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Objective: The present study was designed to investigate whether the extracellular
signal-regulated kinase (ERK) signaling pathway, a downstream component of
dopamine signaling, is involved in myopia among Chinese children.

Methods: During a 3.5-year follow-up, 488 primary school students were enrolled
in this study. Non-cycloplegic spherical equivalent refraction (SE) and other ocular
parameters were assessed. Four variants of four genes in the ERK signaling pathway
were selected: RASGRF1 rs6495367, PTPN5 rs1550870, PTPRR rs11178469, and
PDGFRA rs6554163. SNPscan was used to genotype single-nucleotide polymorphisms
(SNPs). PLINK software was used to assess the associations of the genetic variants
with the occurrence or development of myopia, SE, and other ocular parameters.
We created a protein-protein interaction (PPI) network and microRNA (miRNA)-gene
network using String and Cytoscape and conducted enrichment analyses on the genes
in these networks.

Results: In total, 426 children (baseline age: 7.28 ± 0.26 years; 236 (55.4%)
boys and 190 girls) were enrolled. After adjusting for confounding factors with
10,000 permutations, children with the CT or TT genotype of PTPN5 rs1550870
were more susceptible to myopia than those with the CC genotype (adjusted
p = 0.011). Additionally, PTPN5 rs1550870 was correlated with significant myopic
shift and increasing axial length (AL) and lens thickness (LT) but had a negative
effect on central corneal thickness (CCT). RASGRF1 rs6495367 was negatively
associated with myopic shift (additive: adjusted p = 0.034; dominant: adjusted
p = 0.020), myopic SE and AL. PDGFRA rs6554163 TA or AA was negatively
associated with increasing LT (adjusted p = 0.033). Evaluation of the effects
of SNP-SNP combinations on incident myopia revealed a statistically significant
one-locus model: PTPN5 rs1550870 [cross-validation consistency (CVC) = 10/10,
adjusted p = 0.0107]. The genes in the PPI and miRNA-gene interaction networks
were subjected to enrichment analyses, which suggested that these genes are
involved mainly in eye development and dopaminergic synapse-related processes.
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GRAPHICAL ABSTRACT | The genes in the miRNA-target gene network represent the intersection of the target genes and the genes from String that had direct or
indirect interaction relationships with significant genes.

Conclusion: We identified genetic variants of crucial ERK signaling pathway genes that
were significantly correlated with myopia and ocular parameter alterations in Chinese
children. A combination of gene and miRNA functional analyses with enrichment
analyses highlights the regulatory effects associated with ocular development and
dopamine biological functions. This study offers novel clues to understand the role of
dopamine in the molecular mechanisms of myopia.

Keywords: single nucleotide polymorphism, biological networks, association analysis, schoolchildren myopia,
ocular parameters

INTRODUCTION

Myopia is a common but vision-threatening disorder for
humans worldwide, especially those of Asian ancestry. Pediatric
myopia, the prevalence of which has increased in recent
years, has emerged as a major public concern (Cho and
Tan, 2019). A study by Wang et al. (2018) revealed that
Chinese students have a higher incidence of myopia than
individuals of any other cultural or ethnic group. Environmental
factors can significantly contribute to myopia (Pan et al.,
2012), and epidemiological studies have reported multiple risk
factors, including near-work activities and a lack of outdoor
activities (Sun et al., 2018; Huang et al., 2020). In addition,
myopia is highly heritable. According to a twin study, the
estimated heritability of myopia is up to 90% (Hammond et al.,
2001). Moreover, genome-wide association studies (GWASs),
which have demonstrated remarkable progress in dissecting the
genetic backgrounds of disease in recent years, have revealed
hundreds of genetic variants and polymorphisms associated
with myopia and refractive error (Tedja et al., 2019; Hysi
et al., 2020). However, the specific mechanisms underlying
myopia remain unclear.

Dopamine (DA), an important neurotransmitter, has been
confirmed to exist in the retina and to mediate diverse functions
including visual signaling and refractive development. In recent
years, numerous studies have tested the hypothesis that the

release of DA in the retinas can control myopia (Stone et al., 1989;
Zhou et al., 2017). In addition, the mechanisms by which outdoor
activity and bright light exposure inhibit myopia are likely to be
mediated by DA (Ashby et al., 2009; Chen et al., 2017; Zhou et al.,
2017). Although the key roles of DA and its receptors, such as
D1-like (D1) receptors and D2-like (D2) receptors, in modulating
visual function and refractive development have been verified,
the exact downstream components that transduce DA activation
signals in the retina to control myopia are largely undefined
(Zhou et al., 2017).

An analysis of mouse retinas showed that retinal ganglion
cells (RGCs) express both D1 and D2 receptors. The mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated
kinase (ERK) signaling pathway may also be involved in
modulation of neuronal functions mediated by the D1 receptor
(Li et al., 2016). Additionally, DA activates the ERK signaling
pathway via D2 receptors (Welsh et al., 1998). A previous study
indicated that as a downstream component in the DA signaling
pathway, the ERK signaling pathway assembles multiple effects
of transduction cascades coupled with D2 receptors that are
expressed in chicken photoreceptors (Ko et al., 2003). Given all
this evidence, we hypothesized that the ERK signaling pathway is
one of the downstream signaling cascades of DA in the retina that
controls myopia.

As a member of the MAPK family, ERK aids in the
transmission of extracellular signals to intracellular proteins, thus
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playing key roles in cell proliferation, differentiation, migration,
senescence and apoptosis (Abe et al., 2002; Sun et al., 2015).

In the ERK pathway, platelet-derived growth factor (PDGF)
receptor alpha (PDGFRA) is a member of the receptor tyrosine
kinase family and relies on ERK to promote cell viability (Hayashi
et al., 2015). A GWAS of an Asian population from Singapore
showed that a single-nucleotide polymorphism (SNP) of the
PDGFRA gene was associated with corneal curvature, and this
finding was subsequently verified in Australian and European
populations (Han et al., 2011; Mishra et al., 2012; Guggenheim
et al., 2013). RAS protein-specific guanine nucleotide releasing
factor 1 (RASGRF1) phosphorylates members of the ERK
pathway to regulate downstream cellular signaling molecules
(Tsai et al., 2018). RASGRF1 was revealed to be related
to refractive error in previous GWASs involving Asian and
European participants (Hysi et al., 2010; Tedja et al., 2018). In
addition, previous studies have demonstrated its high expression
in the retina and have identified it as a strong candidate
gene for association with high myopia (Chen et al., 2015).
Protein tyrosine phosphatase non-receptor type 5 (PTPN5)
is expressed in brain regions related to adult neuroplasticity.
It is able to inactivate ERK1/2 and restrict the distribution
of ERK signaling (Olausson et al., 2012). PTPN5 rs1550870
has been found to be strongly associated with myopia in a
large-sample GWAS based on a European population (Pickrell
et al., 2016). As an important paralog of PTPN5, PTPRR is
a key negative regulator of the ERK signaling pathway (Shi
et al., 2012). In a Caucasian family cohort study, PTPRR
rs3803036 was found to be strongly associated with high myopia
(Hawthorne et al., 2013).

According to previous studies, each of the four genes described
above that plays a pivotal role in the ERK signaling pathway
is associated with myopia to varying degrees. However, to
the best of our knowledge, few studies have been carried
out thus far to investigate the ERK pathway in its entirety
and to explore its comprehensive involvement in the onset
and development of myopia. In addition, ocular traits are
closely related to the refractive status of the eye. Based on the
information provided above, we conducted a longitudinal study
to collect data on the refractive status and ocular parameters
in primary school children. We assessed DNA in saliva from
these children and performed bioinformatic analyses to further
investigate whether the polymorphisms of these four genes in
the ERK signaling pathway are strongly associated with myopia
and thus to illuminate the role of the ERK pathway in DA-
mediated myopia control.

MATERIALS AND METHODS

Study Subjects and Phenotype
Assessment
The subjects involved in this 3.5-year prospective longitudinal
study were recruited from among second grade students at
primary schools in the Lucheng District of Wenzhou, Zhejiang,
China, from September 2014 to May 2018. Three schools were
selected using stratified random sampling according to the TA
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similar socioeconomic statuses and educational backgrounds
of the students and to their similar resources. A total of 487
students were recruited, but we excluded some students who
met the following criteria: (1) wore orthokeratology lenses,
(2) had serious eye diseases that may affect refraction, (3)
were undergoing ocular surgery, or (4) were lost to follow-up
or had incomplete information. All participants underwent
comprehensive ophthalmologic examinations including
measurement of the non-cycloplegic spherical equivalent
(SE, RM-8900; Topcon Corp, Tokyo, Japan), axial length (AL),
corneal radius of curvature (CRC), anterior chamber depth
(ACD), central corneal thickness (CCT), and lens thickness (LT)
(IOL Master; Carl Zeiss Meditec, Oberkochen, Germany). In
addition, the participants were asked to complete a questionnaire
to collect detailed information on the short-distance use of
eyes and the time spent outdoors. Myopia was defined as
an SE ≤ −1.0 diopter (D) (Rim et al., 2017), and if a child’s
average shift in myopic SE was ≥ 0.5 D per year (Wei et al.,
2020) during the follow-up period, we considered the child to
exhibit significant myopic progression. Additionally, incident
myopia was defined as an absence of myopia at baseline but the
development of myopia during the follow-up period. As there
were no significant differences in refractive data between the left
and right eyes (Spearman’s ρ = 0.86–0.91), only the data for the
right eye were analyzed.

All procedures in this study were performed following the
tenets of the Declaration of Helsinki. The study protocol
was approved by the Ethics Committee of the Eye Hospital
of Wenzhou Medical University [No. KYK (2014)3]. All the
participants and their guardians were fully informed of the
purpose and procedures, and written consent was obtained from
each participant.

Selection and Genotyping of SNPs
To select SNPs for these four genes, before a literature review,
candidate SNPs were selected from 2 databases (SNPedia, the
GWAS Catalog) and one study (the CREAM Consortium study).
Information on these 4 genes is shown in Table 1. Genomic
DNA was extracted from the buccal swab specimen of each
participant. Standard procedures were followed. First, variant
genotyping was performed by double ligation and multiplex
fluorescence PCR using a custom-designed 48-Plex SNPscanTM

Kit (Cat#: G0104; Genesky Biotechnologies, Inc., Shanghai,
China). Second, DNA denaturing was conducted in an ABI2720
thermal cycler. Then, the resulting product was mixed with
a 10-mL ligation premix. Each ligation product required two
48-plex fluorescence PCR runs. An ABI3730XL sequencer was
chosen to perform capillary electrophoresis for PCR product
separation and detection. Information on the labeling dye color
and fragment size of each allele-specific ligation-PCR product
was collected to analyze the raw data. In addition, to ensure high
quality and repeatability, 3% duplicate samples were tested to
confirm the genotyping results.

Functional Annotation
We used HaploReg v 4.1 and RegulomeDB to functionally
annotate these four genes. HaploReg has emerged as an important

tool for the annotation of variants in haplotype blocks in the non-
coding genome and for the prediction of cell types that are likely
affected (Ward and Kellis, 2012; Yu et al., 2019). RegulomeDB can
be used to annotate regulatory variants in the human genome by
giving scores to predict their functions (Boyle et al., 2012).

Protein-Protein Interaction Network
String1 was used to create protein-protein interaction (PPI)
networks and perform pathway enrichment analysis on the
significant genes (Szklarczyk et al., 2019). The selected settings
were as follows: minimum required interaction score, highest
confidence (0.900); first shell, no more than 20 interactors;
and second shell, none. The rest of the settings were the
default settings.

MicroRNA-Gene Interaction Network
MicroRNAs involved in the regulation of the genes with
significant results in the statistical analyses were predicted
using miRWalk 2.02, miRDB3, and mirDIP4. MiRWalk contains
complete sequence information, including information on 5′-
UTRs, CDSs and 3′-UTRs (Sticht et al., 2018). To reduce the
occurrence of false-positive results, the screening standards were
set as follows: miRWalk, score >0.8; miRDB, score >80; and
mirDIP score class, very high. Additionally, a Venn diagram5 was
employed to reveal the miRNAs that existed in all three databases.

1https://www.string-db.org/
2http://mirwalk.umm.uni-heidelberg.de/
3http://mirdb.org/
4http://ophid.utoronto.ca/mirDIP/
5http://bioinformatics.psb.ugent.be/webtools/Venn/

TABLE 2 | Characteristics of the participants.

Variable

Total number 426

Age (years) 7.28 ± 0.46

Males, N (%) 236 (55.4%)

Baseline Myopia, N (%) 49 (11.5)

Baseline SE (D)a 0.00 (−0.50, 0.33)

Baseline AL (mm)b 22.97 ± 0.76

Baseline CRC (mm)b 7.80 ± 0.26

Baseline CCT (mm)b 0.54 ± 0.03

Baseline LT (mm)b 3.57 ± 0.18

Baseline ACD (mm)b 2.92 ± 0.25

1SE (D/y)a −0.32 (−0.60, −0.10)

1SE > −0.50 (D/y), N (%) 145 (34.0%)

1AL (mm/y)a 0.30 (0.20, 0.40)

1CRC (mm/y)a −0.016 (−0.03, −0.01)

1CCT (mm/y)a 2.00 (0.95, 3.14)

1LT (mm/y)a −0.04 (−0.08, 0.01)

1ACD (mm/y)a 0.05 (0.04, 0.07)

SE, spherical equivalent refraction; D, diopter; AL, axial length; CRC, corneal radius
of curvature; CCT, central corneal thickness; ACD, anterior chamber depth. 1 is
the change in the SE, AL, CRC, CCT, LT, and ACD per year during the 3.5-year
follow-up.
aMedian (Q1, Q3); bmean ± SD.
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Finally, all the miRNAs were merged to target the relevant genes
by utilizing the above databases with the same standards.

To thoroughly investigate the functional regulation between
miRNAs and genes, we focused on the miRNAs that had direct or
indirect interactions with our significant genes. String was used
to select the important genes from the abundant target genes with
specific settings, including medium confidence (0.4) and no more
than 50 interactors for both the first and second shells. A miRNA-
gene network was then visualized with Cytoscape v3.8.26, a
software program that enables the integration, visualization and
analysis of molecular interaction networks (Shannon et al., 2003).

GO and KEGG Enrichment Analyses
Each set of genes utilized in the construction of the PPI
and miRNA-gene interaction networks was subjected to Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses with a false discovery rate (FDR)
less than 0.05. Both of these databases are available on the String
website. GO is a comprehensive database that can be used to
annotate genes, gene products, and sequences. KEGG is widely
used for the biological interpretation of genomic sequences.

Data Analysis
In this study, we used SPSS version 25.0 (IBM, Armonk, NY,
United States) for descriptive statistics and PLINK 1.9 for
regression analyses. The Hardy-Weinberg equilibrium (HWE)
test was performed for all SNPs using PLINK, and a p > 0.05
suggested that the SNP occurrence was consistent with HWE.
Logistic regression models were used to investigate the allelic
associations of each SNP with the occurrence and development
of myopia, with odds ratios (ORs) and 95% confidence intervals
(CIs) as the measurement indexes. In addition, associations
of SNPs and ocular traits were evaluated by linear regression
analysis. All the regression analyses were adjusted for the
confounding factors of age, sex, near-work time, outdoor
time, and corresponding baseline traits related to the outcome
indicators. Significance was set at p < 0.05, and we employed
10,000 permutations for multiple comparisons using the
max(T) permutation procedure in PLINK. In addition, general
multifactor dimensionality reduction (GMDR) was applied to
investigate gene-gene interactions. In various population-based
researches, this method permits adjustment for quantitative
covariates and is applicable to continuous and dichotomous
phenotypes; in accordance with the degree of consistency, GMDR
software provides the cross-validation consistency (CVC) score
when a selected interaction is identified as the best model
among all possibilities considered (Lou et al., 2007). The testing
balanced accuracy provides the scores between 0.50 (no better
than chance) and 1.00 (perfect prediction) to measure the degree
of interaction that predicts the case-control status. When the
score is higher than 0.5 out of 10 cross-validation cases, the sign
test counts the number of cases and the corresponding p-value
indicates the probability of getting these cases of prediction
accuracy higher than 0.5 out of ten cases with random prediction
(Kim et al., 2008). The best model is selected as the combination

6https://cytoscape.org/index.html
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of SNPs with the maximum CVC score, the best prediction
accuracy, and a significant p-value (Aung et al., 2014).

RESULTS

Characteristics of the Study Population
After excluding 29 students who wore orthokeratology lenses,
one student with glaucoma, one student with amblyopia and
32 students with incomplete genetic or ocular examination
information, a total of 426 participants were ultimately included
in this analysis. Of the included participants, 55.4% were male,
and the average age was 7.28 ± 0.26 years. Forty-nine children
were myopic at baseline and were excluded from the logistic
analysis of incident myopia. Table 2 shows the quantitative traits
and demographic information on the participants.

Additionally, Table 1 summarizes the gene symbols, minor
allele frequencies (MAFs), HWE values, and call rates for all
SNPs. The SNP distributions in the controls of both subgroups
were consistent with HWE.

Functional Evaluation of Selected SNPs
The HaploReg v4.1 prediction revealed that three SNPs (PDGFRA
rs6554163, RASGRF1 rs6495367, and PTPN5 rs1550870) were
regulatory SNPs. Specifically, PDGFRA rs6554163 was predicted
to be located within promoter histone marks of 4 tissues,
enhancer histone marks of 5 tissues, and a DNase hypersensitivity
region and to significantly alter 3 motifs (BAF155, SIX5, and
Znf143). In addition, PTPN5 rs1550870 was predicted to be
located in enhancer histone marks and to alter 5 motifs. The
RASGRF1 rs6495367 variant was predicted to change the SIX5
motif. The ranks of PDGFRA rs6554163, PTPN5 rs1550870, and
PTPRR rs11178469 provided by RegulomeDB were 5, suggesting
transcription factor (TF) binding or DNase peaks for these 3
SNPs. RASGRF1 rs6495367 is likely to exhibit both TF binding
and a DNase peak, as its rank was 4. More details are given in
Table 3.

Associations Between Selected SNPs
and Incident Myopia or Significant
Myopic Shift
After adjusting for confounding variables, such as age, sex, near-
work time, outdoor time, and baseline SE, children with the
CT or TT genotype of PTPN5 rs1550870 were found to be
more susceptible to myopia than those with the CC genotype
(dominant: OR = 1.885; 95% CI = 1.152–3.086, adjusted p = 0.011,
Table 4). Apart from this, no statistically significant relationships
with incident myopia were observed for other SNPs. Details
regarding the correlations among the SNPs and incident myopia
are presented in Table 4.

With regard to the associations of significant myopic shift with
all SNPs, RASGRF1 rs6495367 was negatively associated with
myopic shift (additive: adjusted p = 0.034; dominant: adjusted
p = 0.020). In addition, PTPN5 rs1550870 was found to be
correlated with significant myopic shift in both the additive

and dominant models (additive: adjusted p = 0.025; dominant:
adjusted p = 0.016) (Table 5).

Associations Between Selected SNPs
and Quantitative Traits
Based on the linear regression results shown in Table 6, as a
protective factor, RASGRF1 rs6495367 was significantly related
to myopic SE (additive: coefficient = 0.061, adjusted p = 0.037;
dominant: coefficient = 0.114, adjusted p = 0.019) and AL
(dominant: coefficient =−0.035, adjusted p = 0.047). In addition,
PTPN5 rs1550870 appeared to be associated with increased AL
(dominant: coefficient = 0.033, adjusted p = 0.025) and LT
(additive: coefficient = 0.040, adjusted p = 0.041), while it had a
negative effect on CCT (additive: coefficient = −0.350, adjusted
p = 0.033; dominant: coefficient = −0.460, adjusted p = 0.019).
The analysis also revealed a statistically significant association of
PDGFRA rs6554163 with increased LT, but the association existed
only in the dominant model (coefficient = −0.053, adjusted
p = 0.033).

All the results above remained consistent over 10,000
permutations, except for the relationship between PDGFRA
rs6554163 and increased ACD (recessive: coefficient = −0.065,
p = 0.038), which was no longer significant after the permutation
test was conducted (adjusted p = 0.091).

Gene-Gene Interaction Analysis
To further analyze the impacts of the genetic interactions on
myopia, especially incident myopia and significant myopic shift,
GMDR was employed for logistic regression. As shown in Table 7
and Figure 1, evaluation of the effects of SNP-SNP combinations
on incident myopia revealed a statistically significant one-
locus model: PTPN5 rs1550870 [cross-validation consistency
(CVC) = 10/10, p = 0.0107]. With regard to the effects of the SNP-
SNP interactions on significant myopic shift, the two-loci model
consisting of PTPRR rs11178469 and PDGFRA rs6554163 had a
significant p-value (0.0107) (Table 8 and Figure 2). However, the
low cross-validation consistency (6/10) indicated an uncertain
association of the combination with myopia.

All the models used for GMDR linear regression on SE yielded
non-significant results (p > 0.05, Supplementary Table 1 and
Supplementary Figure 1).

PPI Network
The interaction network revealed direct and indirect partners
of RASGRF1, PTPN5, and PDGFRA (Figure 3), and pathway
enrichment analyses were performed on the set of genes in
the network through String (Supplementary Table 1). The PPI
network was constructed and was found to have 23 nodes
connected by 114 edges. Each node represents a protein, and the
edges represent the interactions between proteins. We observed
that the three genes did not have direct interactions, but there
were indirect connections through their intermediaries.

Pathway enrichment analysis also revealed that these
genes regulate visual processes, including eye development,
retinal vasculature development in camera-type eyes, visual
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learning, circadian entrainment, the light stimulus response, and
dopaminergic synapse-related processes (all FDRs < 0.05).

miRNA-Gene Regulatory Network
Data from miRWalk, miRDB, and mirDIP predicted that a total
of 28 miRNAs interact with the 3 genes (PDGFRA, RASGRF1,
PTPN5). Venn diagrams were created to demonstrate the miRNA
distribution in each database (Figure 4). Overall, 2,032 genes
were determined by the three databases to be the target genes
of these miRNAs.

String was then used to screen more relevant genes. Based
on the intersection of the data obtained from String and the
three databases, the regulatory functions of interactions among
28 miRNAs and 51 genes were investigated (Supplementary
Table 2). Figure 5 shows the final miRNA-gene network, which
consisted of 79 nodes and 211 edges.

KEGG and GO analyses of the 51 genes suggested that they are
involved in eyelid development in camera-type eyes, Ras protein
signal transduction, regulation of the ERK1 and ERK2 cascades,
eye development, camera-type eye development, Ras guanyl-
nucleotide exchange factor activity and dopaminergic synapse-
related processes (Supplementary Table 2, all FDRs < 0.01).

DISCUSSION

Numerous researchers have concluded from mammalian and
non-mammalian model studies that DA plays a critical role
in the development of myopia (Zhou et al., 2017). The ERK
signaling pathway is one of the downstream cascades of DA
receptors expressed in retinal ganglia and photoreceptors. In
this study, the associations of four selected gene variants in
the ERK pathway with myopia and ocular parameters were
assessed through longitudinal data obtained from Chinese
primary school students to explore the role of the ERK pathway
in human myopia. In the present study, PTPN5 rs1550870
was found to be correlated with incident myopia, significant
myopic shift and increasing LT as well as AL, but it had a
negative effect on CCT. RASGRF1 rs6495367 was negatively
associated with myopic shift as well as myopic SE and AL.
PDGFRA rs6554163 was negatively associated with increasing
LT. Based on the results from GMDR, the one-locus model
PTPN5 rs1550870 was significantly associated with incident
myopia, which was consistent with the results of the single-
locus analysis. Enrichment analyses of the genes in the PPI and
miRNA-gene interaction networks suggested that these genes are

TABLE 4 | Distribution of genotypes and alleles of SNPs in the control and incident myopia groups.

Incident myopia group (n = 202) Control group (n = 174)

SNP Genotype No. % No. % OR (95% CI)c Pa Pb

PDGFRA rs6554163 T > A

Additive AA/TA/TT − − − − 0.713 (0.462, 1.099) 0.125 0.124

Dominant TT 135 66.8 105 60.3 Ref.

TA + AA 67 33.2 69 39.7 0.639 (0.390, 1.046) 0.075 0.073

Recessive TA + TT 196 97.0 169 97.1 Ref.

AA 6 3.0 5 2.9 1.046 (0.280, 3.906) 0.947 0.959

RASGRF1 rs6495367 G > A

Additive AA/GA/GG − − − − 0.959 (0.685, 1.344) 0.809 0.808

Dominant GG 44 21.8 47 27.0 Ref.

GA + AA 158 78.2 127 73.0 0.832 (0.472, 1.467) 0.526 0.533

Recessive GA + GG 147 72.8 130 74.7 Ref.

AA 55 27.2 44 25.3 1.060 (0.622, 1.807) 0.830 0.836

PTPN5 rs1550870 C > T

Additive TT/CT/CC − − − − 1.454 (0.961, 2.199) 0.076 0.077

Dominant CC 83 41.1 91 52.3 Ref.

CT + TT 119 58.9 83 47.7 1.885 (1.152, 3.086) 0.012 0.011

Recessive CT + CC 191 94.6 163 93.7 Ref.

TT 11 5.4 11 6.3 0.634 (0.229, 1.753) 0.380 0.371

PTPRR rs11178469 T > C

Additive CC/TC/TT − − − − 0.993 (0.699, 1.410) 0.969 0.970

Dominant TT 71 35.1 61 35.1 Ref.

TC + CC 131 64.9 113 64.9 1.106 (0.672, 1.821) 0.692 0.692

Recessive TC + TT 173 85.6 145 83.3 Ref.

CC 29 14.4 29 16.7 0.817 (0.421, 1.583) 0.549 0.551

aAdjusted for age, sex, near-work time, outdoor time, and baseline SE.
bAdjusted for age, sex, near-work time, outdoor time, and baseline SE with 10,000 permutations.
cCI, confidence interval.
The bold values are P < 0.05.
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involved mainly in eye development and dopaminergic synapse-
related processes.

In the ERK signaling pathway, the autophosphorylation of
receptor tyrosine kinase (RTK), which is activated by growth
factor (GF) binding, generates binding sites to make GF receptor-
bound protein 2 (GRB2) dock with Ras/Rac guanine nucleotide
exchange factor 1 (SOS) and promotes the activation of these
two molecular complexes (Mendoza et al., 2011). PDGF receptor
(PDGFR) is a member of the RTK family (Velghe et al.,
2014). SOS catalyzes Ras GTP, and activated Ras-GTP then
recruits Raf to the membrane, where it is activated (Mendoza
et al., 2011). RASGRF1 is one of the nucleotide exchange
factors that activates Ras (Barman et al., 2014). Raf, as a Ras
effector, activates MAPK ERK kinase (MEK) through double
phosphorylation on serine residues after binding Ras (Zhang
and Guan, 2000). ERK is a core MAPK component that
functions as the major effector of the Ras protein (Mendoza
et al., 2011). Striatal-enriched tyrosine protein phosphatase
(STEP), encoded by the PTPN5 gene, can limit ERK activity
as well as subsequent downstream nuclear signaling (Paul
et al., 2003). In addition, an important paralog of the PTPN5

gene is PTPRR, which is a key negative regulator of ERK
(Shi et al., 2012).

The PDGFRA gene binds three forms of PDGF (PDGF-
AA, PDGF-AB, and PDGF-BB) and mediates many biological
processes (Sulzbacher et al., 2008). Previous studies on humans
as well as animals have demonstrated that the expression of
PDGF-AA in the retinal pigment epithelium (RPE) is increased
under pathological conditions (Andrews et al., 1999). In a recent
study combining two meta-analyses from CREAM and UK
Biobank, PDGFRA was found to be strongly associated with
corneal curvature (P = 1.59 × 10−73) (Fan et al., 2020). In
the present study, PDGFRA rs6554163 was discovered to be
correlated with LT. The non-significant results regarding the
association of PDGFRA rs6554163 with AL are similar to those
from a study conducted in Asia but different from those from a
study conducted in Europe (Guggenheim et al., 2013; Chen et al.,
2014, 2017). One possible explanation for the variation might be
ethnic differences.

To date, there have been many studies investigating the
association between SNPs in RASGRF1 and myopia. Our finding
that RASGRF1 rs6495367 is significantly related to hypermetropic

TABLE 5 | Distribution of genotypes and alleles of SNPs in the control and significant myopic shift groups.

Significant myopic shift group (n = 202) Control group (n = 174)

SNP Genotype No. % No. % OR (95% CI)c Pa Pb

PDGFRA rs6554163 T > A

Additive AA/TA/TT − − − − 0.776 (0.513, 1.174) 0.230 0.232

Dominant TT 97 66.9 176 62.6 Ref.

TA + AA 48 33.1 105 37.4 0.748 (0.470, 1.189) 0.219 0.223

Recessive TA + TT 141 97.2 273 97.2 Ref.

AA 4 2.8 8 2.8 0.771 (0.198, 3.003) 0.707 0.712

RASGRF1 rs6495367 G > A

Additive AA/GA/GG − − − − 0.710 (0.519, 0.973) 0.033 0.034

Dominant GG 22 15.2 132 47.0 Ref.

GA + AA 123 84.8 149 53 0.510 (0.288, 0.903) 0.021 0.020

Recessive GA + GG 102 70.3 211 75.1 Ref.

AA 43 29.7 70 24.9 0.744 (0.459, 1.206) 0.230 0.236

PTPN5 rs1550870 C > T

Additive TT/CT/CC − − − − 1.515 (1.050, 2.186) 0.027 0.025

Dominant CC 58 40 144 51.2 Ref.

CT + TT 87 60 137 48.8 1.774 (1.119, 2.811) 0.015 0.016

Recessive CT + CC 133 91.7 265 94.3 Ref.

TT 12 8.3 16 5.7 1.288 (0.549, 3.025) 0.561 0.561

PTPRR rs11178469 T > C

Additive CC/TC/TT − − − − 0.987 (0.710, 1.374) 0.940 0.940

Dominant TT 49 33.8 97 34.5 Ref.

TC + CC 96 66.2 184 65.5 1.026 (0.642, 1.639) 0.916 0.914

Recessive TC + TT 124 85.5 237 84.3 Ref.

CC 21 14.5 44 15.7 0.914 (0.487, 1.712) 0.778 0.780

aAdjusted for age, sex, near-work time, outdoor time, and baseline SE.
bAdjusted for age, sex, near-work time, outdoor time, and baseline SE with 10,000 permutations.
cCI, confidence interval.
The bold values are P < 0.05.
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TABLE 6 | Associations of SNPs with quantitative ocular traits in different genetic models.

Additive Dominant Recessive

Variable SNP βa (95% CI) Pa Pb βa (95% CI) Pa Pb βa (95% CI) Pa Pb

1 SE, D/y PDGFRA rs6554163 0.018 (−0.056, 0.091) 0.638 0.634 0.022 (−0.062, 0.106) 0.607 0.606 0.007 (−0.229, 0.243) 0.956 0.958

RASGRF1 rs6495367 0.061 (0.004, 0.117) 0.036 0.037 0.114 (0.019, 0.210) 0.019 0.019 0.051 (−0.039, 0.141) 0.266 0.265

PTPN5 rs1550870 −0.055 (−0.122, 0.012) 0.107 0.117 −0.080 (−0.162, 0.002) 0.056 0.055 −0.011 (−0.174, 0.152) 0.898 0.896

PTPRR rs11178469 0.009 (−0.052, 0.069) 0.779 0.774 −0.008 (−0.094, 0.078) 0.856 0.857 0.044 (−0.069, 0.157) 0.444 0.439

1 AL, mm/y PDGFRA rs6554163 0.012 (−0.015, 0.038) 0.394 0.402 0.010 (−0.020, 0.040) 0.524 0.523 0.042 (−0.045, 0.129) 0.349 0.351

RASGRF1 rs6495367 −0.018 (−0.038, 0.003) 0.092 0.089 −0.035 (−0.069, −0.001) 0.046 0.047 −0.013 (−0.045, 0.019) 0.430 0.436

PTPN5 rs1550870 0.023 (−0.001, 0.047) 0.060 0.056 0.033 (0.004, 0.063) 0.025 0.025 0.004 (−0.053, 0.062) 0.878 0.880

PTPRR rs11178469 −0.007 (−0.029, 0.014) 0.520 0.522 0.003 (−0.028, 0.033) 0.861 0.862 −0.030 (−0.070, 0.011) 0.149 0.148

1 CRC, mm/y PDGFRA rs6554163 −0.002 (−0.005, 0.002) 0.350 0.351 −0.002 (−0.005, 0.002) 0.360 0.362 −0.002 (−0.013, 0.009) 0.694 0.695

RASGRF1 rs6495367 0.000 (−0.002, 0.003) 0.739 0.733 0.000 (−0.005, 0.004) 0.875 0.875 0.001 (−0.003, 0.005) 0.498 0.507

PTPN5 rs1550870 0.001 (−0.002, 0.004) 0.585 0.578 0.000 (−0.004, 0.004) 0.998 0.997 0.005 (−0.002, 0.012) 0.188 0.184

PTPRR rs11178469 −0.001 (−0.004, 0.001) 0.314 0.321 −0.002 (−0.006, 0.002) 0.339 0.340 −0.002 (−0.007, 0.003) 0.533 0.529

1 CCT, mm/y PDGFRA rs6554163 0.233 (−0.118, 0.584) 0.194 0.196 0.254 (−0.144, 0.652) 0.211 0.216 0.360 (−0.762, 1.481) 0.530 0.502

RASGRF1 rs6495367 0.042 (−0.230, 0.313) 0.763 0.767 0.142 (−0.318, 0.602) 0.546 0.549 −0.019 (−0.448, 0.410) 0.931 0.933

PTPN5 rs1550870 −0.350 (−0.668, −0.032) 0.032 0.033 −0.460 (−0.849, −0.071) 0.021 0.019 −0.246 (−1.018, 0.526) 0.533 0.518

PTPRR rs11178469 −0.127 (−0.415, 0.160) 0.386 0.384 −0.174 (−0.582, 0.234) 0.404 0.400 −0.144 (−0.685, 0.397) 0.602 0.600

1 LT, mm/y PDGFRA rs6554163 −0.029 (−0.071, 0.014) 0.190 0.187 −0.053 (−0.101, −0.004) 0.033 0.033 0.127 (−0.009, 0.263) 0.069 0.075

RASGRF1 rs6495367 −0.004 (−0.037, 0.028) 0.795 0.797 −0.046 (−0.101, 0.010) 0.106 0.109 0.029 (−0.023, 0.081) 0.272 0.280

PTPN5 rs1550870 0.040 (0.001, 0.079) 0.043 0.041 0.046 (−0.001, 0.093) 0.057 0.056 0.054 (−0.039, 0.148) 0.255 0.255

PTPRR rs11178469 −0.031 (−0.066, 0.004) 0.084 0.080 −0.048 (−0.097, 0.001) 0.056 0.054 −0.024 (−0.090, 0.042) 0.478 0.484

1 ACD, mm/y PDGFRA rs6554163 −0.014 (−0.033, 0.006) 0.167 0.175 −0.009 (−0.031, 0.012) 0.404 0.411 −0.065 (−0.126, −0.004) 0.038 0.091

RASGRF1 rs6495367 0.011 (−0.004, 0.025) 0.162 0.170 0.006 (−0.019, 0.031) 0.638 0.647 0.021 (−0.002, 0.045) 0.076 0.066

PTPN5 rs1550870 0.000 (−0.017, 0.018) 0.966 0.967 −0.006 (−0.027, 0.016) 0.608 0.627 0.024 (−0.018, 0.066) 0.266 0.243

PTPRR rs11178469 −0.006 (−0.022, 0.010) 0.452 0.454 −0.003 (−0.026, 0.019) 0.772 0.786 −0.016 (−0.045, 0.014) 0.303 0.256

βa is the coefficient of linear regression indicating the sizes of effects on changes in SE, AL, CRC, CCT, LT, and ACD during the 3.5-year follow-up. Pa, adjusted for age, sex, near-work time, outdoor time, and the
baseline of each outcome indicator (baseline SE for 1SE, baseline AL for 1AL, baseline CRC for 1CRC, baseline CCT for 1CCT, baseline LT for 1LT and baseline ACD for 1ACD). Pb, adjusted for age, sex, near-work
time, outdoor time, and baseline of each outcome indicator with 10,000 permutations.
The bold values are P < 0.05.
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TABLE 7 | GMDR results of SNP-SNP interactions related to incident myopia.

Model Training balanced
accuracy

Testing balanced
accuracy

Cross-validation
consistency

Sign test (p)a

PTPN5 rs1550870 0.5820 0.5751 10/10 9 (0.0107)

PTPN5 rs1550870, PTPRR rs11178469 0.5871 0.5047 6/10 6 (0.3770)

RASGRF1 rs6495367, PTPRR rs11178469, PDGFRA rs6554163 0.6183 0.4598 4/10 3 (0.9453)

aAdjusted for sex, age, near-work time, outdoor time, and baseline SE.
The bold values are P < 0.05.

FIGURE 1 | The three best models for predicting incident myopia given by GMDR analysis. (A) One-locus model of PTPN5 rs1550870. (B) Two-loci model of PTPN5
rs1550870-PTPRR rs11178469. (C) Three-loci model of RASGRF1 rs6459367-PTPRR rs11178469-PDGFRA rs6554163. A grid represents the specific
combinations of SNP-SNP interactions. High-risk genotypes are shown in dark gray, while low-risk genotypes are shown in light gray. All the bars on the left of each
grid represent children who were not myopic at baseline but developed myopia in the follow-up period, while the bars on the right represent children who did not
develop myopia during the complete follow-up period.

SE is consistent with the findings of a previous GWAS meta-
analysis involving 160,420 Asian and European individuals
(Tedja et al., 2018). In another GWAS involving 3,269 Japanese
participants, the association between RASGRF1 and myopia
was confirmed (Meguro et al., 2020). Recent studies have
hypothesized that RASGRF1 is linked to the dopaminergic system
(Gong et al., 2017). Photoreceptors can detect light intensity
and image contrast, both of which are capable of regulating the
amount of DA and thus influencing myopia (Zhou et al., 2017).
In addition, one study emphasized the role of RASGRF1 as an
exchange factor in the synaptic transmission of photoreceptor
responses (Fernández-Medarde et al., 2009). Thus far, there have
been few studies on the association between RASGRF1 SNPs and

AL. However, in our research, RASGRF1 rs6495367 was found
to be associated with AL. It has been reported that RASGRF1
protein expression can be altered by changes in retinoic acid
and muscarinic receptor levels (Mattingly and Macara, 1996;
Tideman et al., 2018). In this respect, the eye may respond
to retinoic acid and adjust its axial elongation (McFadden
et al., 2004). Therefore, the association of RASGRF1 rs6495367
with SE and AL may be interpreted as a joint effect of DA
and retinoic acid.

PTPN5 rs1550870 was found to be strongly associated with
myopia only in a large-sample GWAS based on a European
population (P = 9.9 × 10−13) (Pickrell et al., 2016). Neither
myopia nor ocular parameters have been reported to be related
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TABLE 8 | GMDR results of SNP-SNP interactions related to significant myopic shift.

Model Training balanced
accuracy

Testing balanced
accuracy

Cross-validation
consistency

Sign test (p)a

RASGRF1 rs6495367 0.5643 0.5324 7/10 7 (0.1719)

PTPRR rs11178469, PDGFRA rs6554163 0.5856 0.5346 6/10 9 (0.0107)

RASGRF1 rs6495367, PTPN5 rs1550870, PTPRR rs11178469 0.6144 0.5049 5/10 6 (0.3770)

aAdjusted for sex, age, near-work time, outdoor time, and baseline SE.
The bold values are P < 0.05.

FIGURE 2 | The three best models for predicting significant myopic shift given by GMDR analysis. (A) One-locus model of RASGRF1 rs6495367. (B) Two-loci model
of PTPRR rs11178469-PDGFRA rs6554163. (C) Three-loci model of RASGRF1 rs6459367-PTPN5 rs1550870-PTPRR rs11178469. A grid represents the specific
combinations of SNP-SNP interactions. High-risk genotypes are shown in dark gray, while low-risk genotypes are shown in light gray. All the bars on the left of each
grid represent cases, while the bars on the right represent controls.

to SNPs among Asian populations. In the current study, PTPN5
rs1550870 was significantly associated with incident myopia and
significant myopic shift. PTPN5 (also named striatal-enriched
PTP, STEP) tends to be expressed in neurons of the central
nervous system, where it regulates the neurotransmission of
DA (Eswaran et al., 2006). Accumulating evidence is emerging
for the important roles of diurnal and circadian rhythms
in eye growth and refractive error development, in which
intrinsically photosensitive RGCs (ipRGCs) govern visual input.
The functions of DA in the mechanism above include not
only the simple alignment of intrinsic retinal rhythms to

the light-dark cycle but also the adjustment of refractive
development (Chakraborty et al., 2018). DA may exert its effects
through RGCs and regulate the surroundings of the RGC
receptive field. The MAPK/ERK signaling pathway may also
be involved in the above modulation of neuronal functions
(Li et al., 2016). Given that PTPN5 serves as a downstream
component that adjusts the duration and functions of ERK
signaling and that it is expressed specifically in rat RGCs
(Paul et al., 2003; Li et al., 2016), we hypothesize that the
relationship of PTPN5 with myopia may be related to the
role of DA in refractive error. Several reports have shown
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FIGURE 3 | The protein-protein interaction network. The genes with red squares (including PTPN5, RASGRF1, and PDGFRA) were input into String.

FIGURE 4 | Venn diagrams of target miRNAs in different databases including miRWalk, miRDB, and mirDIP. (A) The miRNA distribution of PDGFRA in each
database. (B) The miRNA distribution of PTPN5 in each database. (C) The miRNA distribution of RASGRF1 in each database.

that as a retinal signal, dopamine can regulate eye growth
through remodeling of the scleral extracellular matrix (ECM)
(Wojciechowski and Hysi, 2013). Moreover, abnormal scleral
ECM remodeling and the concomitant excess elongation of
axial length can lead to myopia, which involves gene-expression
changes associated with the phenotypic transdifferentiation of
Fib-L toward Myofib-L. PTPN5 is one of the differentially
expressed genes in this process (Wu et al., 2018). In our study,
PTPN5 rs1550870 was associated with AL, further supporting
our hypothesis stated above. In addition, PTPN5 rs1550870
was linearly correlated with LT and CCT in the current study.
However, its specific mechanisms related to LT and CCT remain
to be clarified.

Within the human eye, the increased expression of PTPRR
has been previously reported in rapidly growing fetal retina/RPE

tissue (PTPRR expression has not been detected in adult RPE
tissue) and choroid tissue, suggesting that PTPRR controls
ocular growth. In a Caucasian family cohort study, PTPRR
rs3803036 was found to be strongly associated with high
myopia (Hawthorne et al., 2013). Meta-analyses of the genome-
wide single variant PTPRR rs11178469 have shown a linear
relationship between this variant and refractive error in mixed
ancestries, including Asian and European ancestries (Tedja et al.,
2018). However, in our single-locus analyses, we did not find
any evidence to support the association of myopia or ocular
parameters with PTPRR rs11178469. This result is similar to the
results of a study by Yoshikawa et al. (2014). Explorations with
large cohorts should be conducted in different ethnic groups to
further evaluate the role of PTPRR and the impacts of PTPRR on
myopia risk factors.
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FIGURE 5 | The miRNA-gene regulatory network. The yellow nodes represent 28 miRNAs, and the blue nodes represent the 51 genes that have direct or indirect
interactions with PDGFRA, RASGRF1, and PTPN5. The edges represent the interaction relationships between miRNAs and genes.

Our functional prediction indicated that both PDGFRA
rs6554163 and RASGRF1 rs6495367 can change the SIX5 motif.
It has been reported that SIX5 transcripts are detectable in the
epithelium of the adult cornea and lens as well as in the cellular
layers of the retina and sclera (Winchester et al., 1999). Therefore,
these two SNPs may affect myopia by changing the SIX5 motif.
PTPN5 rs1550870 alters motifs of the Krüppel-like factor family,
which are enriched in corneal epithelial enhancers. Furthermore,
KLF7 acts as an antagonist of KLF4 in the differentiation of
corneal epithelial cells (Klein et al., 2017). A disruption of the
balance between the levels of these two factors may be related to
the expression of PTPN5 rs1550870 and, in turn, influence the
eye to some extent.

GMDR analyses demonstrated a significant correlation
between the one-locus model (PTPN5 rs1550870) and incident
myopia. We can therefore infer that PTPN5 rs1550870 may
be an independent risk factor for this disease. Additionally, in
the logistic regression analysis of significant myopic shift, the
combination of PTPRR rs11178469 and PDGFRA rs6554163 had

a significant p-value and a low CVC (6/10). The result therefore
needs to be interpreted with caution and to be confirmed in
studies on larger sample sizes and additional ethnic groups.

Enrichment analyses showed that genes utilized in the
construction of the PPI and miRNA-gene interaction networks
may regulate biological processes such as retinal vasculature
development in camera-type eyes, the response to light stimulus,
dopaminergic synapse-related processes and the ERK1/ERK2
cascade. Of note, a review summarized the locations of DA
receptors, including RGCs, RPE cells and photoreceptors, in
mammalian retinas (Nguyen-Legros et al., 1999). Therefore, we
suggest that the regulation of myopia by DA may be related to the
ERK pathway. Given the specific expression of these three genes
at these locations and the function of DA in myopia, the findings
may provide further insight into the biological mechanisms by
which DA regulates myopia progression.

Large-scale studies have indicated the pivotal roles of miRNAs
in the development of myopia (Tkatchenko et al., 2016). In
the current study, we created a network including 28 miRNAs
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and 51 genes. Hsa-miR-17-5p, one of the miRNAs with the
most gene interactions, was identified as a myopia-specific
miRNA in a previous study (Chen et al., 2019). Changes in the
expression of miRNAs can influence a whole genetic network
and alter the corresponding phenotype via PPIs. By revealing
the potential relationships between genes and miRNAs correlated
with PDGFRA, RASGRF1, and PTPN5, this study may shed new
light on myopia at the molecular level.

To our knowledge, this is the first study on the association of
PTPN5 rs1550870 with myopia via GWAS. We also evaluated the
roles of RASGRF1 rs6495367, PDGFRA rs6554163, and PTPRR
rs11178469 in myopia in a southern Chinese Han population.

In the current analysis, in addition to the SE, other
ocular parameters related to myopia were included as outcome
indicators. Previous studies have revealed that the corneal system,
lens system, ACD, and AL represent the refractive components
that determine the refractive state. Flattening of the cornea
and lens alleviates the influence of axial elongation on the
refractive state (Mutti et al., 2005). Four variants of four genes
from the ERK pathway were chosen for analysis, three of
which were proven to be associated with myopia or altered
ocular parameters. The ERK signaling pathway is known as
one of the downstream signaling cascades of DA. Moreover,
bioinformatic analyses uncovered the involvement of relevant
genes and miRNAs in ocular development and revealed the role
of DA in biological functional regulation. The above information
can be effectively combined to provide quantitative insights into
the role of the ERK signaling pathway in the mechanism by
which DA inhibits myopia; the results suggest that this pathway
may be the downstream signaling pathway of DA receptors in
the retina. In this 3.5-year longitudinal study, we calculated the
annual average variation in each ocular parameter to explore
the association of the parameters with genetic variants, and the
evidence supports the idea that these SNPs are likely to impact
the dynamic process of myopia.

However, there were some limitations of this study. First, the
SE data were gathered using a non-cycloplegic autorefraction
assessment. We cannot exclude the possibility that this
method may have failed to reflect subjects’ actual levels
of refractive error and therefore overestimated myopia. To
reduce the overestimation of myopia levels, we chose a
SE ≤ −1.0 D as the definition of myopia. Second, the
statistical performance of our study might have been restricted
by the small sample size. Research on a larger population
is warranted to confirm the results. Third, we chose only
a single SNP of each gene for genotyping, which may have
caused some information to be lost due to the insufficient
coverage of variants, highlighting the need for future studies
to comprehensively examine the correlation of more variants
with myopia. In addition, it is noteworthy that permutation
test in our study may has a deficiency, for we also tested
for the relationships between each marker with multiple
traits under different models. Therefore, caution is needed
when interpreting the results. At last, the specific mechanisms
remain unknown. Therefore, experimental animal models
should be used in future research to determine the potential
corresponding mechanisms.

CONCLUSION

Through a longitudinal study conducted on primary school
students, we identified crucial genes in the ERK signaling
pathway that are closely correlated with myopia. Our findings
suggest that PTPN5 rs1550870 and RASGRF1 rs6495367 are
associated with the susceptibility to myopia and changes in
several ocular parameters in southern Chinese children. PDGFRA
rs6554163 is related to LT. Therefore, the ERK signaling pathway
may play a role in the DA-mediated control of myopia.
Additionally, we combined gene and miRNA functional analyses
with GO and KEGG analyses to emphasize the regulatory
effects associated with ocular development and DA biological
functions. The results reported in this study can offer novel
clues for screening and understanding the molecular mechanisms
underlying the pathogenesis of myopia. However, further
molecular biological studies are required to verify these findings.
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