zDHHC enzyme into a thiolate
nucleophile. In the second step, the carbonyl carbon of the
palmityl-CoA thioester is attacked by Cys thiolate, resulting in
instantaneous auto-acylation of cysteine residues in its DHHC
motif. This facilitates the PAT-mediated transfer of the palmitoyl
residue to the substrate protein (Stix et al., 2020) (Figure 1). The
mutational analysis has revealed that the first histidine of the
DHHC motif is especially important during the second step
(Mitchell et al., 2010; Jennings and Linder, 2012; Tsai et al., 2014;
Gonzalez Montoro et al., 2015). Recent research by Rana et al.
revealed the crystal structures of two DHHC palmitoyl
transferases leading to an understanding that the active site
January 2022 | Volume 12 | Article 821596
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resides at the membrane-cytosol interface. Based on this, it was
concluded that the thioester-exchange reaction is catalyzed by
DHHC enzymes and that the membrane-proximal cysteines are
potential sites for palmitoylation (Rana et al., 2018; Rana et al.,
2019; Stix et al., 2020).

Compared to palmitoylation, i.e., its reverse reaction,
depalmitoylation, is poorly understood; and, only seven APTs
have been identified to catalyze depalmitoylation. APT
(commonly referred to as palmitoyl protein thioesterase or
PPT) catalyzes the hydrolysis of thioesters to dissolve and
replace the substrate protein on the membrane. Structural
studies show that two depalmitoylases (APT1 and APT2),
which were identified earlier (Duncan and Gilman, 1998;
Toyoda et al., 1999), contain convergent acyl binding channels,
indicating that factors other than acyl chain recognition also
mediate the selection of substrate (Devedjiev et al., 2000).
Recombinant PPT1 enzyme from baculovirus expression
system acts as a powerful depalmitoylase for H-Ras protein
(Camp and Hofmann, 1993). The mammalian a/b hydrolase-
domain containing protein (ABHD) recently became the novel
candidate for regulating lipid metabolism. ABHD17A and its two
isoforms, ABHD17B and ABHD17C, were identified as
depalmitoylases targeting Ras-family GTPases and synaptic
proteins in neurons (Lin and Conibear, 2015). Moreover,
another depalmitoylase, ABHD10, is known to act on S-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
palmitoylated peroxiredoxin-5 protein and regulates redox
homeostasis in mitochondria (Cao et al., 2019).

The reversibility of protein palmitoylation modification
suggests a subtle mechanism, which avoids imbalance. To date,
quite a few reports have demonstrated the relationship between the
defects of palmitoylation/depalmitoylation process and human
diseases, including Huntington’s disease (Sanders and Hayden,
2015), schizophrenia (Ota et al., 2013), Alzheimer’s disease
(Mizumaru et al., 2009; Vetrivel et al., 2009), Goltz syndrome
(Biechele et al., 2011; Doubravska et al., 2011), and other diseases
(Yeste-Velasco et al., 2015; Ko and Dixon, 2018) related to PATs.
However, it is still unclear how the cycle works in detail, especially,
which PAT participates or maintains this dynamic equilibrium of
the target proteins involved in the above diseases.
3 PROTEIN PALMITOYLATION
MODIFICATION DURING VIRAL
INFECTION

3.1 Palmitoylation of Viral Proteins
Many cell-and-animal-based studies have reported the multiple
roles of protein modifications in viral infectious diseases.
Palmitoylation of viral proteins, which are involved in virus
FIGURE 1 | Protein palmitoylation/depalmitoylation cycle.
January 2022 | Volume 12 | Article 821596
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assembly or pathogenesis, has been found in most of the
eukaryotic permissive cell types, including yeast, insect, plant,
and vertebrate cells (Veit, 2012; Blanc et al., 2013; Lin et al.,
2017). In Table 1, we have summarized the viral proteins,
especially structural proteins of virus envelope that undergo
palmitoylation during viral infections leading to serious
diseases in humans or animals. Also, we have provided select
examples illustrating key findings and the important roles of
palmitoylated viral proteins during viral infections.

Since the identification of palmitoylated glycoproteins of
Sindbis virus and Vesicular stomatitis virus in 1979 (Schmidt
et al., 1979; Schmidt and Schlesinger, 1979), many other
palmitoylated proteins of viruses have been reported, such as
hemagglutinin (HA) and proton channel M2 of influenza virus,
glycoproteins of filoviruses and retrovirus (including HIV), fusion
protein (F) of measles virus, the S-protein of coronavirus (CoV)
(Veit, 2012; Kordyukova et al., 2019). It is noteworthy that the
palmitoylation sites of SARS-CoV-2 spike protein have recently
been identified and proved to be essential for SARS-CoV-2 fusion
with the host cell (Mesquita et al., 2021; Puthenveetil et al., 2021).
Palmitoylation modification of proteins may facilitate trafficking
of glycoproteins on viral membranes, thereby promoting assembly
and budding of progeny virions on infected epithelial cells (Veit
et al., 2013; Demers et al., 2014). Moreover, the palmitoylation of
non-structural viral proteins, such as Chikungunya virus
(CHIKV) nsP1 and hepatitis C virus (HCV) NS2, are crucial to
the successful infection (Utt et al., 2019; Wu et al., 2019; Zhang
et al., 2019; Bakhache et al., 2020). In mammalian cells, CHIKV
replication complex anchors on the plasma membrane.
Palmitoylation of the cysteine residue at the C-terminus of
CHIKV nsP1 enhances its interaction with the lipid bilayer,
which is critical for targeting cholesterol-rich lipid rafts and viral
genome replication (Utt et al., 2019; Zhang et al., 2019). The
subcellular localization of HCV NS2 is regulated through
palmitoylation, which also promotes the replication of HCV
RNA. Therefore, palmitoylation of HCV NS2 could be utilized
to inhibit HCV RNA replication and viral assembly, providing a
novel alternative strategy effective against HCV infection (Wu
et al., 2019).

Besides the above-mentioned mammalian viruses, in the
viruses infecting aquatic animals and plants, palmitoylation of
proteins plays an important role in viral replication, protein
localization, and other related functions. A recent study reported
that exogenous palmitic acid promotes red-spotted grouper
nervous necrosis virus (RGNNV) infection, and interfering
with the palmitoylation and phospholipid synthesis
significantly inhibits RGNNV replication (Huang et al., 2020).
In plant cells, the S-palmitoylation of Mungbean yellow mosaic
virus (MYMV) AC4 allows its accumulation on the plasma
membrane, thereby counteracting the host defense mechanism
by suppressing the post-transcriptional gene silencing (PTGS)
(Carluccio et al., 2018).

In fact, another important function of palmitoylation is to
target modified proteins to lipid rafts (Diaz-Rohrer et al., 2014;
Stepanek et al., 2014). These rafts provide the membrane platform
for the entry, assembly, and budding of different viruses. It is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
speculated that the specific inhibition of acyltransferases that
dramatically inhibits viral replication will not affect the
palmitoylation of intracellular proteins because the
transportation of fatty acids could be mediated by other
members of the zDHHC family (Veit and Siche, 2015; Gadalla
and Veit, 2020). Therefore, some researchers proposed that
inhibition of certain protein palmitoylation may be a promising
strategy for treating related diseases (Chavda et al., 2014; Lanyon-
Hogg et al., 2017; Lin et al., 2017; Chen et al., 2018). The zDHHC
protein family and APTs could be utilized as key modifiers of
protein palmitoylation cycles, making them potential drug targets,
which means ZDHHCs targeting viral proteins need to be
identified (Gadalla and Veit, 2020). However, although
palmitoylation of viral proteins had already been discovered 43
years ago (Schmidt and Schlesinger, 1979), the identification of
PATs responsible for S-acylation of viral proteins remained a
major gap till several zDHHCs catalyzing the S-acylation of
proteins of influenza viruses and SARS-CoV-2 were found.
Using CRISPR/Cas9 knockout and siRNA screening, DHHC2,
8, 15, and 20 were found to be involved in S-acylation of HA and
M2 of IAV and human influenza viruses (Gadalla et al., 2020).
DHHC20, -8, and -9 were verified to play certain roles in SARS-
CoV-2 spike protein(S) and enveloped protein (Abdulrahman
et al., 2021; Mesquita et al., 2021; Puthenveetil et al., 2021).
However, conflicting results regarding the palmitoylation sites
and palmitoylation enzymes of SARS-CoV-2 spike protein were
obtained by different researchers (Mesquita et al., 2021;
Puthenveetil et al., 2021; Zeng et al., 2021; Li et al., 2022). Li
et al. found the cysteines of C-terminal and N‐terminal C15 of the
spike protein were palmitoylated (Li et al., 2022), while Wu et al.
reported that N-terminal C15 mutant did not affect the S-
acylation of the spike (Wu, Zhang et al., 2021). Using
computational, lipidomic, and biochemical approaches,
Mesquita et al. deciphered the roles of zDHHC20 and zDHHC9
in the palmitoylation of the C terminal cysteines of spike protein
in in vivo and in vitro conditions (Mesquita et al., 2021). The
reasons for the conflicting results may be the use of different
viruses and cell models or different methods. In addition no
specific molecule drug for inhibiting a certain zDHHC substrate
interaction has been developed so far (Abdulrahman et al., 2021).
Looking forward, we believe that the discovery and identification
of enzymes and their specific inhibitors acting on the
palmitoylation cycle of viral proteins would be a new challenge
and almost certainly would become one of the most interesting
topics to investigate. Further biochemical and structural analysis
of different zDHHCs and a series of different viral and cellular
substrates are needed to understand the mechanism of acylation
reactions (Gadalla and Veit, 2020).

3.2 Palmitoylation of Host Cell Proteins
Besides the expression of immune-related genes, viral infection
can trigger a series of immune responses in host cells, including
the modification of related proteins. However, so far, few such
proteins have been reported. Furthermore, the palmitoylated
host proteins that have been reported during viral infection are
associated with interferon (IFN) pathways, e.g., stimulator of
January 2022 | Volume 12 | Article 821596
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in ter feron genes (STING) and inter feron- induced
transmembrane (IFITM).

STING, a central signal component of DNA sensing pathways
in cells, is a class of small molecular proteins located in the
endoplasmic reticulum (Ishikawa et al., 2009; Sun et al., 2013). It
is the optimal inducer of type I IFN in response to invading
viruses or bacteria (Ishikawa and Barber, 2008; Hansen et al.,
2014; Christensen et al., 2016; Holm et al., 2016). Excessive
activation of the STING signaling pathway gives rise to abnormal
responses of the innate immune system, leading to a series of
autoinflammatory diseases (Hansen et al., 2019). Researchers
have found that STING activation depends on its palmitoylation
in the Golgi complex (Ishikawa and Barber, 2008). A non-
specific inhibitor for protein palmitoylation, 2-bromopalmitate
(2-BP), can inhibit palmitoylation of STING and eliminate type I
IFN response (Mukai et al., 2016). Another important finding is
the identification of a class of highly effective and selective
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
antagonists blocking STING palmitoylation by covalently
binding to the predicted transmembrane Cys91 (Mukai et al.,
2016). Experimental evidence showed the antagonists, and their
derivatives can down-regulate STING-mediated inflammatory
cytokine expression (Haag et al., 2018). Together, these data
imply the potential of STING-palmitoylation-targeted therapy in
the treatment of autoinflammatory diseases.

Another broad-spectrum antiviral protein family known as
IFITMs has recently emerged as promising palmitoylation
targets (Brass et al., 2009; Yount et al., 2010; Yount et al., 2012;
Diamond and Farzan, 2013; McMichael et al., 2017). The
cysteine palmitoylation of IFITMs plays an important role in
their antiviral activities because this modification may help in the
regulation of IFITMs localization (Hach et al., 2013). Besides,
localization in the vesicle membrane allows IFITM to directly
fuse with the specific virus particles. This fusion complex is then
trafficked to the lysosome, which relies on the palmitoylation of
TABLE 1 | Summary of some palmitoylated viral proteins reported..

Virus genome Family Protein
Name

Type of
membrane protein

Number of
Cysteine
sites

palmitoylated

References (Name/year)

Flu A −ssRNA Orthomyxovirus M2 Type III membrane proteins 1 (Grantham et al., 2009; Thaa et al., 2011; Thaa et al., 2012; Veit
and Siche, 2015; Ekanayake et al., 2016; Manzoor et al., 2017;
Su et al., 2018)

HA Type I glycoproteins 3 (Melkonian et al., 1999; Kordyukova et al., 2008; Engel et al.,
2010; McBride and Machamer, 2010; Kordyukova et al., 2011;
Brett et al., 2014; Chlanda et al., 2017; Gadalla et al., 2020)

Flu B −ssRNA Orthomyxovirus HA Type I glycoproteins 2 (Ujike et al., 2004; Ujike et al., 2005; Gadalla et al., 2020)
NB Type III membrane proteins 1 (Hatta and Kawaoka, 2003; Demers et al., 2014)

Flu C −ssRNA Orthomyxovirus CM2 Type III membrane proteins 1 (Muraki et al., 2011; Muraki et al., 2013; Goto et al., 2017)
Measles
virus

−ssRNA Paramyxovirus F Type I glycoproteins 5 (Caballero et al., 1998; Branigan et al., 2006)

hRSV −ssRNA Paramyxovirus F Type I glycoproteins 1 (Caballero et al., 1998; Branigan et al., 2006; Ohol et al., 2015)
Sindbis virus +ssRNA Togavirus E1 Type I glycoproteins 1 (Ryan et al., 1998)

E2 Type I glycoproteins 5 (Ivanova and Schlesinger, 1993; Ryan et al., 1998; Wilkinson
et al., 2000; Ramsey et al., 2019)

6K Membrane proteins with a
hairpin topology

5 (Gaedigk-Nitschko and Schlesinger, 1990; Ramsey et al., 2017)

SFV
(Semliki
Forest virus)

+ssRNA Togavirus E2 Type I glycoproteins 4 (Kordyukova et al., 2010)
6K Membrane proteins with a

hairpin topology
5 (Kordyukova et al., 2010)

VSV −ssRNA Rhabdovirus G Type I glycoproteins 1 (Schmidt and Schlesinger, 1979; Whitt and Rose, 1991;
Kordyukova et al., 2010)

Rabies virus −ssRNA Rhabdovirus G Type I glycoproteins 1 (Gaudin et al., 1991)
Ebola virus −ssRNA Filovirus Gp Type I glycoproteins 2 (Ito et al., 2001)
Marburg
virus

−ssRNA Filovirus Gp Type I glycoproteins 2 (Funke et al., 1995; Ito et al., 2001)

MHV +ssRNA Coronavirus S Type I glycoproteins 9 (Thorp et al., 2006; Gelhaus et al., 2014)
E Type III membrane proteins 3 (Boscarino et al., 2008; Lopez et al., 2008)

SARS-CoV-
2

+ssRNA Coronavirus S Type I glycoproteins 10 (Nguyen et al., 2020; Mesquita et al., 2021; Puthenveetil et al.,
2021;
Wu et al., 2021; Zeng et al., 2021)

E Type III membrane proteins 3 (Abdulrahman et al., 2021)
SARS-CoV +ssRNA Coronavirus S Type I glycoproteins 9 (Petit et al., 2007; Akerstrom et al., 2009; Shulla and Gallagher,

2009; McBride and Machamer, 2010; Gelhaus et al., 2014)
E Type III membrane proteins 3 (Liao et al., 2006; Tseng et al., 2014)

HIV (HXB2D) +ssRNA Retrovirus Gp Type I glycoproteins 2 (Yang et al., 1995; Rousso et al., 2000; Bhattacharya et al., 2004;
Yang et al., 2010)

HCMV dsDNA Herpesviruses Gn Type I glycoproteins 2 (Mach et al., 2007)
Gb Type I glycoproteins 1 (Patrone et al., 2016)
dsDNA, double-stranded DNA; +ssRNA, positive-sense, single-stranded RNA; −ssRNA, negative-sense, single-stranded RNA.
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its three conserved cysteines at 70,71, and 105 sites (Spence et al.,
2019). Furthermore, preventing the fusion of the viral membrane
with the cells or the fusion among the infected cells could be the
main antiviral mechanism of IFITM (Buchrieser et al., 2019; Zani
et al., 2019). A very interesting study showed that placental
damage and abortion caused by the virus-induced upregulation
of type I IFN during pregnancy is associated with the
palmitoylation of IFITM3. This can be caused by the mutation
in three cysteine residues of IFITM3, which suppresses the
inhibition of cell fusion (Buchrieser et al., 2019). In one of our
studies, we confirmed that resistance to the Japanese encephalitis
virus (JEV) infection requires the S-palmitoylation modification
of IFITM in swine (Xu et al., 2020). Therefore, the discovery of
activators or inhibitors targeting the palmitoylation/
depalmitoylation cycle of IFITM would be a promising subject
for antiviral drugs or immunomodifiers of the diseases caused by
viral infections or immune disorders.
4 DETECTION METHODS FOR
PALMITOYLATION MODIFICATIONS

The researchers have developed different approaches to detect S-
palmitoylation, which has effectively contributed to the
identification and functional research. This section summarizes
the principles and brief procedures of these methods and
discusses their major limitations. According to the different
targets of analysis in the S-palmitoyl group, the identification
methods can be divided roughly into two categories, the
palmitate-targeted and the cysteine-targeted (also called lipid-
and cysteine-centric). All these techniques are label-based, except
the technique of gas chromatography-mass spectrometry (GC-
MS) and MALDI-TOF MS, which is a relatively direct way.
When palmitic acid is the target of analysis, it is usually labeled
with an analog of palmitic acid or a probe, and then the labeled
proteins are enriched by affinity purification or observed with
optical instruments. However, such methods cannot be applied
to body fluids or tissue samples of in vivo experiments because it
requires the metabolic activity of the radioactive label or
chemically modified palmitic acid analogs. Besides, when
palmitic acid analog is labeled on the target protein, other
shorter, longer, or unsaturated fatty acid modifications cannot
be analyzed except for palmitoylated modifications. In the
cysteine-centric method, biotin or molecular mass labels are
utilized to detect palmitoylation proteins by affinity enrichment
purification or western blotting. Because this method does not
require metabolic labeling in live cells, it can be used to analyze
not only samples of cells but also tissues and body fluids. The
general operating procedures of the commonly used strategies
mentioned above are described separately.

4.1 Mass Spectrometry
4.1.1 Gas Chromatography–Coupled Mass
Spectrometry
GC-MS is a relatively direct and reproducible method and has
been widely used for analyzing hundreds of metabolites in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
biological fluids or tissue samples (Zeki et al., 2020). The
method mainly comprises the following steps: 1) preparation of
purified protein samples; 2) washing the samples to remove non-
covalently coupled lipids; 3) hydrogenation with hydroxylamine
for cleavage of thioester bonds and simultaneous ethyl
esterification with anhydrous formic acid and ethanol; 4) liquid
phase extraction to separate free fatty acids; and 5) the detection of
the exact lipid fraction with GC-MS (Sorek and Yalovsky, 2010;
Sorek et al., 2013). Based on GC-MS analysis, the purified
recombinant Rho-related GTPase ROP6 (Thomas et al., 1992)
and calcium sensor protein CBL1 (Uchida and Stadtman, 1992) of
Arabidopsis have been identified as C-16 palmitic acid and C-18
stearic acid-modified proteins, respectively (Batistic et al., 2008;
Sorek et al., 2011; Sorek et al., 2013). Given the range of protein
concentration and volume of samples required for GC-MS
analysis, S-palmitoylation can be detected for a purified protein
sample with a concentration as low as 1 µg (Li et al., 2011).
However, to a certain extent, the application of GC-MS in the
identification of palmitoylated proteins is limited because of its
need for purified protein samples. Since most of the palmitoylated
proteins are membrane-localized and have strong hydrophobicity,
their purification is a difficult process.
4.1.2 MALDI-TOF Mass Spectrometry
Matrix-assisted laser desorption ionization-time of flight
(MALDI-TOF) mass spectrometry (MS) is the only method
that allows detecting directly the exact cysteine binding of fatty
acid and the type of fatty acid attached to the S-acylated
hydrophobic molecules (Webster and Oxley, 2012). In
addition, this approach could be applied to the proteins that
are difficult purify from protein mixtures. Besides the
identification of palmitoylation, the MALDI-TOF MS-based
approach revealed lipidation modifications of several cellular
proteins and the heterogeneous fatty acylation of neuromodulin
GAP-43 and GNAI (Liang et al., 2002) (Nuskova et al., 2021).

Further, by this method, the differential S-acylation of many
viral proteins was confirmed (Serebryakova et al., 2006;
Kordyukova et al., 2008; Kordyukova et al., 2010; Mineev et al.,
2013; Vitale et al., 2013; Brett et al., 2014). Therefore, MALDI-
TOF MS is an approach that uniquely detects hydrophobic viral
lipopeptides, which assist in finding therapeutic targets to
prevent viruses.

In contrast to MALDI-MS, which is perfect to identify the
exact type of fatty acid attached to the exact S-acylation site, the
LC-MS/MS based methods are adopted mainly in combination
with other approaches, for example, ssABE (Collins et al., 2017;
Woodley and Collins, 2019) and PalmPISC (Yang et al., 2010;
Dowal et al., 2011) are all combined with acyl-biotin exchange
(ABE) method, which will be mentioned below.
4.2 Radioactive Palmitic Acid
Metabolic Labeling
Radioactive labeling has been a relatively straightforward approach
because the palmitoyl labeled with radioisotope 3H or 14C could be
developed by autoradiography. Following metabolic labeling of the
January 2022 | Volume 12 | Article 821596
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samples, the protein can be easily immunoprecipitated and
analyzed using SDS-PAGE; the radiolabeled target protein can be
visualized by autoradiography (Peseckis et al., 1993; Swarthout
et al., 2005; Zou et al., 2011; Tsai et al., 2014). The main steps of this
approach include: 1) incubating the cultured cells in the serum-free
medium; 2) labeling cells with radiolabeled 3H-palmitic acid; 3)
washing cells to remove unbound 3H-palmitic acid; 4)
immunoprecipitation and analysis of the labeled proteins by
SDS-PAGE, and 5) visualization of the 3H emission signal by X-
ray film exposure. This method was utilized to identify the
palmitoylation of influenza A glycoprotein hemagglutinin (HA)
and hepatitis E virus (HEV) ORF3 protein (Gouttenoire et al.,
2018; Gadalla et al., 2020). However, since this method is less
sensitive, tedious, time-consuming, and hazardous (because of
radioactive material), it has not been used very often in recent
years (Lu and Fang, 2020).
4.3 Click Chemistry
Click chemistry provides an alternative way to analyze S-
palmitoylated proteins. By means of Huisgen’s copper (I)-
catalyzed azide-alkyne cycloaddition reaction, target proteins
are labeled with terminal azide or alkynyl groups, purified by
affinity chromatography, and identified with mass spectrometry
or gel-based visualization (Speers and Cravatt, 2004; Sobocinska
et al., 2017). The commercially available alkyne fatty acid analog,
17-octadecynoic acid (17-ODYA), is commonly used as a non-
radioactive derivative of palmitic acid. This is because it can enter
into palmitoylated endogenous sites by metabolic pathways of
the cellular palmitoylation mechanism. In addition, based on the
biological orthogonal method (this allows multiple methods of
labeling to be used in the same biosystems), dual-click chemistry
pulse-chase scheme has been developed. For example, both 17-
ODYA and methionine surrogate L-azidohomoalanine (L–
AHA) are used for detecting dynamic palmitoylation
modification and monitoring the turnover rate of proteins (Lin
and Conibear, 2015). Besides, the click chemistry-based method
can be used to study the subcellular localization of palmitoylated
proteins through in situ probe combination techniques (Gao and
Hannoush, 2014; Jiang et al., 2018; Stypulkowski et al., 2018).
Also, if combined with mass spectrometry-based proteomics, this
kind of non-radioactive labeling of alkynyl fatty acids is far more
sensitive and safety, making it easier to analyze the palmitoylated
protein globally and dynamically (Charron et al., 2009; Martin
and Cravatt, 2009; Yount et al., 2010; Martin et al., 2011).
However, under in situ environment, analogs of palmitic acid
may hinder the normal metabolism and other processes because
of the complexity of eukaryotic cell metabolism; for example, N-,
and O-palmitoylation and N-myristoylation sites of proteins
could reduce the efficiency and accuracy of detection methods
(Jones et al., 2012; Gao and Hannoush, 2014; Wright et al., 2014).

4.4 Acyl-Biotin Exchange (ABE) and Acyl-
Resin Assisted Capture (acyl-RAC)
These two methods are cysteine-centric and involve non-
radioactive labeling, and to some extent, simplify the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
identification and quantification of palmitoylated proteins.
These methods include several key steps: completely blocking
the free sulfhydryl group, using hydroxylamine to hydrolyze all
thioester bonds, and capturing the newly released free sulfhydryl
group with a pyridyl-disulfide bond biotin conjugate (Forrester
et al., 2011; Guo et al., 2014) to form biotin linked by disulfide
bonds (ABE), or directly capturing them by pyridyl disulfide
bond resin (Acyl-RAC). For the detection of S-palmitoylation,
the peptides labeled with biotin are enriched with streptavidin
resin, and then subjected to mass spectrometry.

Since ABE and acyl-RAC are easier, convenient, and
timesaving, by far, hundreds of S-palmitoylated proteins have
been identified, and their S-palmitoylated sites have been
annotated (Linder et al., 1993; Mumby and Muntz, 1995;
Forrester et al., 2011; Zhou et al., 2019). However, there are
certain disadvantages of ABE, including the high background
caused by captured non-S-palmitoylated proteins and the fact
that the type of lipid attached to the protein cannot be accurately
identified and needs further analysis. Furthermore, these indirect
detection methods cannot accurately quantify the palmitoylation
sites of endogenous proteins. By adding 2,2′-dithiodipyridine,
Zhou et al. developed a low-background ABE (LB-ABE) method
based on the blocking of residual free cysteine residues before the
biotin-HPDP reaction and identified thousands of candidate S-
palmitoylated proteins (Zhou et al., 2019).

4.5 Acyl-PEGyl Exchange Gel-Shift
(APEGS) Method
In 2016, a novel method based on Acyl-PEGyl exchange gel-shift
(APEGS) was reported, in which the palmitoylated proteins were
labeled with a fixed mass label, such as 2 kDa, 5 kDa, or 10 kDa
methoxy polyethylene glycol maleimide (MPEG-mal) and
detected by western blotting (Percher et al., 2016) (Figure 2).

First, Tris (2-carboxyethyl) phosphine (TCEP) is used to reduce
all disulfide bonds in cell lysate proteins. All non-palmitoylated
cysteines or free hydroxyl groups in the protein sequence are
blocked with N-ethylmaleimide (NEM). After activation with
hydroxylamine hydrochloride (NH2OH), the cysteine sites where
palmitoylation occurs are reduced to a free sulfhydryl state. Next,
these free sulfhydryl groups are replaced by the newly added mass
label, MPEG-mal, and finally, the palmitoylation is detected by
western blotting. Due to its strong sensitivity and high specificity,
this novel technology can determine the degree of palmitoylation
and identify the number of palmitoylation sites of proteins with the
help of gray-scale analysis software, such as the frequently used
ones: Image J, Image-Pro Plus, and Quantity One. Based on the
procedures of Takashi Kanadome (Kanadome et al., 2019) and
Avital Perchera (Percher et al., 2016), we successfully identified
three S-palmitoylation sites of swine IFITM1 and also analyzed the
characteristics of each palmitoylation site by mathematical
calculations of gray-scale analysis software (Xu et al.,
2020) (Figure 3).

4.6 Other Supporting Strategies
Identification of palmitoylation sites by the above-mentioned
methods, whether in vivo or in vitro, is usually time-consuming
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and labor-intensive. According to the characteristics of amino
acids sequences and the structures of the palmitoylated proteins,
researchers developed the software or websites to predict the
possible palmitoylation sites for proteins. The in silico-based
prediction platforms, such as CSS-Palm, IFS-Palm, WAP-Palm,
PalmPred, SwissPalm database, and others, can narrow down the
possible palmitoylation sites and can therefore guide further
experimental designs. Here, we highlight two of them. The
clustering and scoring strategy for palmitoylation sites
prediction (CSS-Palm) system was implemented by Zhou et al.,
who developed a free accessible web server (Zhou et al., 2006;
Ren et al., 2008). Since then, with CSS-Palm, many potential
palmitoylated proteins of cells have been predicted, including
PD-L1 (Zhou et al., 2019; Wang et al., 2020), MC1R (Chen et al.,
2017), and differential S-acylation of enveloped viruses
(Kordyukova et al., 2019). In 2021, a novel predictor, graphic
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presentation system for the prediction of S-palmitoylation (GPS-
palm) was developed. This platform showed great improvement
in the general prediction of S-palmitoylation sites compared with
other existing tools (Ning et al., 2021). GPS-palm also provides
two species-specific predictors for predicting human-and mouse-
specific sites produced by the same research group would be
useful tools for researchers of the related fields.

To confirm the amino acid sites of palmitoylation or to
investigate the function or localization of palmitoylated
proteins, mutagenesis is utilized as the standard and common
approach. In this method, the potentially palmitoylated cysteine
residue is replaced by serine or alanine. Because of its similar
structure to cysteine, serine substitution can maintain the
properties of putative palmitoylated protein; however, this
substitution might cause side-chain defects and false positivity
due to the higher hydrophilicity of hydroxyl groups.
FIGURE 2 | Schematic diagram of Acyl-PEGyl exchange gel-shift (APEGS) assay.
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5 CONCLUSION/PERSPECTIVE

In the last few years, considerable headway has been made in the
field of protein S-palmitoylation, including the increased number
of the identified S-palmitoylated proteins, the drastically
improved detecting methods, the developed labels, and some
promising inhibitors. The scientific community has reached a
consensus on the significance of palmitoylation in the occurrence
and progression of certain diseases. Studies on protein
palmitoylation have gained importance after the realization of
the harmful effects caused by a variety of viruses. Quite a few
researchers believe that palmitoylation-related proteins or
enzymes are likely to be a breakthrough point in the treatment
of major diseases in the future. Based on APEGS and pulse-chase
protocol (click chemistry), a team of Harvard Medical School
found that fatty acid and zDHHC19-mediated palmitoylation are
key factors for STAT3 signal regulation (Niu et al., 2019), which
provided important evidence of the relationship between
palmitoylation and inflammation or cancer. The studies
mentioned in this review indicate that palmitoylation affects
the crucial function of proteins by regulating the interactions of
proteins. Therefore, it is predicable that potential therapeutic
targets for related diseases would be found with further studies
on protein palmitoylation. Recently, an inhibitor of epithelial
growth factor receptor (EGFR), DHHC20 antagonist, has been
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
discovered and may develop into a drug candidate for treating
patients with KRAS mutation tumors (Kharbanda et al., 2020).

Despite the recent progress in studies related to the
palmitoylation of proteins associated with viral infections,
there are many questions to be answered, for example, how the
palmitoylation of virial proteins regulates viral replication
dynamically. The following findings and speculations may
provide important references for researchers in this field. The
palmitoylation of influenza virus HA may serve as a raft-
targeting signal, which can recruit HA to the plasma
membrane and form a large raft structure (Leser and Lamb,
2005; Hess et al., 2007); thus, it provides a platform for the
assembly and budding of the virions (Gerl et al., 2012). S-
palmitoylation of influenza virus M2 may facilitate the
shedding of virus particles from the plasma membrane and
their budding (Schroeder et al., 2005). Efficient replication of
CHIKV depends on the palmitoylation of two membrane-
associated loops of nsP1. This is because the acylation leads to
a hydrophobic state and helps in the electrostatic interaction of
the protein with the inner leaflet of the plasma membrane; thus,
enhancing viral replication (Zhang et al., 2021). A recent study
reported that the palmitoylation of coronavirus proteins and the
ensuing formation of complex lipid membranes were crucial to
virus replication and assembly (Tanner and Alfieri, 2021), which
undoubtedly provides a clue for digging into potential
FIGURE 3 | The diagram of the detailed procedures of APEGS for cell samples.
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application of palmitoylated proteins, especially during the
COVID-19 pandemic. Besides, we think that in-depth
exploration of the following directions would contribute to
understanding protein palmitoylation at a higher level:

i. The exploration of the relationship between the
intracellular molecular mechanisms or pathways of virus
entry or replication and the palmitoylated proteins
involved in order to discover the target whose
palmitoylation/depalmitoylation cycle should be regulated.

ii. The identification of enzymes catalyzing the cycle of
protein palmitoylation and screening of proteins that
interact with palmitoylated proteins so that they could be
utilized as targets to regulate the palmitoylation cycle. For
example, till now, only zDHHC family of palmitoylases
have been identified (Mitchell et al., 2006). Also, there are
very few newly confirmed depalmitoylases, except for
ABHD17 and ABHD10 (Lin and Conibear, 2015; Cao
et al., 2019). APTs and PPTs that catalyze the cycle of
protein palmitoylation in other mammalian species have
not been reported yet.

iii. High-throughput methods for unbiased and efficient
identification of palmitoylated proteins involved in the
whole process of virus-host interactions should be
improved. Due to the strong hydrophobicity of
palmitoylated proteins, many challenges exist in the
detection and analysis of such proteins. Moreover, this
kind of modification usually occurs in low or medium
abundance proteins, which makes the identification
disjointed as no specific antibody can be used (Yang
et al., 2010). All these bottlenecks suggest that more
reliable and effective methods should be developed.

iv. The discovery of specific inhibitors of the enzymes
participating in protein palmitoylation. Although 2-
bromopalmitate had been recognized as an inhibitor of
protein palmitoylation, it has widely been recognized to
exert off-target effects by inhibiting other enzymes involved
in lipid metabolism and is also cytotoxic to cells (Pedro
et al., 2013). A new inhibitor of DHHC, cyano-
myracrylamide (CMA), was reported recently, which has
a broad-spectrum inhibitory effect on DHHC family
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
members like 2-bromopalmitate but with less toxicity
and off-target effects (Azizi et al., 2021).

v. Analysis of the structures of enzymes and viral proteins
involved in the palmitoylation/depalmitoylation cycle
would be helpful for a better understanding of the subtle
ways of host-virus interactions and designing new
inhibitors or drugs.

This review gives a brief overview of protein palmitoylation
and provides some theoretical foundation for further research on
palmitoylation and the biological function of target proteins that
are involved in various diseases, including viral infections. We
hope more researchers will demonstrate their interesting findings
based on varying functions of the palmitoylated proteins in
the future.
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