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Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive disease of older adults characterized
by fibrotic replacement of functional gas exchange units in the lung. The strongest risk factor for IPF
is a genetic variantin the promoter region of the gel-forming mucin, MUC5B. To better understand
how the MUC5B variant influences development of fibrosis, we used the NicheNet R package and
leveraged publicly available single-cell RNA sequencing data to identify and evaluate how epithelia
participating in gas exchange are influenced by ligands expressed in control, MUC5B variant, and
fibrotic environments. We observed that loss of type-I alveolar epithelia (AECI) characterizes the
single-cell RNA transcriptome in fibrotic lung and validated the pattern of AECI loss using single
nuclear RNA sequencing. Examining AECI transcriptomes, we found enrichment of transcriptional
signatures for IL6 and AREG, which we have previously shown to mediate aberrant epithelial
fluidization in IPF and murine bleomycin models. Moreover, we found that the protease ADAM17,
which is upstream of IL6 trans-signaling, was enriched in control MUC5B variant donors. We used
immunofluorescence to validate a role for enhanced expression of ADAM17 among MUC5B variants,
suggesting involvement in IPF pathogenesis and maintenance.

Keywords: mucin; MUC5B; rs35705950; type-I alveolar epithelial cell; fibroblast; alveolar macrophage;
idiopathic pulmonary fibrosis; cell–cell communication; IL6; AREG; ADAM17

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is an incurable disease of heterogeneous, progres-
sive, lung parenchymal fibrosis affecting over 5 million people worldwide [1]. Prevalence
of IPF is estimated to be anywhere from 0.02–0.04% of the population, and up to 2% over
the age of 50 in higher risk populations [2]. While recent advances have yielded some
therapies that appear to slow the rate of progression [3,4], median life expectancy of indi-
viduals with IPF remains 3–5 years [1]. Importantly, age is a critical determinant of IPF,
such that the odds of biopsy-proven IPF among patients referred to a pulmonary clinic
for suspected interstitial lung disease are increased by almost 10% per year of life (OR,
1.09 per year, 95% CI 1.04–1.14, p = 0.0007) [5]. Over the past decade, we discovered a
gain-of-function [6] promoter variant in MUC5B (rs35705950, G; T) that is the dominant
risk factor for IPF (OR = 5.45; 95% CI = 4.91–6.06; p = 9.60 × 10−295) [7], present in >50% of
affected patients and accounting for at least 30% of the risk of disease [8,9]. These findings
have been validated in more than 11 independent studies [7–16]. In IPF, MUC5B is ex-
pressed in areas of dense fibrosis [17–19]. Moreover, ectopic alveolar expression of Muc5b
enhances the development of bleomycin-induced lung fibrosis in mice [20,21]. Augmented
airway clearance with a novel mucolytic reduces durable fibrosis even long after bleomycin
injury [20], supporting a role for secreted MUC5B in IPF.
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In spite of these advances, the role of the MUC5B variant on promotion of fibrosis
remains unclear. We recently demonstrated IPF airway epithelia are marked by an aber-
rant fluidized phenotype in culture associated with excess EGFR signaling mediated by
AREG [22]. Moreover, we have recently confirmed and extended findings that Il6 signals are
necessary for fibrotic lung remodeling in the setting of bleomycin injury in the mouse [23,24].
To better understand the role of cell signaling involved in MUC5B-variant-driven pul-
monary fibrosis, we used publicly available single-cell and single nuclear RNA sequencing
datasets (“Vanderbilt”, GEO accession GSE135893 [25] and “Colorado”, GSE161685 [26]).
We observed that disappearance of type-I-alveolar epithelial cells (AECI) characterized
fibrotic lung disease at the single-cell and single nuclear level. We reasoned that loss of
AECI might be mediated by changes in cell signaling within the alveolar microenvironment.
Focusing on cell–cell communication in AECI, we identified gene signatures of active lig-
ands in datasets from IPF and control tissues using the R software platform NicheNet [27].
Our analysis revealed signatures of growth factors, cytokines, and matrikines influencing
AECI transcriptomes in IPF, including IL6, IL1B, TNFA, AREG, FGF2, FGF7, SPP1, and
TRAIL. Moreover, we observed enrichment for ADAM17-dependent signaling in AECI
from MUC5B variant vs. nonvariant donors and observed differential ADAM17 protein
expression in separate variant-derived tissues. Taken together, the analysis presented here
supports a role for ADAM17 and its substrates in AECI loss in MUC5B-variant driven IPF.

2. Materials and Methods
2.1. Analyzed Datasets

The standard single-cell CellRanger (10X Genomics, Pleasanton, CA, USA) output
files for the IPF single-cell datasets (GSE135893, derived from investigators at Vander-
bilt University [25] and GSE161685, derived from our group at the University of Col-
orado [26]), were imported into the R programming environment (R4.1.3, The R Foun-
dation for Statistical Computing, 2022) using the Seurat software package (version 4.1.1,
https://satijalab.org/seurat/, New York, NY, USA, accessed on 19 June 2022 [28]). These
files represent deidentified, demultiplexed, aligned, single-cell and single nuclear next-gen
sequencing output from Illumina HiSeq 4000 or NovaSeq 6000 (Vanderbilt dataset), or Illu-
mina HiSeq 4000 or NextSeq 500 (Colorado dataset). The Vanderbilt samples are composed
of deceased donor lung specimens rejected for transplant or IPF lungs explanted at time
of transplant at the Norton Lung Institute in Phoenix, AZ, or Vanderbilt University. For
control lungs, multiple regions within 2 cm of the pleura were harvested for single-cell
digestion. For IPF lungs, multiple regions representing areas of disease involvement were
harvested [25]. For details on available patient demographics in the Vanderbilt dataset,
see Table S1. The Colorado dataset samples are composed of whole lung explants or
peripheral biopsy specimens from the University of Pittsburgh or the Lung Transplant
Research Consortium, flash frozen from buffered medium, and stored at −80 ◦C from the
time of harvest. Participants or kin were consented for genetic studies at the time of harvest.
Frozen tissue fragments were taken from the serosal tissue surface when identifiable on
the frozen specimen [26]. For details on patient demographics in the Colorado dataset,
see Table S2.

2.2. Single-Cell and Nuclei Sequencing Analysis

Single-cell samples from the Vanderbilt dataset were filtered for RNA count per cell
(1000 < RNA count < 30,000) and mitochondrial content (mitochondrial genes < 10% of to-
tal), and then selected for diagnosis of IPF or normal/control. Single nuclear samples from
the University of Colorado dataset were filtered for a slightly lower RNA cutoff, reflecting
the expected enrichment of RNA in nuclei (500 < RNA count < 25,000) and mitochondrial
content (<10% total genes). Samples were normalized using the SCTransform v2 function
(version 0.3.3, https://github.com/satijalab/sctransform/, New York, NY, USA, accessed
on 18 June 2022) [29], which runs an L1 (lasso)-regularized, variance-stabilized, negative
binomial regression against sequencing depth for any given barcode/cell in the dataset
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and uses the residuals to perform the normalization. Scaling, clustering, and downstream
differential expression were performed by running the “PrepSCTFindMarkers” function in
the dataset. We used the “v2” flag for “vst.flavor” and selected the top 30 principal compo-
nents. Samples were regressed against mitochondrial transcript content (as mitochondrial
transcripts become enriched in unhealthy cells). There was no significant hemoglobin
signature suggestive of red blood cell contamination in either dataset.

Once integrated, cell groups were identified by co-expression of canonical markers.
Briefly, we identified clusters containing pulmonary artery endothelial cells (PAEC, EFNB2,
HEY1+), pulmonary capillary endothelial cells (PCEC, SPARC, SGK1+), pulmonary venous
endothelial cells (PVEC, ACKR1, VWF+), and lymphatic endothelial cells (LEC, LYVE1+)
by comparing our gene expression data to a published lung endothelial cell dataset [30].
Due to the sparsity of single-cell sequencing data, clusters that were associated with
specific celltype features were assumed to contain those cells. We were similarly able
to identify epithelial subsets including AECI (AGER, PDPN, HOPX+), type-2 alveolar
epithelial cells (AECII, SFTPC, ABCA3, SLC34A2+), basal cells (TP63, SOX2, KRT5+), goblet
cells (PIGR, SCGB1A1, SPDEF+), ciliated cells (PIFO, RFX3, DNAH2+), and club cells
(FOXA1, SCGB1A1, SCGB3A2+). Stromal cells such as fibroblasts (VCAN+), myofibroblasts
(ACTA2+), alveolar macrophages (ZEB2, CD68+), non-resident macrophages (MARCO,
CD68+), B cells (MS4A1+), T cells (CD3E+), NK/NKT cells (NKG7, CD56+), and mast cells
(TPSAB1, MS4A2+) were similarly identified. Representative clusters are shown in Figure 1.
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Figure 1. (Top) UMAP clustering of the Vanderbilt IPF single-cell RNA sequencing dataset (top)
stratified by diagnosis (“Control” vs. “IPF”). (Bottom) Colorado single nuclear RNA sequencing
dataset clustered by projecting principal components onto the Vanderbilt UMAP (“refUMAP”) and
transferring celltype labels.
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Differential expression analysis was performed by specifying celltype and contrasting
by disease (“IPF” or “Control”), or, specifically using the University of Colorado dataset,
by genotype at rs35705950 (variant “TT” vs. non-variant “GG”). All differential expres-
sion analysis was performed using the Seurat function “FindMarkers,” which by default
uses a Wilcoxon rank sum test performed on corrected Poisson residuals derived from
the SCTransform v2 pipeline. Reported differences are expressed as log2 fold-change of
“reference” vs. “condition of interest” unless otherwise indicated. Reported significance
values (q) are adjusted for a 5% false-discovery rate (FDR).

Single-cell RNA sequencing populations from the larger Vanderbilt dataset were
mapped to the University of Colorado dataset. Celltype predictions were made using
Seurat [28] on the basis of the reference Vanderbilt dataset using the “FindTransferAnchors”
function followed by the “TransferData” function, which applied predictions to the query
University of Colorado dataset. Predicted celltypes in the University of Colorado dataset
were used for downstream analysis. To harmonize visualizations, the top 30 reference
principal components were projected from the Vanderbilt dataset onto the University of
Colorado dataset using the MapQuery function in Seurat.

2.3. Cell Quantification

After assigning celltype identities to each cell or nucleus in each sample as above,
numbers of cells per celltype per sample were normalized to the average number of
cells per celltype per sample. Samples were then partitioned by disease (Vanderbilt and
Colorado datasets), or by genotype (Colorado dataset). For the Vanderbilt dataset, statistical
comparisons were made using Students’ t-test with Welch’s correction, which were then
converted to FDR q values. For the Colorado dataset, the small sample size of the dataset
precluded statistical analysis of proportions for each celltype (only 2 donors per genotype
per group).

2.4. Cell–Cell Communication

To facilitate cell signaling analysis, we used the NicheNet R package (‘nichenetr’, ver-
sion 1.1.0, https://github.com/saeyslab/nichenetr, Ghent, Belgium, accessed on 28 March
2022) [27], which uses a curated, incident-ligand-based, transcriptional signature approach
to identify ligand activity in receiving cells, then filters ligand candidates by receptor
presence on the receiver and ligand expression from sending cells. Moreover, NicheNet
enables differential analysis of gene expression and is flexible to the variable abundance
of celltypes in single-cell and single nuclear sequencing. For the Vanderbilt dataset, we
followed the standard NicheNet analysis pipeline (https://github.com/saeyslab/nichenet
r/blob/master/vignettes/seurat_steps.md, accessed on 30 April 2022) stratifying samples
according to diagnosis (“IPF” or “Control”). For the Colorado dataset, we stratified samples
according to diagnosis and genotype (“GG” or “TT”). NicheNet uses a gene enrichment
process requiring estimation of the expected gene counts on the basis of features present
within the dataset. Generally, features within the “ligand_target_matrix” are filtered to
those genes within the recovered transcriptome and set as background; however, due to the
sparseness of single nuclear datasets, which biases the most highly transcriptionally active
genes, the Colorado cohort was analyzed using all genes within the “ligand_target_matrix”
as background. For the purposes of this study, the receiver celltypes of greatest interest
were AECIs. Sender celltypes included AECI—to evaluate for autocrine signaling—as
well as AECII, basal cells, ciliated cells, club cells, goblet cells, endothelial cells, fibroblasts,
macrophages, lymphocytes, and Mast cells, unless there were insufficient cell numbers
(minimum set to 3) in the reference or affected condition, in which case those celltypes
were omitted.

https://github.com/saeyslab/nichenetr
https://github.com/saeyslab/nichenetr/blob/master/vignettes/seurat_steps.md
https://github.com/saeyslab/nichenetr/blob/master/vignettes/seurat_steps.md
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2.5. Immunohistochemistry

Formalin fixed, paraffin-embedded, deidentified lung tissue specimens (n = 16 control,
n = 47 IPF) were collected from the NHLBI-sponsored Lung Tissue Research Consortium or
from the University of Colorado Hospital (COMIRB #15-1147). Control specimens were gen-
erally obtained from lungs rejected for transplant. IPF diagnosis was made by previously
published American Thoracic Society criteria [31] and was independently adjudicated by
a multidisciplinary panel at the University of Colorado on the basis of available clinical,
pathologic, and radiologic data. Specimens were previously genotyped for the MUC5B
variant (SNP rs35705950 G; T) using Taqman probes (ThermoFisher Scientific, Waltham,
MA, USA, SNP microarray, or sequencing of donor DNA [7–9]. Control and IPF samples
were similar in age (average age in controls 63.4, average age in IPF 64.1, p = 0.72) and
smoking history (11/14 controls, 38/57 IPF were former smokers, p = 0.52 by Fisher’s exact
test). Samples obtained from donors who were current smokers, had autoimmune lung
disease, or had COPD were excluded.

Tissues were deparaffinized in xylene and ethanol and antigen retrieval was under-
taken by heating for 27 min in sodium citrate buffer (10 mM, pH 6.0). Once cooled, samples
were blocked for 1 h at room temperature with phosphate-buffered saline containing
2.5% bovine serum albumin (ThermoFisher Scientific, Waltham, MA, USA). Samples were
stained overnight at 4 ◦C with polyclonal rabbit anti-ADAM17 (Proteintech, Rosemont, IL,
USA, cat. 20259-1-AP) or unimmunized rabbit IgG (Sigma-Aldrich, St. Louis, MO, USA),
washed, and stained with Alexa Fluor 488 donkey anti-rabbit IgG (Jackson ImmunoRe-
search Laboratories, Inc, West Grove, PA, USA) and DAPI (Sigma-Aldrich, St. Louis, MO,
USA). Random 20× images of each tissue were taken on a Keyence BZ-X800 fluorescent
microscope (Keyence Corporation of America, Itasca, IL, USA) without regard to specific
tissue features. Exposure times were set to minimize background staining on the basis of
rabbit isotype controls. Monochrome images for each channel were exported and analyzed
using the ImageJ software platform “Fiji” (https://github.com/fiji/fiji, Madison, WI, USA,
accessed on 13 November 2019).

3. Results
3.1. IPF Dramatically Alters Celltypes in the Lung

To gain a better understanding of IPF pathobiology we analyzed publicly available,
deidentified, single-cell and single nuclear datasets. We selected two datasets, one from
Vanderbilt University (GSE135893) [25], composed of 10 control and 12 IPF donors, and
another from our group at the University of Colorado (GSE161685), composed of 2 con-
trol and 2 IPF donors, stratified further by genotype for the MUC5B rs35705950 (G; T)
variant [26]. We recalculated coefficients for L1-regularized, negative binomial regression,
modeling each UMI count as a variable dependent on sequencing depth using SCTransform
v2 [29,32]. After identifying cell clusters in the Vanderbilt dataset on the basis of canonical
marker expression (Figure 1, see the Section 2), we were able to project celltype labels
from the Vanderbilt dataset to the University of Colorado dataset, as well as to plot single
nuclear sequencing clusters from the Colorado dataset onto the Vanderbilt UMAP scaffold
by using regularized principal components (Figure 1).

We used celltype identities from the Vanderbilt dataset to predict cellular identities
in the Colorado dataset. Median score for all predicted celltypes was 0.72 (IQR 0.56–0.85),
with the highest scoring celltype being T cells (median 0.95, IQR 0.71–0.99) and the lowest
scoring celltype being PAEC (median 0.42, IQR 0.34–0.48). AECI were in the upper end of
the identity scoring range with median of 0.9 (IQR 0.73–0.94).

We examined cellular differences in IPF lung compared to the control (Figure 2), as
well as in MUC5B variant (TT) and non-variant (GG) samples (Table 1). We noted significant
differences in the cellular content of control and IPF lungs in both datasets. In the Vanderbilt
dataset, we found a significant reduction in the number of AECI cells, with commensurate
increases in club cells and basal cells (FDR-corrected q values <0.05). We observed nominal
increases in B cells, myofibroblasts, and goblet cells, but these were not significant when

https://github.com/fiji/fiji
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corrected for multiple testing. We similarly observed a nominal decrease in PAEC cell
content. There was a trend toward increased numbers of ciliated cells in the IPF samples,
but this did not reach nominal statistical significance (p = 0.08).
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Figure 2. Box-and-whiskers plot of normalized cell counts from the Vanderbilt dataset. Black points
represent samples whose celltype proportions fall outside of the interquartile range. Asterisks
represent nominal p-values within each cell type comparing 10 control to 12 IPF samples using
Students’ t-test with Welch’s correction. p < 0.05 (*), and p < 0.005 (***). FDR-corrected values for (***),
q < 0.05.

Table 1. Predicted celltype numbers according to single nuclear RNA sequencing partitioned by
disease and MUC5B genotype in the Colorado dataset.

Predicted Celltype Control IPF GG TT

Alveolar_macrophage 1013 625 950 688
Macrophage 3223 1505 1441 3287

T_cell 158 424 197 385
NK_cell 0 0 0 0
B_cell 637 2793 1515 1915

Plasma_cell 51 616 89 578
Mast_cell 16 106 76 46
Fibroblast 207 466 320 353

Myofibroblast 27 45 20 52
Pericyte 0 0 0 0
PVEC 28 100 54 74
PCEC 350 0 37 313
PAEC 67 17 27 57
LEC 34 96 89 41

AECII 569 10 4 575
AECI 859 9 520 348

Ciliated 152 924 650 426
Goblet_cell 0 233 50 183
Club_cell 1145 873 438 1580
Basal_cell 346 703 566 483

We observed similar nuclear identity differences when we examined predicted cell-
types in the Colorado dataset partitioned by disease state or MUC5B genotype (Table 1).
Consistent with the Vanderbilt dataset, there was a dropout of AECI, as well as loss of
AECII and PCEC. We also observed increases in B cell nuclei; plasma cell nuclei; and cili-
ated, goblet, and basal cell nuclei in IPF. When stratified by genotype, there were apparent
increases in macrophage, plasma cell, AECII, goblet cell, club cell, and PCEC nuclei in the
TT donors. Given the almost negligible numbers of AECI nuclei recovered from IPF lungs,
we proceeded with cell signaling analysis in the Vanderbilt dataset.
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3.2. AECI Cell Signaling Analysis in Control and IPF Lung: Single-Cell RNA-seq

To understand how the IPF environment influences AECI cell number and function,
we analyzed the Vanderbilt dataset using the cell–cell signaling analysis package “nichen-
etr” [27]. NicheNet uses an inferential model based on prior understanding of how ligands
influence gene expression in receiver cells, then selects from potential ligands on the basis
of receptor expression by the receiver (in this case, AECI). NicheNet also examines ligand
expression in sending cells within the local environment. Identification of true signaling
pathways has been shown to be proportional to the Pearson correlation score [27].

We observed enrichment for a number of senescence, inflammation, and apoptosis-
related genes in AECI cells from IPF cases in the Vanderbilt dataset (Figure 3a). Association
analysis revealed ligand candidates among the top 20 Pearson scores, including SPP1, IL6
(and other IL6 family members, including OSM and LIF), IL1B, ADAM17, and EGFR family
members such as TGFA (Figure 3a). Likely ligand–receptor pairs were determined by
analysis of AECI receptor expression and curated interaction evidence [27] (Figure 3b).
Analysis of the transcriptomes of other celltypes in the IPF lung revealed sources of incident
signaling (Figure 3c). Likely source cells included macrophages, fibroblasts, myofibroblasts,
endothelial cells, and alveolar epithelia; several of these celltypes were noted to be increased
in IPF tissue.

Incident signals may be derived from a complex mixture of “source” cells. To con-
firm cell signals across conditions, we compared the inferred ligands to aggregated gene
expression across all cell types present in IPF or control samples in the Vanderbilt dataset.
Reasoning that relatively rare cell populations, such as fibroblasts, may make a negligible
impact on gene expression aggregated over all cells derived from IPF or Control lungs,
but may still have a large impact on neighboring cells, we ignored minimal fold-change
limits in these differential expression results. We found general agreement between the
inferential analysis in NicheNet and gene expression changes for ligands across all celltypes
stratified by condition (Table 2). Notable exceptions included ADAM17, VWF, and OSM,
which demonstrated a negative fold-change overall (Table 2). ADAM17 appeared to be
upregulated by fibroblasts and AECI but was downregulated by macrophages and alveolar
macrophages in this dataset. VWF was downregulated by PAEC, PCEC, and PVEC, but
upregulated by LEC. OSM was upregulated by alveolar macrophages but downregulated
by other cells (Figure 3c). AREG was among the likely ligands but was not within the top
20 prioritized genes (average log2 fold-change in IPF vs. control 2.3968, q = 1.29 × 10−14).
Moreover, expression of CTGF was also increased, but it was not represented within the top
20 prioritized genes (average log2 fold-change in IPF vs. control 0.4458, q = 3.15 × 10−111).

Table 2. Relationships between Pearson correlation coefficients and log2 fold change (entire Vanderbilt
dataset) for predicted active ligands impacting AECI cells. Ligands ordered according to Figure 3b.

Ligand Pearson mRNA Fold-Change
(log2, All Cells) q (FDR)

FGF2 0.1157 0.0367 NA
CDH1 0.0877 0.1666 1.02 × 10−44

IFNG 0.0967 0.2642 0.5278
TGFA 0.0856 0.0454 NA
SPP1 0.1025 2.4719 0

ADAM17 0.0925 −0.1084 1.02 × 10−10

VWF 0.0836 −0.4857 1.91 × 10−08

IL1RN 0.0914 0.8682 1.28 × 10−184

IL1B 0.0934 0.3688 1.52 × 10−18

LIF 0.0861 0.0596 2.44 × 10−21

IL6 0.1039 0.1094 1.07 × 10−11

OSM 0.0833 −0.0647 1
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Figure 3. NicheNet analysis revealed enrichment for IL1, IL6, and EGFR ligand signaling in single
cells sequenced from IPF donors. (a) Heatmap demonstrating correlation scores for regulation of
genes (columns) by potential ligand (rows). (b) Ligand−receptor heatmap demonstrating strength
of predicted interaction of ligands and receptors filtered by expression from (a). (c) Expression of
putative ligands by celltypes neighboring AECI in fibrotic lung.
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3.3. AECI Cell Signaling Analysis in Control and IPF Lung: Single Nuclear RNA-seq

To determine whether observed single-cell signaling pathways in the Vanderbilt
dataset were common to other single-cell IPF datasets, and to extend our findings to the
MUC5B variant genotype, we used NicheNet to analyze the Colorado dataset. Due to the
sparseness of single nuclear data, we set the background of expressed genes to all genes
contained within the NicheNet “ligand_target_matrix,” rather than filtering these only for
genes that could be detected [27]. In general, we found broad agreement among inferred
ligands between the Vanderbilt dataset and the Colorado dataset when we compared IPF to
control tissues (Figure 4). We observed enrichment for signatures of SPP1, ADAM17, CTGF,
FGF7, AREG, and TNFSF10, as well as others, but did not find support for SPP1, ADAM17,
or CTGF differential expression on the basis of aggregate expression (Table 3). Review of
cell-specific expression revealed upregulation of SPP1 almost exclusively by non-alveolar
macrophages, and these data were significant when this celltype was specified (average log2
fold-change 1.0290, q = 8.5428 × 10−43). ADAM17 was upregulated by macrophages, AECI,
and AECII, but downregulated by fibroblasts and myofibroblasts in IPF lung. Conversely,
CTGF was generally downregulated or neutral by most examined cells, save PAEC, which
upregulated it slightly.

Table 3. Differential expression results for selected inferred ligands in the Colorado single nuclear
dataset. Predicted ligands ordered based on Pearson score in the Vanderbilt dataset. Fold-change
(log2) represents all IPF samples compared to control.

Ligand Pearson Fold-Change
(log2, All Cells) q (FDR)

SPP1 0.0238 0.1883 1
ADAM17 0.0254 −0.2476 3.78 × 10−61

AREG 0.0314 0.0776 9.23 × 10−5

CTGF 0.0338 −0.0559 1.45 × 10−25

FGF7 0.0277 0.0838 0.0831
TNFSF10 0.0225 0.0715 9.71 × 10−20

We also noted the absence of inflammatory genes including IL6, TNF, and IL1B in
the Colorado dataset. These genes were recovered at extremely low rates from the single
nuclear dataset compared to single-cell data (IL6 in Vanderbilt dataset, 3.2–4.9%, Colorado
dataset 0.1%; TNF in Vanderbilt dataset 8.6–12.6%, Colorado dataset 1–3%; IL1B in Vander-
bilt dataset 12.9–16.6%, Colorado dataset 0.1–0.2%) and were filtered out of the analysis.
Nevertheless, given the otherwise consistent ligand enrichment between IPF cases in the
Colorado dataset and IPF cases in the Vanderbilt dataset (Figure 4), we decided to evaluate
expression of candidate ligands on the basis of MUC5B variant genotype.

3.4. AECI Cell Signaling Analysis in MUC5B Variant Carriers

We confirmed that MUC5B expression was increased across aggregated cells in variant
vs. non-variant carriers (average log2 fold-change 0.1152, q = 4.8330 × 10−18); however,
the adjusted difference specifically in AECI was not significant (average log2 fold-change
0.0287, p = 0.001, q = 1), suggesting AECI are not intrinsically influenced by the MUC5B vari-
ant. We also observed considerable attrition of AECI cells among IPF cases in the Colorado
cohort (only 1% of the AECI counts in controls), and due to the small sample size, these
comparisons were skewed toward the control donor in each group. Nevertheless, using
aggregated comparisons (expressed genes across all “TT” vs. “GG” cells, independent of
identity), we found that ADAM17, CTGF, and AREG were upregulated in MUC5B variant
samples relative to nonvariant samples. The major contributor of ADAM17 expression in
MUC5B variants were myeloid-derived cells and AECII. AECI also upregulated ADAM17,
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suggesting autocrine signaling (average log2 fold-change 0.1379). Likewise, the major con-
tributor of CTGF expression in variant-derived nuclei were fibroblasts and myofibroblasts.
Finally, AREG was upregulated considerably by Mast cells in the TT lung, as well as AECII
(average log2 fold-change 0.6948 and 0.3483, respectively).

3.5. Receptor Signatures among AECI in IPF and MUC5B Variant Carriers

We performed a secondary analysis to determine whether receptor upregulation could
account for the NicheNet inferences of ligand activity in target AECI cells stratified by
disease or genotype. Due to its potential pathobiologic relevance, we returned to examining
the expression of TNFSF10, the TRAIL ligand, and its receptors in IPF in the Vanderbilt
dataset. While Pearson inference suggested enrichment for TNFSF10 signaling in IPF
AECI, the average log2 fold-change was negative and non-significant (Pearson 0.0693,
average log2 fold-change −0.1873, q = 1). However, receptor expression for TNFSF10 is
increased in IPF AECI (TNFRSF10B, average log2 fold-change 0.3659; TNFRSF10C, average
log2 fold-change 0.4428) supporting a role for TNFSF10 signaling. Moreover, TNFSF10
ligand expression was increased in a celltype-specific fashion in IPF by Mast cells (average
log2 fold-change 0.7707), PCEC (average log2 fold-change 0.2835), AECII (average log2
fold-change 0.1631), ciliated cells (average log2 fold-change 0.0831), club cells (average
log2 fold-change 0.4200), goblet cells (average log2 fold-change 0.1856), and basal cells
(average log2 fold-change 1.0982). Conversely, we did not find evidence of significant
variable expression of receptors for IFNG, OSM, or TGFA, although these were highlighted
by NicheNet in initial analysis (Figure 3, Table 2).

To determine whether receptor rather than ligand upregulation could account for
pathway activity in MUC5B variants, we analyzed receptor expression for AECI in the
Colorado dataset. SPP1, FGF7, and TNFSF10 were downregulated in MUC5B variant (TT)
relative to non-variant (GG) nuclei. We found that, although FGF7 expression was down-
regulated (average log2 fold-change −0.1196, q = 2.2011 × 10−9), particularly in fibroblasts
(average log2 fold-change −0.9590), receptor expression on AECI was upregulated (FGFR2
log2 fold-change 0.0573, q = 1; DDR1, log2 fold-change 0.1213, q = 0.0055). Moreover, we
observed that, while TNFSF10 expression, on average, decreased (average log2 fold-change
−0.0608, q = 2.82 × 10−06), similar to the Vanderbilt dataset, expression by PCEC and
AECII was increased (average log2 fold-change 0.3439, and 0.1545, respectively). Receptor
expression remained unchanged. These data support a possible role for FGF7 and TNFSF10
signals in MUC5B variant-derived AECI.

3.6. ADAM17 Is Enriched in MUC5B Variant Carriers

The matrix metalloproteinase ADAM17 acts upstream of AREG, LIF, TGFα, TNFα,
OSM, and IL6 trans-signaling [33]. Given the presence of these signals in IPF lung (Figures 3
and 4), the importance of AREG and IL6 pathways in IPF [22–24,34–38], and the finding that
ADAM17 signals were increased in AECI from MUC5B variants (Figure 4), we hypothesized
that excessive ADAM17 signals in MUC5B variants could precipitate development of IPF.
We found that ADAM17 staining intensity was increased among MUC5B variant carriers in
lung tissues derived from non-IPF donors (Figure 5). These data confirm that ADAM17 is
increased in prefibrotic MUC5B variant lungs.
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Figure 4. Heatmap depicting Pearson correlation enrichment scores based on NicheNet analysis
of AECI from MUC5B variant (TT vs. GG, “Genotype”) and IPF vs. control (“Disease”) samples
from the Colorado single nuclear RNA sequencing dataset, and IPF vs. control samples (“Disease”)
from the Vanderbilt single-cell RNA sequencing dataset. Samples are scaled and sorted according to
correlation score from the Vanderbilt dataset.



Cells 2022, 11, 3319 12 of 17

Cells 2022, 11, x FOR PEER REVIEW 12 of 18 
 

 

expression of receptors for IFNG, OSM, or TGFA, although these were highlighted by  
NicheNet in initial analysis (Figure 3, Table 2). 

To determine whether receptor rather than ligand upregulation could account for 
pathway activity in MUC5B variants, we analyzed receptor expression for AECI in the 
Colorado dataset. SPP1, FGF7, and TNFSF10 were downregulated in MUC5B variant (TT) 
relative to non-variant (GG) nuclei. We found that, although FGF7 expression was down-
regulated (average log2 fold-change −0.1196, q = 2.2011 × 10−9), particularly in fibroblasts 
(average log2 fold-change −0.9590), receptor expression on AECI was upregulated (FGFR2 
log2 fold-change 0.0573, q = 1; DDR1, log2 fold-change 0.1213, q = 0.0055). Moreover, we 
observed that, while TNFSF10 expression, on average, decreased (average log2 fold-
change −0.0608, q = 2.82 × 10−06), similar to the Vanderbilt dataset, expression by PCEC and 
AECII was increased (average log2 fold-change 0.3439, and 0.1545, respectively). Receptor 
expression remained unchanged. These data support a possible role for FGF7 and 
TNFSF10 signals in MUC5B variant-derived AECI. 

3.6. ADAM17 Is Enriched in MUC5B Variant Carriers 
The matrix metalloproteinase ADAM17 acts upstream of AREG, LIF, TGFα, TNFα, 

OSM, and IL6 trans-signaling [33]. Given the presence of these signals in IPF lung (Figures 
3 and 4), the importance of AREG and IL6 pathways in IPF [22–24,34–38], and the finding 
that ADAM17 signals were increased in AECI from MUC5B variants (Figure 4), we hy-
pothesized that excessive ADAM17 signals in MUC5B variants could precipitate develop-
ment of IPF. We found that ADAM17 staining intensity was increased among MUC5B 
variant carriers in lung tissues derived from non-IPF donors (Figure 5). These data con-
firm that ADAM17 is increased in prefibrotic MUC5B variant lungs. 

 
Figure 5. ADAM17 protein was increased among MUC5B variant carriers. (a) Representative im-
munofluorescence images of ADAM17 expression (green) among control (top) and IPF (bottom), 
MUC5B nonvariant (G), and MUC5B variant (T) carriers. (b) Semiquantitative analysis of ADAM17 
staining normalized to number of nuclei per 20× field. Each bar represents the median of acquired 
data with p < 0.05 (*, Kruskal–Wallace test). Scale bar (bottom, right) = 50μm. 

4. Discussion 
In this report, we utilized publicly available single-cell and single nuclear datasets to 

investigate cell–cell communication in the IPF lung. We found, consistent with our previ-
ous data [22,24], that the EGFR ligand AREG and the cytokine IL6 may play significant 

Figure 5. ADAM17 protein was increased among MUC5B variant carriers. (a) Representative
immunofluorescence images of ADAM17 expression (green) among control (top) and IPF (bottom),
MUC5B nonvariant (G), and MUC5B variant (T) carriers. (b) Semiquantitative analysis of ADAM17
staining normalized to number of nuclei per 20× field. Each bar represents the median of acquired
data with p < 0.05 (*, Kruskal–Wallace test). Scale bar (bottom, right) = 50 µm.

4. Discussion

In this report, we utilized publicly available single-cell and single nuclear datasets
to investigate cell–cell communication in the IPF lung. We found, consistent with our
previous data [22,24], that the EGFR ligand AREG and the cytokine IL6 may play significant
complimentary roles in influencing AECI loss in IPF. We also find evidence of roles for
TNF, IL1B, LIF, SPP1, FGF7, and TNFSF10 on AECI biology (Figure 6). Moreover, we found
that, among single nuclei isolated from MUC5B variant vs. non-variant lungs, signatures
of AREG, ADAM17, and CTGF were increased. Given our recent data [22] and [24], the
finding that AREG expression and signaling in AECI associates with MUC5B genotype
suggests a pathophysiologic association contributing to IPF development. We now extend
these findings by showing that the MUC5B promoter variant is associated with increased
ADAM17 expression and signaling in non-fibrotic lungs.

The emergence of ADAM17 as a significant contributor to AECI cell signals on the
basis of the MUC5B variant could have implications for disease pathobiology. ADAM17
is involved in a variety of inflammatory processes, including activation and release of
TNF, modulation of neuregulins such as AREG [39], and being a necessary cofactor for IL6
trans-signaling [33,40], which has been shown to promote pulmonary fibrosis in bleomycin
injury [23,41,42]. Importantly, ADAM17 has been shown to be upregulated by endoplas-
mic reticulum stress [41], which is a proposed mechanism of MUC5B variant-dependent
IPF [42,43].

Recently, some researchers have described the presence of “aberrant basaloid” cells in
IPF [25,44]. Other researchers have shown that incident cytokine and morphogen signals
acting on AECII may promote transdifferentiation of AECII to basaloid and airway lineages,
which overlap with KRT5 [45] and KRT17 expression [46,47]. AECI examined in this dataset
do not express KRT5 or KRT17 (see Figure S1A); however, we can corroborate increases in
the prevalence of basaloid cells in IPF cases among the Vanderbilt and Colorado datasets
and have likewise identified signatures of airway metaplasia (Figure 2, Table 1). Moreover,
researchers have described a pre-alveolar transitional cell state (PATS) characterized by
KRT19 expression [48]. The AECI in this manuscript largely expresses AGER, a marker
of AECI, and as a consequence do not express KRT19 (see Figure S1B). Nevertheless,
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we find that AECI in IPF do express KRT8 (see Figure S1C). KRT8 has been flagged by
researchers as a marker of impaired AECI differentiation [49,50] and is shared by the
transient AECI differentiation states described above (basaloid and PATS). Our work does
not specifically identify which cytokines or morphogens may be involved in differentiation
of these transient subsets, but we note that the attrition of AECI appears to correlate with
IL6 and EGFR signaling pathways. Further investigation into whether IL6 or AREG signals
are sufficient or for AECI loss, and whether aberrant or transdifferentiation of AECII is
responsible for AECI cell loss, will be necessary.
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Figure 6. Circos plot of ligand–receptor pairs impacting AECI in the IPF lung. Data derived from the
Vanderbilt single-cell dataset. Selected ligands represent those enriched in IPF over control. Receptors
represent those expressed by AECI. Colors represent sending celltypes as indicated by the legend.

To our knowledge, this is among the first applications of NicheNet to single-cell
signaling in the lung. NicheNet analysis combines the strengths of gene coexpression
approaches to define signaling ligands with single-cell approaches to specifically define
receptor and ligand pairs. The results of this analysis were broadly consistent across two
very different datasets, highlighting the robustness of the approach. Moreover, our analysis
specifically targeted a celltype—AECI—which demonstrates marked attrition from diseased
tissues. Due to their highly interconnected anatomy, AECI are difficult to disaggregate
from the lung, advantaging single nuclear RNA sequencing approaches for reliable study.
Other cell types within the lung are also amenable to NicheNet analysis, including ciliated
cells, which were not numerically significantly increased in IPF in this investigation but
have been found to be increased in IPF lung elsewhere [51]. Additional targets amenable to
the NicheNet approach in future studies include PCEC, which, commensurate with loss of
AECI, were markedly missing from IPF tissues.

Limitations of this study include the small numbers of AECI recovered from IPF tissue
and discrepancies between single nuclear RNA sequencing and single-cell RNA sequencing,
which limited our ability to confirm IL1B, TNF, and IL6 differential expression in IPF in the
Colorado dataset. TNF mRNA in particular is well known to be translationally regulated;
whether mRNA stability drives the discrepancy in transcript abundance between cells and
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nuclei in the two datasets is unclear. Other authors have shown that inflammatory genes are
relatively enriched by single-cell preparation vs. nuclear RNA-seq [52]; however, they have
attributed this enrichment of inflammatory transcripts among single cell RNA-seq studies
to proteolytic processing necessary for cell isolation, rather than a byproduct of subcellular
localization. Other inconsistencies across the datasets may be related to heterogeneity of
disease in available tissue, lack of AECI in IPF samples to make these studies more robust,
and the significant size limitations of the Colorado dataset. Finally, the data described
here are largely inferential; further experiments to confirm presence or absence of ligands
apart from ADAM17, presence of ADAM17 enzymatic activity among variants, and gain-
of-function/loss-of-function studies will be necessary to confirm these results.

5. Conclusions

Single-cell and single nuclear RNA sequencing validate roles for AECI attrition con-
tributing to pulmonary fibrosis. Signatures of AREG, IL6, and TNFSF10 signaling in
fibrotic lung suggest possible mechanisms of disease maintenance and AECI cell loss.
Moreover, in MUC5B variant carriers, expression of AREG and ADAM17 could contribute
to the pathophysiology of lung injury. The role of these pathways and their relevance
for AECI attrition will require further development of appropriate gain-of-function and
loss-of-function models of AECI biology.
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