
Molecules 2012, 17, 13605-13621; doi:10.3390/molecules171113605 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Review 

Organophosphorus Chemistry for the Synthesis of Dendrimers 

Anne-Marie Caminade 1,2,*, Régis Laurent 1,2, Maria Zablocka 1,2,3 and Jean-Pierre Majoral 1,2 

1 CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, F-31077 

Toulouse Cedex 4, France; E-Mails: rlaurent@lcc-toulouse.fr (R.L.); majoral@lcc-toulouse.fr (J.-P.M.) 
2 Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France 
3 Centre of Molecular and Macromolecular Studies, The Polish Academy of Sciences,  

Sienkiewicza 112, 90363 Lodz, Poland; E-Mail: zabloc@cbmm.lodz.pl 

* Author to whom correspondence should be addressed; E-Mail: caminade@lcc-toulouse.fr;  

Fax: +33-561-553-003. 

Received: 31 October 2012; in revised form: 9 November 2012 / Accepted: 12 November 2012 / 

Published: 16 November 2012 

 

Abstract: Dendrimers are multifunctional, hyperbranched and perfectly defined 

macromolecules, synthesized layer after layer in an iterative manner. Besides the nature of 

the terminal groups responsible for most of the properties, the nature of the internal 

structure, and more precisely of the branching points, is also of crucial importance. For 

more than 15 years, we have demonstrated that the presence of phosphorus atom(s) at each 

branching point of the dendrimeric structure is particularly important and highly valuable 

for three main reasons: (i) the versatility of phosphorus chemistry that allows diversified 

organochemistry for the synthesis of dendrimers; (ii) the use of 31P-NMR, which is a 

highly valuable tool for the characterization of dendrimers; (iii) some properties (in the 

fields of catalysis, materials, and especially biology), that are directly connected to the 

nature of the internal structure and of the branching points. This review will give an 

overview of the methods of synthesis of phosphorus-containing dendrimers, as well on the 

ways to graft phosphorus derivatives as terminal groups, with emphasis on the various 

roles played by the chemistry of phosphorus. 
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1. Introduction 

Dendrimers [1] have an aesthetic structure constituted of branching units emanating radially from a 

central core. They are synthesized step-by-step in an iterative fashion. Each time the number of 

terminal groups is multiplied, a new generation is created. Due to this highly controlled synthesis, 

dendrimers offer a perfect modularity of size (a few nanometers), functionality, and solubility, mainly 

depending on the type of their terminal groups. Scheme 1 displays the principles of the divergent 

process, most generally used for the synthesis of dendrimers. 

Scheme 1. The principle of the divergent synthesis of dendrimers. 

 

Among all types of dendrimers [2], phosphorus-containing dendrimers [3] that have one phosphorus 

atom at each branching point, play an important role, with applications ranging from catalysis [4], 

materials [5], and even biology/nanomedicine [6]. This review will focus on our work, emphasizing 

the role of phosphorus [7]. It will be organized depending on the type of reactions that will occur on 

phosphorus atoms, whatever their location. All the other reactions of phosphorus-containing 

dendrimers, but not occurring on the P atoms will not be displayed, except if they are a necessary 

pathway towards the chemistry of phosphorus, or for the grafting of phosphorus entities. 

2. Substitution Reactions on P-Cl Functions for the Synthesis and Functionalization of Dendrimers 

Our first and main method of synthesis of phosphorus dendrimers [8] consists in the repetition  

of two quantitative reactions, the first step being the nucleophilic substitution of Cl by  

4-hydroxybenzaldehyde in basic conditions. The second step is the condensation of the aldehydes with 

the dichlorophosphothiohydrazide. This compound is also issued from the organic chemistry of 

phosphorus (substitution of one Cl of P(S)Cl3 with methylhydrazine, at low temperature). This second 

step generates P-Cl2 functions suitable to perform again substitutions with HOC6H4CHO (Scheme 2). 

Scheme 2. The most important method of synthesis of phosphorus dendrimers. 
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This method is very powerful and has been carried out up to generation 8 starting from N3P3Cl6 [9], 

and to generation 12 (the highest generation ever synthesized for any type of dendrimers) from  

P(S)Cl3 [10]. The substitution reaction of P-Cl by phenols is quantitative in most cases, using <5% 

excess of reagents. It is particularly powerful for the functionalization of the surface of dendrimers, 

with variously functionalized phenols depending on the desired properties. Several examples are 

displayed in Figure 1. One can cite in particular the aldehyde (for the elaboration of DNA chips) [11], 

various ferrocenes (for studying electrochemical properties [12], evolution of chirality [13], and for 

catalysis [14]), various ligands suitable for catalysis such as derivatives of triphenylphosphine [15] (also 

precursors of phosphoniums [16]), thiazolylphosphines [17], iminophosphines [18], diphosphines [19], 

diketones [20], or azabis-oxazolines [21], dithioesters for thioacylation reactions (R = Me) [22] or as 

precursors of star polymers (R = CH2Ph) [23]. Several fluorophores such as maleimide derivatives [24], 

dansyl derivatives [25] and also dabsyl dyes and protected tyramine [26], or fluorophores having  

two-photon absorption (TPA) properties [27], with eventually interchromophoric activities [28], or 

third order non-linear properties [29], have been grafted thanks to the reactivity of phenols, as well as 

D-xylose derivatives [30], phosphonates as precursors of anti-HIV derivatives [31], and 

azabisphosphonates (and isosteric carboxylic esters analogues [32]) precursors of symmetrical [33] or 

non-symmetrical [34] azabisphosphonic salts having important biological properties. In all cases,  

31P-NMR is a precious tool for characterizing these dendrimers and the achievement of the reactions [35]. 

Figure 1. Functionalized phenols that have been grafted to dendrimers ended by P(S)Cl2 functions.  
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The substitution reactions with phenols are also usable for varying the internal structure of 

dendrimers, by replacing 4-hydroxybenzaldehyde by other phenol aldehydes (Figure 2). Among them, 

one can cite the possibility to have various ferrocenes [12,36,37], longer branches [38], fluorophores [39], 

azobenzenes [40], or dialdehydes [41] for multiplying rapidly the number of terminal functions. 

Figure 2. Some phenol aldehydes used instead of HOC6H4CHO for the synthesis of dendrimers. 

 

We have also attempted to use the substitution reactions of hydrazines for the synthesis of 

dendrimers [42,43]. The most recent example is shown on Scheme 3 [44]. However, none of them give 

perfectly quantitative yields, and they have been carried out only up to the first generation.  

Scheme 3. Synthesis of a small dendrimer via substitutions with methylhydrazine. 

 

On the contrary, the substitution reactions with amines are very powerful for functionalizing the 

surface of dendrimers, starting from P(S)Cl2 end groups (Figure 3). Among them, one can cite in 

particular allyl and propargyl amines [45], and also diethylethylenediamine, which affords in a single 

step water-soluble dendrimers; HCl generated by the substitution reaction is trapped by the tertiary 

amine [46]. Water-soluble dendrimers [47] have important biological properties [48], but those ones 

possess interesting properties both in the fields of materials (for the elaboration of nano-tubes [49] and 

micro-capsules [50], of highly sensitive DNA chips [51]), and biology (transfection agents [46], anti-prion 

agents [52], anti-aggregation agent of Alzheimer peptides [53]). Other types of diamines, such as 

morpholine or piperidine derivatives have also been used [54]. In another example, both Cl linked to 

the same P react with a single diamine, creating a diazaphospholane cycle. This cycle can be obtained from 

various macrocycles [55], or can be linked to a macrocycle that is able to complex Pd0 [56] or Pt0 [57], to 

create nanoparticles of these metals, and even to organize them in dendritic networks [58]. 

The reactions with amines are also suitable to perform clean monosubstitutions on each P(X)Cl2  

(X = S, O) end group. The reaction is regiospecific, but not enantioselective. The monosubstitution 

with amines leads to dendrimers with two, three, and even four unique functional groups on each chain 
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end [59]. The second substitution can be performed with another amine, but also with phenols, in 

particular HOC6H4CHO, leading to dendrimers having functions in the internal structure [60] (Figure 4). 

Figure 3. Functionalization of the surface of dendrimers by amino derivatives (only one 

function is shown, representative of all the terminal groups).  

 

Figure 4. Multifunctionalization of the surface of dendrimers, and of the internal structure. 

 

3. Diverse Ways for Grafting Phosphorus Entities as Terminal Groups 

Diverse reactions have been performed to graft phosphorus derivatives as terminal groups of 

dendrimers. They can be divided into two types: those occurring on phosphorus, and those occurring 

on a function linked to phosphorus. In the first case, two different types of reactions have been 

performed: the addition of P-H onto unsaturated bonds such as aldehydes and imines [61], and the 

substitution reactions of P-Cl with N-H functions, from hydrazones [62] or amines [63] (Scheme 4). 

Scheme 4. Functionalization of terminal groups by direct reaction of phosphorus derivatives. 
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Various phosphorus derivatives, in particular phosphines and phosphonates or phosphates, have 

been grafted to the terminal groups of dendrimers essentially through condensation reactions, addition 

reactions and “click” reactions. The condensation reaction of hydrazones with aldehydes has afforded 

phosphites, phosphates or aminophosphates as terminal groups [61], whereas the condensation with 

Ph2PCH2OH on chiral amines (or hydrazone [64]) has led to chiral phosphines [65]. Addition  

reactions of amino groups onto unsaturated bonds have led to the grafting of ylides [61], or  

gem-bisphosphonates [66]. Alkylation of one nitrogen of PTA (phosphatriazaadamantane) has led to 

the grafting of one [67] or two [68] PTA per terminal function. Finally, the “click” reaction (azides 

with alkynes) has led to the grafting of azabisphosphonate groups [69] (Scheme 5). 

Scheme 5. Other types of reactions for the grafting of phosphorus derivatives as terminal groups. 

 

4. Staudinger Reactions and Subsequent Reactions 

The Staudinger reaction of phosphines with azides creates P=N functions; which are generally 

sensitive to hydrolysis. However, if the P=N function is conjugated, its stability is largely increased. 

Thus, instead of using organic azides, we have used thiophosphoryl azides, to generate P=N-P=S 

functions (or eventually P=N-P=N functions when using azides linked to the cyclotriphosphazene, as 
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shown in the following scheme). We have synthesized several types of monomers to use alternatively 

the condensation reaction (aldehyde with hydrazine) and the Staudinger reaction. These monomers 

comprise either phosphines and hydrazine, or aldehydes and azide, in a 2/1 [70] or 5/1 ratio [71], 

eventually in combination [72]. Using these monomers allows a rapid multiplication of the number of 

terminal groups, and creates a new generation at each step and not every two steps as usual. This 

method of synthesis is also compatible with the first one mentioned in Scheme 2 (Scheme 6) [73]. 

Scheme 6. Two methods of synthesis of dendrimers by Staudinger reactions. 

 

The compatibility of the Staudinger reaction with the condensation reaction allows having P=N-

P=S linkages selectively at one or two layers. The P=S groups linked to a P=N group have 

distinguishable properties compared to the other P=S groups, due to a delocalized form +P-N=P-S−, 

with a negative charge on S, which renders it sensitive to alkylation reactions [74] using various 

triflates [75] whereas the other P=S groups do not react. It is also suitable for the complexation of  

gold [76]. The alkylation induces a weakening of the PS bond, which can be cleaved using a 

nucleophilic phosphine such as P(NMe2)3. This reaction generates tricoordinated phosphorus atoms 
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(PIII) at specific layers of the internal structure, that can be used for alkylation reactions, and can 

undergo Staudinger reactions creating P=N-P=N-P=S linkages [77]. The presence of aldehydes inside 

the dendrimers allows either the step-by-step growing of new branches [78] (Scheme 7), or the grafting 

of dendrons, leading to highly sophisticated dendrimeric structures [79], still unprecedented for any type of 

dendrimers, but also the grafting of new functions such as fluorescent groups [80], or zwitter-ions [81].  

Scheme 7. Reactivity of the P=N-P=S linkages and growing of new branches inside the dendrimer. 

 

The P=N-P=S linkage is also able to activate vinyl groups linked to the phosphazene, and used as 

core of dendrons (dendritic wedges). Different types of amines were used for Michael-type additions, 

suitable for grafting together by their core two dendrons which differ by their terminal functions such 

as nitrile, amine or phosphine [82] but also amine and carboxylate [83], leading to “Janus” dendrimers [84] 

(Scheme 8). 

Scheme 8. Example of synthesis of a Janus dendrimer, thanks to the presence of P=N-P=S linkages. 
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5. Wittig and Horner-Wadsworth-Emmons Reactions  

We have used this classical phosphorus reaction for the functionalization of the terminal groups of 

dendrimers, starting from the aldehyde functions. The Wittig reaction was used in particular for the 

grafting of ketone and nitrile [45], or tetrathiafulvalene (TTF) derivatives, including one with a 

macrocyclic substituent, suitable for the electrochemical sensing of Ba2+ [85]. The Wittig reaction was 

also applied when only half of the terminal groups were aldehydes [59], or ylides [61] (Scheme 9).  

Scheme 9. Use of the Wittig reaction for the functionalization of the surface of dendrimers. 

 

The Horner-Wadsworth-Emmons reaction has been applied to the aldehyde terminal functions, 

affording predominantly the E isomers, in particular for the grafting of aminoacids [86] (Scheme 10). 

Scheme 10. Horner-Wadsworth-Emmons reaction for the grafting of aminoacids. 

 

6. Cleavage of P-OR Bonds 

In the course of our studies about the physico-chemical properties of phosphorus dendrimers, we 

have studied their thermal stability, and discovered that in many cases the first mass loss corresponds 

to the peeling of the surface, thus to the cleavage of the P-OR terminal groups at high temperature 

(above 200 °C for the least stable, but generally above 350 °C) [87]. Such cleavage has been also 

observed in the case of diketone terminal groups used for the complexation of copper, then for 

catalyzing diarylether formation at 120 °C. The efficiency of the catalysis was found independent of 

the generation of the dendrimer, and no reuse was possible, contrarily to what we had observed in all 



Molecules 2012, 17 13614 

 

 

previous examples of catalysis [88]. Studying in details the reaction media after catalysis, we found a 

large amount of the monomer, resulting from the cleavage of the surface of the dendrimers. It must be 

noted that the cleavage is due to the catalysis, since the dendrimer is recovered intact in the same 

conditions, but in the absence of metal (Scheme 11) [17].  

Scheme 11. Cleavage of P-OR bonds in catalysis conditions. 

 

The dendrimers ended by azabisphosphonate groups are not easily soluble in water, thus we tried to 

obtain phosphonic acid instead of phosphonate terminal groups. For this purpose, the first step is the 

reaction with bromotrimethylsilane, which generates P-O-SiMe3 groups, subsequently hydrolyzed. The 

last step is the reaction with NaOH (Scheme 12), affording water-soluble dendrimers [89], which 

possess very important biological properties [90], in particular towards the human immune system [91], 

as anti-inflammatory drug [92], and against rheumatoid arthritis [93]. 

Scheme 12. Cleavage of P-OMe bonds while preserving P-OAr bonds. 

 

7. Conclusions  

A large panel of organophosphorus reactions has been used for the synthesis of phosphorus-containing 

dendrimers. Besides the efficiency of these reactions, the simplicity of characterization of these large 

compounds by 31P-NMR has to be emphasized. Indeed, even highly sophisticated structures can be 

totally analyzed by 31P-NMR [78]. It must be emphasized also that the presence of phosphorus leads to 

unprecedented properties, particularly in the fields of catalysis, materials, and biology. 

Besides our work, which has been largely displayed in this review, a few other groups have reported 

the synthesis of phosphorus-containing dendrimers. We have to mention in particular the pioneering 

work made by R. Engel (polyphosphonium dendrimers) [94], M. J. Damha (nucleic acid dendrimers) [95], 

and D. L. DuBois (small polyphosphines) [96]. Later on, large polyphosphine dendrimers have been 

proposed by A. K. Kakkar [97], and also thiophosphate dendrimers by G. M. Salamonczyk [98] based 

on the use of phosphoramidite reagents. Taken all together, these researches demonstrate the rich 

diversity of the chemistry of phosphorus, even when applied to nano-objects such as dendrimers. 
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