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Transcription factors are key players in the control of the activation or repression of

gene expression programs in response to environmental stimuli. The study of regulatory

networks taking place in fungal pathogens is a promising research topic that can

help in the fight against these pathogens by targeting specific fungal pathways as

a whole, instead of targeting more specific effectors of virulence or drug resistance.

This review is focused on the analysis of regulatory networks playing a central role

in the referred mechanisms in the human fungal pathogens Aspergillus fumigatus,

Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida parapsilosis,

and Candida tropicalis. Current knowledge on the activity of the transcription factors

characterized in each of these pathogenic fungal species will be addressed. Particular

focus is given to their mechanisms of activation, regulatory targets and phenotypic

outcome. The review further provides an evaluation on the conservation of transcriptional

circuits among different fungal pathogens, highlighting the pathways that translate

common or divergent traits among these species in what concerns their drug resistance,

virulence and host immune evasion features. It becomes evident that the regulation of

transcriptional networks is complex and presents significant variations among different

fungal pathogens. Only the oxidative stress regulators Yap1 and Skn7 are conserved

among all studied species; while some transcription factors, involved in nutrient

homeostasis, pH adaptation, drug resistance and morphological switching are present

in several, though not all species. Interestingly, in some cases not very homologous

transcription factors display orthologous functions, whereas some homologous proteins

have diverged in terms of their function in different species. A few cases of species

specific transcription factors are also observed.
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INTRODUCTION

Infections caused by fungal pathogens have become a relevant
threat to human health as their prevalence has continuously
increased over the past decades (Perlroth et al., 2007; Miceli
et al., 2011; Miceli and Lee, 2011). Three genera are particularly
significant as human pathogens: fungi belonging to the
Aspergillus spp. and yeasts from Cryptococcus spp. and Candida
spp. Infections caused by these pathogens are especially severe
in immunocompromised patients, particularly HIV-infected,
cancer and transplant patients (Sims et al., 2005; Chauhan et al.,
2006; Pongpom et al., 2015; Schmalzle et al., 2016).

Infection niches and mechanisms diverge according to
specific traits of each organism. Infections by Aspergillus
fumigatus start in the pulmonary epithelia and evolve into
allergic bronchopulmonary aspergillosis, aspergilloma, invasive
pulmonary aspergillosis and hematogenously disseminated
aspergillosis (Brown and Goldman, 2016). On the other hand,
infections by the pathogenic yeast Cryptococcus neoformans are
primarily pulmonary, persisting for long periods of time, and
then spreading to the central nervous system (CNS) (Hole and
Wormley, 2016). On the contrary, infections by Candida spp. are
established in mucosal and cutaneous surfaces, translating into
systemic infections with high tissue burden if able to invade and
reach the bloodstream (Pfaller and Diekema, 2007; Azie et al.,
2012; Montagna et al., 2013; Papon et al., 2013).

The severity of infections caused by fungal pathogens is
associated with a concerted interplay between antifungal drug
resistance, virulence and immune system evasion features.
Therefore, it is pertinent not only to study the referred
mechanisms, but also the transcriptional networks controlling
such traits. This knowledge is crucial to identify new therapeutic
targets, while ultimately helping to overcome fungal infections.

This review will focus on the transcriptional regulation of
antifungal drug resistance, virulence and immune system evasion
mechanisms employed by Aspergillus fumigatus, Cryptococcus
neoformans and the four most prevalent Candida species:
Candida albicans, Candida glabrata, Candida parapsilosis, and
Candida tropicalis. This comprehensive analysis aims to identify
and compare conserved transcriptional regulators among the
indicated organisms, while also contributing to find additional
uncharacterized homologs, whose functional analysis may bring
further light to these multifactorial processes. This inter-species
comparison will provide a better understanding of the regulatory
networks applied by fungal pathogens to regulate crucial features
for their pathogenic nature and of their variability and evolution
among the considered species.

Transcription factors described as relevant regulators of drug

resistance, virulence traits and host immune evasion among A.

fumigatus, C. neoformans, and Candida spp. were selected and
used to study the variability of regulatory networks governing
these processes. Resorting to the Phylome Database (http://
phylomedb.org/), the phylomes of each transcription factor were
then used to search for protein phylogenies with the objective
of identifying predicted homologs in the remaining species.
BLASTp analysis was used to complement the Phylome DB data
by searching for homologous sequences in the studied species

(considering as threshold E < 10−50). The amino acid sequences
of the studied transcriptional regulators in A. fumigatus,
C. neoformans and Candida spp. were retrieved from the
Aspergillus Genome Database (http://www.aspergillusgenome.
org/), Cryptococcus neoformans TF Phenome Database (http://
tf.cryptococcus.org/), Candida Genome Database (http://www.
candidagenome.org/), and EnsemblFungi (http://fungi.ensembl.
org/) (for C. tropicalis), respectively. For tree representation,
the MEGA 7 software (http://www.megasoftware.net/) was
used to perform multiple sequence alignments and tree
visualization. Combining this bioinformatics approach with
already described information for characterized transcription
factors and their regulatory targets, an inter-species comparison
of the transcriptional networks governing important traits such
as drug resistance, virulence and immune evasion in yeast and
fungal pathogens is presented in this review.

DRUG RESISTANCE TRANSCRIPTION
REGULATORS

In order to overcome drug resistance it is essential to understand
the structure of the transcription networks regulating this
phenomenon, as it implies a complex regulatory circuit in order
to activate the most appropriate response according to distinct
stimuli.

One of the major regulators of drug resistance in C. glabrata is
the transcription factor Pdr1. C. glabrata Pdr1 is a Zn(2)-Cys(6)
DNA binding protein responsible for the activation of drug
resistance genes, such as the multidrug resistance transporters
Cdr1 and Pdh1 (also known as Cdr2), via pleiotropic drug
response elements (PDRE) (Vermitsky et al., 2006; Caudle et al.,
2011; Paul et al., 2011). Gain-of-Function (GOF)mutations in the
CgPdr1 transcription factor have been found in clinical isolates
to be responsible for increased CgPdr1 activity and consequent
constitutive high expression of the ABC drug efflux pumps, as
well as its positive autoregulation (Tsai et al., 2006; Ferrari et al.,
2009; Paul et al., 2011). Although typical regulatory targets of
Pdr1 include the ATP-Binding Cassette (ATP) efflux pumps Cdr1
and Pdh1, it was also found to activate the expression of efflux
pumps from the Major Facilitator Superfamily (MFS), including
Qdr2 and Tpo3 (Costa et al., 2013, 2014), thus reaffirming its role
as a major regulator of drug resistance in C. glabrata. No proteins
displaying significant homology in the remaining studied species
were identified by phylome search.

Drug resistance regulation is a complex process that must
be controlled according to the specific stress exerted over
fungal pathogens, activating or repressing key pathways to
better express the desired response. As such, a negative Zn(2)-
Cys(6) regulator of azole resistance, the transcription factor Stb5,
was also addressed as a relevant regulator of drug resistance
in C. glabrata. As a result of its negative regulation, Stb5
overexpression leads to a higher susceptibility toward azole
drugs, while its deletion causes a small increase in azole
resistance (Noble et al., 2013). Also, expression analysis showed
that Stb5 shares many transcriptional targets with Pdr1, such
as Cdr1, Pdh1, and Yor1, but working as a pleitropic drug
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resistance repressor (Noble et al., 2013). Homologous proteins
were identified in C. parapsilosis (uncharacterized, encoded by
ORF CPAR2_109760) and in C. albicans (Stb5) in the phylome
analysis. Additionally, the C. tropicalis protein encoded by ORF
CTRG_04421 was identified as a C. glabrata Stb5 homolog by
BLASTp search. C. albicans Stb5 shares the Zn(2)-Cys(6) DNA
binding domain found in C. glabrata Stb5, and despite the
fact that its role and regulation mechanisms are still poorly
characterized, it has been shown to be repressed by Hap43 (Singh
et al., 2011).

C. albicans has its own master regulator of drug resistance
Tac1, a Zn(2)-Cys(6) DNA binding activator of drug-responsive
genes such as the ABC multidrug resistance transporters
Cdr1 and Cdr2 (Coste et al., 2004) by binding the drug
response element (DRE) (Coste et al., 2009). Onward with the
transcriptional control of Tac1 over Cdr1 and Cdr2 expression,
changes in this transcription factor gene were described to
modulate its function and consequently add an extra layer
of regulation in its network. Several substitutions and small
deletions were found to increase Tac1 function (Coste et al.,
2007), while chromosomal rearrangements in chromosome 5
lead to loss of heterozigosity resulting in Tac1 dosage adjustments
by overexpression of its encoding gene (Coste et al., 2007;
Selmecki et al., 2008). There is evidence supporting positive
autoregulation of Tac1 (Liu et al., 2007; Znaidi et al., 2007).
Altogether, evidence shows that TAC1 controls its target genes
by increasing its own expression or by GOF mutations (Coste
et al., 2006, 2007, 2009). Despite having similar functions and
regulating similar gene targets, Tac1 was not found to share
sequence homology with C. glabrata Pdr1, according to the
Phylome database. Instead, Tac1 presents high similarity with
several uncharacterized proteins encoded by other CTG clade
Candida spp. These include C. parapsilosis proteins encoded
by ORFs CPAR2_303510, CPAR2_303520, and CPAR2_303500
and C. tropicalis proteins encoded by ORFs CTRG_05307,
CTRG_05306, and CTRG_05308. Interestingly, phylome analysis
highlights two other C. albicans regulators close to Tac1:
the Zn(2)-Cys(6) transcription factors Znc1 and Hal9. These
findings are intriguing, given that Znc1 is required for yeast cell
adherence to silicone substrate (Finkel et al., 2012) and Hal9
is induced by Mnl1 under weak acid stress (Ramsdale et al.,
2008), and therefore do not display a conserved function with
Tac1, despite their predicted homology. C. albicans carries yet
another major regulator of multidrug resistance transporters
in the transcription factor Mrr1, an activator of the MFS
multidrug transporter Mdr1, leading to acquisition of multidrug
resistance in azole resistant clinical isolates (Morschhäuser et al.,
2007). As observed for C. glabrata Pdr1 and C. albicans Tac1
transcriptional regulators, Mrr1 is a Zn(2)-Cys(6) transcription
factor and its gene sequence is subjected to GOF mutations
responsible for increased protein activity (Dunkel et al., 2008).
As described above for Tac1, Mrr1 also appears to be auto-
regulated (Schubert et al., 2011). Additionally, it was found to
be induced by Hap43 (Singh et al., 2011). Showing some level
of functional conservation with the previous regulators is also
the transcription factor Mrr2, seen to control the expression of
Cdr1 in C. albicans (Schillig and Morschhäuser, 2013). Mrr1

and Mrr2 do not present significant homology to each other,
but interestingly, in the search for Mrr1 and Mrr2 homologs
using PhylomeDB, several common hits were identified in
Candida spp. (Figure 1). Among them is a closely related
C. parapsilosis Zn(2)-Cys(6) homolog (named Mrr1) described
to be upregulated in azole resistant strains, probably leading
to the upregulation of C. parapsilosis Mdr1 (Silva et al., 2011).
Similarly to what is described in C. albicans, the upregulation
of C. parapsilosis Mrr1 and Mdr1 is correlated with point
mutations in the MRR1 gene (Silva et al., 2011). However,
beyond these homologs, BLASTp analysis revealed an array
of additional proteins that show some similarity with Mrr1
and Mrr2. Interestingly, C. parapsilosis Mrr1 was also found
to share sequence similarity with C. albicans Mrr2 (Figure 1).
Additionally, other regulators not primarily related to drug
resistance display sequence similarity with Mrr1 and Mrr2,
namely C. albicans Cta4 (Coste et al., 2008), a transcription
factor involved in nitrosative stress resistance (Chiranand
et al., 2008). Nevertheless, it is relevant to point out that
Cta4 expression in S. cerevisiae was seen to contribute for
azole drug resistance (Coste et al., 2008). It is interesting
to see that Mrr1 and Mrr2 display some level of similarity
not only with other regulators (e.g., Cta4), but also with
several uncharacterized proteins, both in C. albicans and other
Candida spp.

Resistance to azole drugs has often been attributed to the
upregulation of ergosterol biosynthetic genes, given that these
drugs act by inhibiting the activity of Erg11, thus leading to
ergosterol depletion in the fungal plasma membrane (Kelly et al.,
1995; Ghannoum and Rice, 1999; Kanafani and Perfect, 2008).
In this context, the transcription factor Upc2 is an important
player in azole drug resistance, being a transcriptional activator of
ergosterol biosynthetic genes in C. albicans, but also of the MFS
multidrug transporter encoding gene MDR1 (Silver et al., 2004;
MacPherson et al., 2005; Dunkel et al., 2008; Heilmann et al.,
2010; Synnott et al., 2010). C. albicans Upc2 phylome analysis
revealed a C. parapsilosis Upc2 homolog. In fact, C. parapsilosis
Upc2 displays a conserved function, as it was described to confer
resistance against azole drugs and to regulate the ergosterol
pathway in hypoxia (Guida et al., 2011). Despite no other
homologs were identified at the Phylome DB, C. glabrata harbors
two Upc2 regulators known to participate in the same process.
C. glabrata Upc2A, but not Upc2B, displays the prominent role
in the resistance against azoles and sterol biosynthesis inhibitors
(Nagi et al., 2011). However, Upc2B was shown to regulate the
expression of Erg2 and Erg3 from the ergosterol biosynthetic
pathway, whereas both Upc2A and Upc2B are required for
expression of the sterol transporter Aus1 (Nagi et al., 2011).
Given the conserved role of these proteins with the Upc2
proteins from C. albicans and C. parapsilosis, their phylogenetic
proximity was evaluated using BLASTp analysis, through which
a predicted C. tropicalis Upc2 was also found to share significant
sequence similarity with the rest of the Upc2 proteins (Figure 2).
Interestingly, Upc2 phylome analysis did not reveal Ecm22 as a
possible homolog; however, reciprocal phylome analysis unveiled
Upc2 as an Ecm22-related protein. Several uncharacterized
proteins in other CTG clade species were further predicted to
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FIGURE 1 | Phylogenetic analysis of the C. albicans Mrr1 and Mrr2 homologs. Phylome predicted homologs of Mrr1 are marked with (�). Phylome predicted

homologs of Mrr2 are marked with (N). Unmarked branches represent additional proteins showing some degree of similarity identified by BLASTp (E < 10−50). The

tree was constructed using the Molecular Evolutionary Genetics Analysis (MEGA 7) software (Kumar et al., 2016). Multiple alignments of the amino acid sequences

were calculated by ClustalW algorithm (Sneath and Sokal, 1973). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary

distances used to infer the phylogenetic tree. The evolutionary distances were computed using the JTT matrix-based method (Jones et al., 1992) and are in the units

of the number of amino acid substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1).

share homology with C. albicans Ecm22 (Figure 2). Additionally,
there is also an identified Ecm22 protein in C. neoformans,
however, it does not share significant homology with C. albicans
Ecm22. In most fungi, regulation of sterol biosynthesis is based
on well conserved Sterol Regulatory-Element Binding Proteins
(SREBP), usually harboring a basic helix-loop-helix (bHLH)
leucine zipper domain. However, it is interesting to note that
this system has been disrupted in yeasts such as S. cerevisiae
and Candida species (Maguire et al., 2014). In these species, the
role of SREBPs in sterol biosynthesis has been replaced by the
Zn(2)-Cys(6) Upc2 proteins, which are structurally unrelated to
SREBPs. Maguire and colleagues proposed that Upc2 arose in
the common ancestor of the Saccharomycotina and was created
by duplication of another zinc finger protein gene, although it
diverged too much from its orthologs in other species, such as A.
fumigatus (Maguire et al., 2014).

Upregulation of ergosterol synthesis upon azole drug
exposure is controlled in A. fumigatus by the transcription factor
SrbA, encoding a bHLH protein belonging to the SREBP family.
As stated previously, this family comprises the main regulators
of sterol biosynthesis in yeasts outside of the Saccharomycotina
lineage. SrbA is responsible for mediating azole drug resistance
by activating the expression of cyp51, the ERG11 ortholog in

this pathogen (Mellado et al., 2005; Willger et al., 2008; Moye-
Rowley, 2015). Additionally, it has a secondary role in the
maintenance of cell polarity, therefore directing hyphal growth
(Willger et al., 2008). SrbA controls the expression of a target
gene with which it shares sequence similarity: srbB. SrbB is
another transcriptional regulator that together with SrbA co-
regulates heme biosynthesis and sterol demethylation genes.
However, it acquired new functions as it also regulates hypoxia
response and virulence genes (Chung et al., 2014). Phylome
analysis did not provide any possible SrbA or SrbB homologous
proteins in any of the remaining species addressed in this work.
Nonetheless, C. neoformans harbors the transcription factor Sre1,
another bHLH protein that despite not being found to share
a phylogenetic relationship with SrbA or SrbB was found to
be required for azole drug resistance (Chun et al., 2007; Bien
et al., 2009; Jung et al., 2015). Like A. fumigatus SrbA, this is
due to Sre1 involvement in the expression of genes required
for ergosterol biosynthesis (Chang et al., 2007; Willger et al.,
2008). Additionally, Sre1 is also involved in virulence, as it
was found to be important for the establishment and growth
of yeast cells in the brain; as well as being involved in the
regulation of genes involved in iron uptake (Chang et al.,
2007).
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FIGURE 2 | Phylogenetic analysis of the C. albicans Upc2 and Ecm22 homologs. Phylome predicted homologs of Upc2 are marked with (�). Phylome

predicted homologs of Ecm22 are marked with (N). Unmarked branches represent additional proteins showing some degree of similarity identified by BLASTp

(E < 10−50). The tree was constructed using the Molecular Evolutionary Genetics Analysis (MEGA 7) software (Kumar et al., 2016). Multiple alignments of the amino

acid sequences were calculated by ClustalW algorithm (Sneath and Sokal, 1973). The tree is drawn to scale, with branch lengths in the same units as those of the

evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the JTT matrix-based method (Jones et al., 1992) and are

in the units of the number of amino acid substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1).

VIRULENCE TRANSCRIPTIONAL
REGULATORS

Biofilm Formation and Tissue Invasion
Regulators
The ability of fungal pathogens to cause disease relies upon an
array of strategies to colonize surfaces and invade host tissues.
The establishment of biofilms is one of the main virulence traits
displayed by human pathogens. The development of biofilms in
medical devices represents a relevant risk factor for patients, as
such devices serve as reservoirs and entry points for potential
infections (Douglas, 2003; Kojic and Darouiche, 2004; Martinez
and Casadevall, 2015). Once inside the host, the development of
biofilms allows pathogens to overcome environmental stresses,
such as drug exposure and immune system attack, while also
resulting in the establishment of persistent infections (Jabra-Rizk
et al., 2004; Fanning and Mitchell, 2012).

Generally, biofilm formation is among the most studied
subjects in virulence and is based on adherence andmorphogenic
phenomena, including hyphae formation. Besides biofilm

formation, another key virulence factor is invasion of non-
phagocytic host cells, as it represents the ability of the pathogen
to disseminate and infect the host. Epithelial cell invasion by
Candida spp. has been correlated with the production of lytic
enzymes, such as secreted aspartyl proteinases (SAPs) that digest
the surface of epithelial tissue thus enabling tissue invasion
(Schaller et al., 1999, 2003). In the case of C. albicans, hyphae
development is also associated with non-phagocytic host cell
invasion, as Sap4-6 enzymes are regarded as hyphal-associated
proteins (Schweizer et al., 2000; Korting et al., 2003) and hyphae
are found within epithelial cells, whereas yeast forms are found
on their surface or between them (Scherwitz, 1982; Ray and
Payne, 1988). For this reason, hyphal form is considered to
be the invasive form of C. albicans. Additionally, hyphae were
also associated with a more efficient induction of epithelial cell
endocytosis, a process in which epithelial cells are stimulated
to produce pseudopods that internalize the pathogen (Park
et al., 2005). Interestingly, the role of hyphae in the invasion
of endothelial tissue appears to be more complex, as distinct
tissues endocytose preferentially hyphae, while other endothelial
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cell linings are as easily crossed by yeast cells (Klotz et al.,
1983; Jong et al., 2001; Lossinsky et al., 2006). Yeast-to-hyphae
transition is a well-studied feature in C. albicans. It can be
activated by a variety of conditions, mostly by stress factors,
such as changes in pH and temperature (e.g., 37◦C) and
nitrogen starvation that promote hyphal growth (Kadosh and
Johnson, 2005). One of the most powerful factors to induce
hyphae formation is the presence of serum, as its nutrients
are usually unavailable to C. albicans cells, thus constituting
a stress condition and therefore inducing hyphal growth. The
same principle was verified when using N-acetylglucosamine
(Glc-NAc), a poor source of carbon and nitrogen capable
of inducing hyphae formation (Mattia et al., 1982; Kadosh
and Johnson, 2005). The C. albicans positive regulators Efg1
and Cph1 regulate a defined core set of genes required for
hyphal growth, including ECE1, HYR1, HWP1, and ALS3. These
genes encode mainly cell wall-associated proteins, involved in

processes including hyphal-cell elongation and adhesion to host
tissues (Birse et al., 1993; Bailey et al., 1996; Staab et al.,
1996, 1999; Hoyer et al., 1998). It is understandable that
the transcriptional regulators controlling hyphae formation are
responsible for the expression of cell wall related genes, given
that yeast-hyphae transition implicates morphological alterations
that require cell wall remodeling (Chaffin et al., 1998; Sohn
et al., 2003). Analyzing the phylogenetic relationship between
C. albicans transcription factor Efg1 and its closest homologs,
the C. parapsilosis Efg1 and A. fumigatus StuA transcription
factors are highlighted (Figure 3). All three homologs contain
an APSES DNA binding domain, which contributes to their
close relationship. In turn, C. parapsilosis Efg1 was found to
be a morphological switch regulator, similarly to its C. albicans
ortholog (Connolly et al., 2013). In turn, A. fumigatus StuA
controls adhesion and virulence by regulation of the uge3 gene,
encoding for uridine diphosphate (UDP)-glucose-epimerase

FIGURE 3 | Phylogenetic analysis of the C. albicans Efg1 and Efh1 homologs. Phylome predicted homologs of Efg1 are marked with (�). Phylome predicted

homologs of Efh1 are marked with (N). The tree was constructed using the Molecular Evolutionary Genetics Analysis (MEGA 7) software (Kumar et al., 2016). Multiple

alignments of the amino acid sequences were calculated by ClustalW algorithm (Sneath and Sokal, 1973). The tree is drawn to scale, with branch lengths in the same

units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the JTT matrix-based method (Jones

et al., 1992) and are in the units of the number of amino acid substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape

parameter = 1).
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which is essential for adherence through mediating the
synthesis of galactosaminogalactan (Lin et al., 2015). Other
than regulating conidiophore morphology, whole genome
transcriptional analysis identified StuA as regulating secondary
metabolite biosynthesis genes, the catalase gene cat1 and
morphogenesis genes (Sheppard et al., 2005). Interestingly, a
C. glabrata homolog (encoded by ORF CAGL0L01771g) was
identified, although C. glabrata is unable to develop true hyphae.
Furthermore, C. albicans Efg1 has a paralog, Efh1. Efh1 is also
an APSES protein but with a minor role compared to Efg1,
which is also the case of the C. parapsilosis Efg1 ortholog
(Doedt et al., 2004; Connolly et al., 2013). However, Phylome
DB shows that Efh1 homologs are restricted to Candida spp.,
with homologous proteins in bothC. tropicalis andC. parapsilosis
(Figure 3). As expected given their paralogous status, C. albicans
Efg1 and Efh1 were found to be phylogenetically related with
each other by phylome analysis. Interestingly, only one single
C. tropicalis protein (encoded by ORF CTRG_01780) was found
to be homologous to both C. albicans Efg1 and Efh1, while the
single C. glabrata protein was found to share homology only
with Efg1 (Figure 3). Relative to C. albicans Cph1, phylome
analysis found it to be closely related to the C. parapsilosis
Cph1 protein. C. tropicalis also features a Cph1 protein, despite
it was not considered to have a homology relationship at the
Phylome DB. Nevertheless, BLASTp shows a high degree of
sequence homology between the Cph1 proteins from C. albicans
and C. tropicalis. All Cph1 proteins belong to the STE-like
transcription factor family. As observed for the yeast model S.
cerevisiae, in which the Cph1 ortholog is the Ste12 transcription
factor, other species also have Ste12 homologs from Cph1.
Accordingly, C. glabrata Ste12 was described as being required
for nitrogen starvation induced filamentation and to have a
role in virulence (Calcagno et al., 2003). Despite its functional
conservation, C. glabrata Ste12 was not predicted to be a Cph1
homolog by phylome analysis, indicating that their sequences
have somewhat diverged. However, BLASTp comparison shows
a significant degree of sequence homology between the two
proteins. According to the Phylome DB, no homologs were
predicted for C. glabrata Ste12, nonetheless, BLASTp analysis
revealed an additional C. glabrata protein, encoded by ORF
CAGL0H02145g, presenting significant homology. Moreover,
A. fumigatus contains a SteA protein, also belonging to the STE-
like family, that showed significant homology to C. glabrata
Ste12 by BLASTp analysis, but this transcription factor is still
uncharacterized.C. neoformans also harbors a Ste12 transcription
factor, though it was not found to share an evolutionary link to
the other STE-like family proteins in the previously considered
species. This fact, together with the knowledge thatC. neoformans
Ste12 is associated with this pathogen’s particular trait of capsule
formation (Chang et al., 2001) and melanin production through
the expression of the LAC1 gene (Jung et al., 2015), seems to
indicate that the presence of a STE-like domain can be the only
trait shared with the remaining proteins. Capsule and melanin
production in C. neoformans are regulated by a cyclic AMP-
dependent protein kinase A (Pka) signaling pathway. Pka is
composed of a catalytic (Pka1) and a regulatory subunit (Pkr1)
(D’Souza et al., 2001). Mutant strains lacking Pka1 do not
produce a capsule under normal conditions, whereas disruption

of Pkr1 results in capsule overproduction and hypervirulence,
providing evidence of the importance of this pathway in
C. neoformans virulence (D’Souza et al., 2001; D’Souza and
Heitman, 2001). This may be explained by the regulation by Pka1
of glucan synthesis-related genes, important for the production of
the capsule, such as FKS1,AGS1,AGN1,KRE6,KRE61, and SKN1
(O’Meara and Alspaugh, 2012). This pathway is responsible
for the activation of the Ste12α transcription factor, involved
in mating, since pka1 mutants restored a mating phenotype
by overexpression of this transcription factor (D’Souza et al.,
2001). The Ras signal transduction pathway was also previously
shown to be involved in C. neoformans virulence (Alspaugh
et al., 2000). The virulence of a C. neoformans ras1 mutant was
attenuated and the induction of the RAS pathway and capsule
formation have been associated with growth in minimal media
(Alspaugh et al., 1997, 2000). Ras1 is a major C. neoformans
Ras protein found to contribute to high-temperature growth and
invasive growth, which are essential features for proliferation
inside the host (Alspaugh et al., 2000). The Ras1/Cdc24 and
Ras1/Cdc42 pathways are required for thermotolerance and actin
cytoskeleton regulation, whereas Ras1/cAMP governs mating
and invasive growth (Alspaugh et al., 2000; Waugh et al., 2003;
Nichols et al., 2007). Initially, Ras1 absence does not result
in defects in capsule or melanin production and the lack of
virulence is attributed to lack of growth at 37◦C (Alspaugh
et al., 2000). Nevertheless, Ras1 was later shown to have a
role in capsule formation induced by serum, however this was
not considered as a major mechanism through which Ras1
signaling affects virulence (Zaragoza et al., 2003; Haynes et al.,
2011). In the case of C. neoformans, much less is known about
its adhesion and invasion strategies. In vitro, it was shown
to adhere and be internalized by pulmonary epithelial cells,
thus resulting in host cell damage (Barbosa et al., 2006). Upon
reaching the brain, C. neoformans cells were found to cross
endothelial cell lining by transcytosis, however, such process
appears to cause minimal cell damage (Chrétien et al., 2002;
Chen et al., 2003; Chang et al., 2004). Although not strictly
required, the presence of a capsule appears to enhance initial
adherence to endothelial cells and the rate of transcytosis
(Chen et al., 2003; Chang et al., 2006). However, this effect
seems to be dependent on the endothelial tissue in question
(Ibrahim et al., 1995). Nevertheless, evidence suggests that
C. neoformans capsule is bound by a receptor mainly present
in brain endothelial cells, thus potentiating brain tissue invasion
(Filler and Sheppard, 2006). Another well characterized pathway
of biofilm formation is based on the C. albicans regulators Tec1
and Bcr1 (Schweizer et al., 2000; Nobile and Mitchell, 2005).
Tec1 is a positive regulator of morphogenesis belonging to
the TEA/ATSS family that is predominantly expressed during
hyphal growth and is required for hyphae formation during
serum induction, during macrophage evasion after phagocytosis
and for expression of the aspartyl proteinase genes SAP4-6
(Schweizer et al., 2000). Tec1 is in turn regulated by Efg1 (Lane
et al., 2001a). Moreover, Tec1 expression is directly regulated
by Cph2 (Lane et al., 2001a,b). Bcr1 is a C2H2 zinc finger
transcriptional activator of cell-surface protein and adhesion
genes such as the previously referred ECE1, ALS3, HWP1, and
HYR1 (Nobile and Mitchell, 2005; Nobile et al., 2006). Bcr1
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was found to relay a signal within the hyphal developmental
network, being positively regulated by Tec1 (Nobile andMitchell,
2005; Nobile et al., 2006). Starting with the analysis of Tec1
phylogenetic relationships, one close homolog was identified
in C. parapsilosis (encoded by ORF CPAR2_805930). Despite
not showing a homology relationship according to phylome
analysis, the A. fumigatus AbaA transcription factor shares the
TEA/ATTS domain and also presents a related function. AbaA
regulates the specific A. fumigatus feature of conidiation by
activating the expression of the velvet regulators veA and velB
(Park et al., 2012), but similarly to the role of Tec1, AbaA
also controls adherence, a trait that correlates with conidiatian
in A. fumigatus (Lin et al., 2015). Additionally, AbaA activates
the expression of wetA, a regulator with a predicted role in
hyphal growth (Tao and Yu, 2011). Regarding the phylogenetic
relationships of Bcr1, close homologs were identified in the
CTG clade species, including C. parapsilosis Bcr1, also involved
in biofilm formation (Ding and Butler, 2007; Ding et al.,
2011) and an uncharacterized C. tropicalis homolog (ORF
CTRG_00608).

Also related with biofilm formation regulation is the
C. glabrata transcription factor Cst6. It is a bZIP transcription
factor involved in the negative regulation of Epa6, the major
adhesin found in C. glabrata biofilms (Riera et al., 2012).
Additionally, Cst6 also accumulates other roles as demonstrated
by the control exerted over the carbonic anhydrase Nce103 in
response to carbon dioxide (Cottier et al., 2013). Although no
close homologs were predicted in the phylome analysis, the
Rca1/Cst6 C. albicans transcription factor plays a role related to
that of C. glabrata Cst6, as it was characterized as a regulator
of hyphal formation through the transcription factor Efg1 and
positive control of hyphal genes including GWP1, ECE1, HGC1,
and ALS3 (Vandeputte et al., 2012). Additionally, it was also
found to control CO2 sensing by regulating the expression
of the carbonic anhydrase Nce103 (Cottier et al., 2012) and
antifungal drug resistance (negative regulation of azole and
echinocandin drug response, whereas positive regulation of 5-
flucytosine response), associated to the regulatory control of cell
wall genes (Vandeputte et al., 2012). Additionally, reciprocal
phylome analysis of Rca1 identified one predicted homolog in
C. parapsilosis (ORF CPAR2_109540). Furthermore, BLASTp
analysis revealed an additional C. tropicalis protein (encoded
by ORF CTRG_04281) showing high degree of homology with
C. albicans Rca1.

Similarly to what is observed in Candida, A. fumigatus
conidia (yeast form cells) and hyphae are known to induce their
own endocytosis by alveolar epithelial cells through pseudopod
engulfment (DeHart et al., 1997; Paris et al., 1997; Zhang et al.,
2005). Hyphae development of A. fumigatus in alveolar cells
occurring after internalization results in no detectable damage
to the host cell (Wasylnka and Moore, 2003). Interestingly,
conidia endocytosis was also found to result in pneumocyte
apoptosis inhibition, therefore showing the importance of host
cell invasion inA. fumigatus infections (Berkova et al., 2006). The
pulmonary epithelium is also penetrated by hyphae, contributing
to the subsequent invasion of endothelial tissue by passing from
the abluminal to the luminal surface of endothelial cells or by

hyphae fragments that enter the bloodstream and disseminate to
other organs by invading endothelial cells (Filler and Sheppard,
2006). More recently, a key regulator of biofilm formation in
A. fumigatus, SomA, was identified (Lin et al., 2015). SomA
controls conidiation primarily by acting in the expression of flbB,
a bZIP transcription factor which controls the expression of other
regulatory genes such as brlA, medA, and stuA, thus having a
central role in the network regulating biofilm formation and
adherence in A. fumigatus (Lin et al., 2015). SomA also takes
part on the regulation of uge3 expression (previously referred)
and the spore hydrophobin RodA, which provides adherence
(Thau et al., 1994; Lin et al., 2015). Phylome analysis did not
reveal any protein in the remaining species addressed in this
study that shares significant homology with A. fumigatus SomA.
As stated previously, one of the regulatory genes controlled by
SomA is the transcription factor brlA, encoding a C2H2 zinc
finger protein that represents a central regulator for the asexual
development and controls the formation of vesicles required
for conidiation processes (Lin et al., 2015). BrlA induces the
expression of the previously referred abaA and wetA regulatory
genes, which induce differentiation of spore forming cells and
the subsequent maturation of conidia (Yu, 2010). A. fumigatus
MedA is another transcription factor regulated by SomA that
together with it regulates BrlA expression. As a result, MedA
is a positive regulator of conidiation (Adams et al., 1988).
Interestingly, BLASTp analysis revealed a C. neoformans protein,
encoded by ORF CNAG_03859, with high homology to MedA.
Together with StuA (also regulated by SomA), MedA regulates
adhesion and virulence in A. fumigatus by regulation of the uge3
gene (Lin et al., 2015).

Involved in the regulation of biofilm formation is also the
C. neoformans Znf2 transcription factor. This transcription factor
contains a C2H2 zinc finger domain and is responsible for control
of filamentation, but also of the expression of an important
adhesin in C. neoformans, Cfl1 (Wang et al., 2012). This adhesin
is involved in cell adhesion and biofilm formation. Searching for
possible Znf2 homologs using the Phylome DB, the A. fumigatus
ZafA transcription factor was identified. Interestingly, ZafA has
acquired a distinct function inA. fumigatus: it is a zinc-responsive
regulator, found to be required for A. fumigatus virulence by
regulating zinc homeostasis (Moreno et al., 2007). TheC. albicans
transcription factor Csr1 was also found to share similarity with
Znf2. It shares the C2H2 zinc finger domain and is also involved
in filamentous growth regulation by regulating the expression of,
for instance, HWP1 (Kim et al., 2008; Nobile et al., 2009; Finkel
et al., 2012), therefore showing not only sequence similarity but
also functional conservation. In turn, Csr1 phylome analysis
unveiled homologous proteins inC. parapsilosis,C. tropicalis, and
C. glabrata encoded by ORFs CPAR2_403080, CTRG_03883, and
CAGL0J05060g, respectively.

The transcriptional regulation of biofilm formation is
complex, being dependent on a diversity of environmental
conditions. As a result, biofilm regulatory networks also feature
negative regulators that ensure a tight control of this process.
Two of the most well characterized negative regulators of biofilm
formation are the C. albicans regulators Nrg1 and Rfg1 (Braun
et al., 2001; Khalaf and Zitomer, 2001; Murad et al., 2001a). Nrg1
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is a C2H2 zinc finger transcription factor that acts together with
the general corepressor Tup1 to suppress hyphal growth and
expression of hypha-specific genes, which are derepressed as a
result of Nrg1 downregulation in typical filamentation conditions
(Braun et al., 2001; Murad et al., 2001a,b; Kadosh and Johnson,
2005). Nrg1 also represses the expression of chlamydospore
formation genes, by repressing CSP1 and CSP2, two specific
chlamydospore related genes (Palige et al., 2013). As for Rfg1,
it is a HMG domain negative regulator of several genes that
were previously induced by filamentation inducing conditions,
indicating that this transcription factor is required for hyphae
derepression even under such stimuli (Kadosh and Johnson,
2005). Both RGF1 andNRG1 negatively regulate the expression of
the hyphae-specific genesALS3, ECE1, andHWP1, however, their
regulons do not completely overlap (Kadosh and Johnson, 2001,
2005), indicating a distinct function of each regulator in control
of hyphae formation in C. albicans. It is noteworthy to point
out that Nrg1 negatively regulates another transcription factor,
Ume6, required for hyphal extension, which is also associated
with virulence (Banerjee et al., 2008, 2013). Analyzing the
phylogenetic relationships of Nrg1 with its homologous proteins,
one identified homolog was C. tropicalis Nrg1, sharing the C2H2

zinc finger domain and with a conserved role in filamentation
repression (Zhang et al., 2016). Additional uncharacterized
homologs were found in C. parapsilosis, C. tropicalis and
C. glabrata, encoded by ORFs CPAR2_300790, CTRG_00608,
and CAGL0G08107g, respectively. C. neoformans also harbors
a Nrg1 protein, conserving the C2H2 domain but with a more
specialized role, as Nrg1 was found to be an activator of capsule
formation in C. neoformans (O’Meara and Alspaugh, 2012). This
specialized function can be the result of a divergent phylogenetic
relationship, which could justify why it was not identified as a
homolog of C. albicans Nrg1 in phylome analysis. C. neoformans
Nrg1 was found to be responsible for capsule formation since
mutants in its encoding gene showed a defect in capsule
induction. This transcription factor is activated downstream of
the cAMP-PKA cascade (O’Meara and Alspaugh, 2012). For
the case of Rfg1, phylome analysis only revealed one homolog,
an uncharacterized C. parapsilosis protein, encoded by ORF
CPAR2_801100.

The C. glabrata transcription factor Ace2 was found to
be a negative regulator of virulence in this pathogenic yeast
since its inactivation leads to an increase in the ability of C.
glabrata to cause disease by almost 200-fold (Kamran et al.,
2004), thus being regarded as a major virulence regulator in
this yeast. Ace2 was also found to regulate the expression of
CTS1, EGT2, TAL1, and TDH3 genes, involved in cell separation
and biofilm formation processes, which may be related with
the hypervirulence phenotype (Stead et al., 2010). Searching for
possible homologs, an additional C. glabrata protein, Swi5, was
identified by phylome analysis. Swi5 is mostly uncharacterized,
but it appears to have a conserved function, given that Swi5
mutants display increased fungal burdens in mouse lungs and
brain (MacCallum et al., 2006). Despite not being identified by
phylome analysis, C. albicans also contains an Ace2 transcription
factor; however, its sequence appears to have diverged too
much for a phylogenetic relationship to be fully established.

Nevertheless, it conserves the C2H2 zinc finger domain as well
as a related role in regulation of a wide variety of pathways in C.
albicans, including regulation of morphogenesis, cell separation,
adherence and virulence (Kelly et al., 2004). Furthermore, Ace2
appears to play distinct functions in the regulation of such traits:
its absence results in hyperfilamentation and hypervirulence
(Kelly et al., 2004; MacCallum et al., 2006), however, it was found
to be required for filamentous growth under hypoxic conditions
(Mulhern et al., 2006) and to act as positive regulator of biofilm
formation during normoxia (Stichternoth and Ernst, 2009).
Related with these roles, it was found to be a positive regulator
of the cell wall genes DSE1 and SCW11 (Kelly et al., 2004).
Additionally, it also plays a role as regulator of antifungal drug
resistance against antimycin A (Stichternoth and Ernst, 2009).
Concordantly, a C. parapsilosis Ace2 homolog conserves the
C2H2 domain and was found to be a biofilm regulator (Holland
et al., 2014). BLASTp analysis unveiled yet another Ace2 homolog
in C. tropicalis encoded by ORF CTRG_03073. Despite not
sharing significant homology, A. fumigatus also harbors an Ace2
protein, sharing the C2H2 zinc finger domain. As the remaining
regulators, A. fumigatus Ace2 is involved in the regulation of
several mechanisms, ranging from conidiophore development,
pigment production and virulence (Ejzykowicz et al., 2009).
Additionally, the lack of Ace2 results in increased invasion
capacity and virulence, translated into increased pulmonary
fungal burden. The higher virulence phenotype is related with
Ace2 control over ppoC, ecm33, and ags3 expression (Ejzykowicz
et al., 2009).

Host Adaptation Regulators
Despite the ability to adhere and form biofilms, there is a
much larger set of features that determines the degree of
damage caused by a pathogen upon infecting the host. Such
traits can be conserved among fungal pathogens, or they can
be specific according to the specific characteristics of each
pathogen. One general virulence factor is the ability tometabolize
available sources of nitrogen. Nitrogen source utilization affects
morphological transitions and virulence factor production that
confer a competitive advantage for survival, proliferation and
colonization (Lee et al., 2013; Ene et al., 2014). One conserved
family of nitrogen utilization transcriptional regulators is the
Gat1 family. The best characterized is Gat1 from C. albicans.
It is a transcription factor involved in nitrogen catabolite
repression and utilization of isoleucine, tyrosine and tryptophan
as sole nitrogen sources (Limjindaporn et al., 2003). Accordingly,
C. albicans Gat1 regulates the expression of nitrogen associated
genes, including GAP1, UGA4, DAL5, andMEP2 (Limjindaporn
et al., 2003; Dabas and Morschhäuser, 2007). Phylome analysis
reveals a Gat1 homolog in C. parapsilosis. Interestingly,
A. fumigatus transcription factor AreA, which does not display
sequence homology to C. albicans Gat1, is similarly involved in
nitrogen catabolite repression and nitrate utilization, also showed
to contribute to virulence (Hensel et al., 1998; Lamarre et al.,
2008). Curiously, C. neoformans also expresses a Gat1 protein,
but it was not found to have a role in virulence, according to a
phenotypic screening (Jung et al., 2015), and was not found to
be phylogenetically related to Gat1. Subsequent BLASTp search
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showed the existence of a C. tropicalis homolog encoded by
ORF CTRG_03831. Nevertheless, the presence of Gat1 proteins is
markedly conserved among fungal pathogens, which is specially
reinforced by the conservation of the GATA DNA binding
domain present in these proteins.

Another general feature that correlates with several virulence
traits is the ability to activate different cellular pathways in
response to pH changes. Rim101 from C. albicans is known to
regulate the induction of alkaline expressed genes and repress
acid expressed genes at alkaline pH (Ramon et al., 1999).
Additionally, it is part of the regulatory circuit that control
hyphae stimulation in response to alkaline pH (Davis et al.,
2000). Phylome analysis predicts one closely related homolog in
C. parapsilosis, encoded by ORF CPAR2_700450. Furthermore,
BLASTp indicates another homolog in C. tropicalis, Rim101.
C. neoformans also has an identified Rim101 regulator, but
interestingly, it was found to regulate capsule maintenance
(O’Meara and Alspaugh, 2012), thus showing some level of
specialization in this pathogen and reinforcing the hypothesis of
a divergent evolution when compared to the remaining Rim101
proteins. Additionally, C. neoformans Rim101 is activated
after phosphorylation by Pka1 (O’Meara et al., 2010). Low
nitrogen and glucose concentration are also inducers of capsule
formation by activation of the cAMP pathway. Additionally, the
A. fumigatus transcription factor PacC displays a similar role
in this fungus, once it also regulates alkaline responsive genes,
including the dehydrin-like dprB (Wong Sak Hoi et al., 2011;
Brown and Goldman, 2016). Furthermore, it was found to play
a role in host invasion capacity (Bertuzzi et al., 2014) and is also
involved in cell wall biogenesis (Brown and Goldman, 2016).
Likely, all proteins contain a C2H2 zinc finger domain that
is conserved among all species. Interestingly, the S. cerevisiae
Rim101 was found to play an additional role in weak acid stress
tolerance (Mira et al., 2009).

Following the same principle, adaptation to weak acid stress
is another relevant factor in the establishment of infection,
especially in niches where such conditions are felt, as in
the vaginal tract. One characterized transcriptional regulator
of weak acid resistance resistance is C. albicans War1, a
Zn(2)-Cys(6) transcription factor required for resistance to
weak organic acids such as sorbate (Lebel et al., 2006).
It acts similarly to the S. cerevisiae War1 protein that
governs weak acid stress response (Schüller et al., 2004).
Looking for War1 homologs in other fungal pathogens,
phylome analysis shows homologs in each of the CTG
clade Candida spp. (encoded by ORFs CPAR2_110360 and
CTRG_04350 in C. parapsilosis and C. tropicalis, respectively),
closely related to that of C. albicans. Additionally, one War1
homolog was also identified in C. glabrata, uncharacterized
until now. Additionally, no War1 homologs were found
in C. neoformans, while two A. fumigatus uncharacterized
homologs were identified (encoded by ORFs Afu7g01640 and
Afu8g00950).

One of the most well characterized regulators of weak acid
stress response in fungal pathogens is C. albicans Mnl1. It
is a Zn(2)-Cys(6) transcription factor required for adaptation
to weak acid stress, activating a subset of genes that are
repressed by the previously mentioned Nrg1, through SLE

(STRE-like) elements (Hope et al., 2004; Ramsdale et al.,
2008). Mnl1 is considered to be related with the yeast
conserved Msn2/4 proteins. In fact, C. albicans Mnl1 is also
known as the Msn2 correspondent in this yeast. Similar to
S. cerevisiae Msn2/4 that are involved in the general stress
response, C. albicans Mnl1 is required for the induction
of stress response genes via SLE elements (Martínez-Pastor
et al., 1996; Ramsdale et al., 2008). Mnl1 phylome analysis
revealed homologous proteins in the other CTG clade species
(Figure 4). Furthermore,C. albicans also features aMsn4 protein.
Similarly to Mnl1, phylome analysis shows Msn4 homologs in
the remaining CTG clade species (Figure 4), however, Msn4
does not appear to be a significant stress response regulator,
unlike its S. cerevisiae homolog (Nicholls et al., 2004), and
was found to be induced during biofilm formation (Nobile
and Mitchell, 2005). Interestingly, despite the fact that C.
glabrata harbors Msn2/4 proteins involved in oxidative stress
resistance by activating the expression of the catalase gene
CTA1 (Cuéllar-Cruz et al., 2008), these regulators were not
found to share a phylogenetic relationship with its C. albicans
counterparts. Likewise, A. fumigatus SebA is a transcription
factor described to be involved in response to oxidative stress and
heat shock (Dinamarco et al., 2012), thus displaying some level of
functional conservation as well, despite not showing a significant
homology.

Phenotypic Switching Regulators
Another virulence factor displayed by the yeast C. albicans
is the stochastic phenotypic switch known as white-opaque
transition (Slutsky et al., 1987; Soll, 1992; Lin et al., 2013).
The two cell types differ in shape, gene expression profile,
virulence features and colony appearance (Zordan et al., 2007).
Opaque cells are the sexually competent form of C. albicans,
as they present a much higher mating efficiency than white
cells (Miller and Johnson, 2002). Despite white-opaque switching
occurring spontaneously every 104 generations (Rikkerink et al.,
1988), it can be induced by specific environmental conditions,
such as high CO2 concentration, use of GlcNAc as carbon
source, genotoxic stresses and oxidative stress (Kolotila and
Diamond, 1990; Ramírez-Zavala et al., 2008; Alby and Bennett,
2009; Huang et al., 2010). However, temperature changes from
25◦C to 37◦C promote the reverse transition, from opaque to
white cells (Slutsky et al., 1987; Srikantha and Soll, 1993). The
ability to switch between different phenotypes also constitutes
and advantageous trait to enhance its adaptation to host
environments (Guan and Liu, 2015), thus affecting a variety of
virulence traits (Slutsky et al., 1987; Soll, 1992). Opaque cells
are able to colonize skin and escape macrophage detection;
whereas white cells are more prone to cause bloodstream
infections (Kvaal et al., 1999; Lachke et al., 2003; Lohse and
Johnson, 2008). Similar phenomena have been described for
C. parapsilosis, C. tropicalis, and C. glabrata (Lachke et al., 2000;
Laffey and Butler, 2005; Moralez et al., 2014). Investigating
possible homologous proteins in other fungal species (including
C. neoformans and A. fumigatus) can help to unveil putative
specialization events in related proteins from organisms not
known to stochastically change their phenotype in this manner.
Phenotypic switching is mainly controlled in C. albicans by
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FIGURE 4 | Phylogenetic analysis of the C. albicans Mnl1 and Msn4 homologs. Phylome predicted homologs of Mnl1 are marked with (�). Phylome predicted

homologs of Msn4 are marked with (N). Unmarked branches represent additional proteins showing some degree of similarity identified by BLASTp (E < 10−50). The

tree was constructed using the Molecular Evolutionary Genetics Analysis (MEGA 7) software (Kumar et al., 2016). Multiple alignments of the amino acid sequences

were calculated by ClustalW algorithm (Sneath and Sokal, 1973). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary

distances used to infer the phylogenetic tree. The evolutionary distances were computed using the JTT matrix-based method (Jones et al., 1992) and are in the units

of the number of amino acid substitutions per site. The rate variation among sites was modeled with a gamma distribution (shape parameter = 1).

Wor1, regarded as master regulator of this pathway (Zordan
et al., 2006; Huang et al., 2010). Consistent with the related
switching process occurring in C. parapsilosis and C. tropicalis,
one Wor1 homolog was found in each species, encoded by ORFs
CPAR2_805000 and CTRG_03345, respectively. Interestingly,
phylome analysis also revealed one A. fumigatusWor1 homolog,
encoded by ORF Afu6g04490. Additionally, no homologs were
found inC. neoformans. DespiteWor1 being themaster regulator
of white-opaque switching in C. albicans, other transcriptional
regulators are known to be part of the network controlling
this phenomenon. As part of the Wor1 regulon, there are
two additional transcription factors involved in white-opaque
switching:Wor2 and Czf1. The expression of both transcriptional
regulators is directly induced by Wor1, while in turn Wor2 and
Czf1 both activate Wor1, creating yet another series of positive
feedback loops in the opaque state (Zordan et al., 2007). More
recently, two new transcription factors designated Wor3 and

Wor4 were added to the existing network governing white-
opaque switching. Similarly to what is verified for the previously
mentioned regulators, the ectopic expression of Wor3 induced
white-opaque switching and is correlated with Wor1, Wor2, and
Czf1 (Lohse et al., 2013). As a unique feature,Wor3 was proposed
as a member of a different family of DNA-binding proteins.
As for Wor4, it was found to be located upstream of Wor1,
as its ectopic expression is sufficient to induce white-opaque
switching (Lohse and Johnson, 2016). The predicted regulon of
this newly discovered transcriptional regulator highly correlates
with the ones from Wor1 and Wor2, indicating that Wor4 is
integrated in the already described network. Taken together,
these transcription factors form an integrated regulatory network
with each regulator controlling the expression of the others
in the phenotypic switching pathway (Lohse and Johnson,
2016). Analyzing the presence of homologous proteins in other
fungal species, similar results are obtained for each regulator.
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Wor2 phylome analysis identified one closely related protein
in C. parapsilosis, encoded by ORF CPAR2_405400. In the case
of Czf1 there is one closely related protein in C. tropicalis,
encoded by ORF CTRG_03771. A similar situation is found
for Wor3, with predicted homologs in C. parapsilosis and C.
tropicalis, encoded by ORFs CPAR2_202450 and CTRG_00711,
respectively. As for Wor4, one homolog was also identified
in each of C. parapsilosis and C. tropicalis, encoded by ORFs
CPAR2_808100 and CTRG_05581, respectively. Additionally, in
C. albicans, a relationship between phenotypic switching and
filamentous growth regulators was uncovered, as in white cells
Efg1 represses Wor1 in a Wor2-dependent manner. At the same
time, in opaque cellsWor1,Wor2, and Czf1 were found to repress
Efg1 (Zordan et al., 2007; Lin et al., 2013).

Iron Response Regulators
Iron availability is also known to play a crucial role in the
establishment of infection. Hosts resist microbial infection by
maintaining a low level of free iron to restrict pathogen growth
(Hsu et al., 2011). This is achieved by producing transferrin or
lactoferrin (Schrettl and Haas, 2011). Therefore, the capacity of a
certain pathogen to invade the host is also dependent on its ability
to overcome iron deprivation and express iron uptake systems.
Among iron uptake and homeostasis regulators, transcription
factors belonging to the Hap family can be found in more
than one fungal or yeast species. One of the best characterized
cases is A. fumigatus HapX, a bZIP negative regulator of iron-
consuming pathways (e.g., heme biosynthesis, respiration, TCA
cycle and amino acid metabolism) that is required for adaptation
to iron depletion, while acting as an activator of the siderophore
iron uptake pathway, a known virulence factor (Schrettl et al.,
2010). Consequently, the HapX mediated iron limitation stress
response was interlinked to primary metabolism, oxidative stress
and virulence (Brown and Goldman, 2016). Unveiling a more
complex role in the regulation of iron homeostasis, HapX was
also described to be involved in response to iron excess (Gsaller
et al., 2014). Additionally, it was found to be activated by the
previously referred regulator SrbA during hypoxia (Blatzer et al.,
2011). These observations are in accordance with one of its
possible orthologs in C. glabrata, Yap5, also described to play a
role in both iron excess and iron deprivation conditions (Merhej
et al., 2015, 2016). This knowledge indicates a wide-spread role
of these regulators in iron sensing, acting as both activators
and repressors of gene expression according to differential iron
availability. Moreover, in C. glabrata, the activation of iron
uptake in iron limiting conditions seems to involve the Aft1
transcription factor (ORF CAGL0H03487g), as in S. cerevisiae
(Srivastava et al., 2015). Searching for possible homologs by
phylome analysis, no HapX homolog was predicted in the
remaining species. However, C. albicans harbors the Hap43
transcription factor, a bZIP negative regulator required for low
iron response. Such as A. fumigatus HapX, Hap43 is responsible
for the repression of genes involved in iron-dependent pathways
involved in mitochondrial respiration and iron-sulfur cluster
assembly (Hsu et al., 2011). Additionally, its role in the regulation
of iron acquisition under low iron conditions seems to be more
complex, given its action as a positive regulator in iron-limiting
conditions (Hsu et al., 2011; Singh et al., 2011). Due to functional

conservation, phylome analysis was also performed for C.
albicans Hap43. As a result, one uncharacterized C. parapsilosis
protein, encoded by ORF CPAR2_209090, was predicted to be a
Hap43 homolog (Merhej et al., 2016). Likewise, BLASTp predicts
a highly homologous protein in C. tropicalis encoded by ORF
CTRG_04121. In a complementary approach, one of the best
studied cases of iron homeostasis in iron replete conditions
is the A. fumigatus negative regulator SreA (Schrettl et al.,
2008). SreA is a GATA transcription factor that negatively
regulates siderophore biosynthesis and other iron acquisition
genes in the presence of high iron concentrations, including the
iron permease FtrA, the ferroxidase FetC and the siderophore-
biosynthetic protein SidA (Schrettl et al., 2008). Interestingly,
SreA also negatively regulates the previously referred HapX
transcription factor (Blatzer et al., 2011). Searching for possible
related proteins in other species, no homologous proteins were
predicted by phylome analysis. Nevertheless, C. albicans Sfu1
is a nice candidate function-wise, playing a function similar to
that of SreA. The regulatory relationship observed between A.
fumigatus SreA and HapX is maintained in C. albicans by the
negative regulation of Sfu1 over Hap43 (Hsu et al., 2011). In fact,
reciprocal Sfu1 phylome analysis revealed A. fumigatus SreA as
a predicted homolog. Beyond SreA, uncharacterized homologs
were also identified in C. parapsilosis and C. tropicalis, encoded
by ORFs CPAR2_700810 and CTRG_03356, respectively.

Host Immune Evasion Transcription
Regulators
Upon infection, human pathogens encounter several barriers
that need to be overcome, such as tissue barriers and immune
responses. In order to establish infection, fungal pathogens
take advantage of the virulence traits analyzed so far, but
such traits also include evading the host’s cellular immune
response. Fungal pathogens display diverse immune evasion
strategies, including antigen masking to avoid recognition and
persistence/active escaping from phagocytic cells (Netea et al.,
2006; Erwig and Gow, 2016). Depending on the strategy applied
by each pathogen, distinct sets of genes need to be expressed,
uncovering complex regulatory networks according to different
environmental conditions.

It should be noted that an additional immune evasion
mechanism is known to occur in the yeast C. albicans. The
capacity of this yeast to undergo yeast-to-hyphae transition,
whose regulation is discussed and analyzed in the “Biofilm
formation and tissue invasion” section, is described to be an
active mechanism for macrophage rupture and evasion after
phagocytosis (McKenzie et al., 2010; Lewis et al., 2012a; Rudkin
et al., 2013; Bain et al., 2014), and to inhibit macrophage cell
division during mitosis (Lewis et al., 2012b).

Oxidative Stress Regulators
When the immune system response is activated, macrophages,
neutrophils, and other phagocytic cells act against fungal
pathogens by producing high levels of reactive oxygen species
(ROS) and nitric oxide (NO), which results in oxidative and
nitrosative stress, respectively (Brown et al., 2009). For this
reason, the activation of anti-oxidant responses is a prime
strategy upon internalization by phagocytes. The C. albicans
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bZIP regulator Cap1 is one of the most well characterized AP1-
like transcription factors. It is responsible for the activation
of antioxidant systems, carbohydrate metabolism and energy
generation (Limjindaporn et al., 2003). Within its action in
defense against ROS, Cap1 directly activates several genes
from distinct pathways of antioxidant scavenging, including
glutathione S-transferase reactions, superoxide dismutases and
the Cat1 catalase (Enjalbert et al., 2006; Wang et al., 2006). As
for carbohydrate and energy metabolism, Cap1 upregulates the
expression of enzymes involved in NADPH production, which is
involved in several redox cycles against ROS (Müller, 2004; Pócsi
et al., 2004). Furthermore, a cluster of mitochondrial respiratory
genes are expressed in a Cap1-dependent manner, which is
consistent with the knowledge that mitochondrial function is
required for oxidative stress tolerance in yeast (Grant et al., 1997).
Additionally, Cap1 was found to be involved in drug resistance,
as it regulates the expression of the multidrug transporter Mdr1
(Mogavero et al., 2011). As depicted in Figure 5, phylome
analysis has identified one C. parapsilosis protein and C. glabrata
Yap1 as phylogenetically related toC. albicansCap1. Accordingly,
C. glabrataYap1 also has a conserved role in response to oxidative
stress, being involved in the induction of conserved genes
encoding antioxidant effectors, such as the Cta1 catalase (Cuéllar-
Cruz et al., 2008; Roetzer et al., 2011). Just as its C. albicans
ortholog, C. glabrata Yap1 also regulates the expression of the
multidrug transporter Flr1, ortholog of the C. albicansmultidrug
transporter Mdr1, particularly in response to 4-nitroquinoline-
N-oxide (4-NQO), benomyl and cadmium chloride (Chen et al.,
2007). However, there is no evidence to suggest regulation
of Flr1 by Yap1 in azole drug resistance (Chen et al., 2007).
C. glabrata Yap1 has a paralog, Cad1, which was recently found
to bind the promoter region of the cadmium response Tna1
protein and the vacuolar transporter Ycf1; however, no changes
were detected in Ycf1 expression upon deletion of Cad1; nor
any transcriptome changes in response to cadmium (Merhej
et al., 2016). Interestingly, C. tropicalis also encodes a Yap1
protein, found to be closely related to its CTG clade counterparts.
Likewise, A. fumigatus also possesses a Yap1 transcription factor
that despite being encoded by a filamentous fungus is more
similar to the proteins from Candida spp., than the Yap1 protein
from C. neoformans. As for the A. fumigatus ROS sensing
transcription factor Yap1, it was also described to regulate
catalase gene expression (cta1 and cta2) and the thioredoxin
antioxidant pathway, thus protecting against neutrophil killing
(Lessing et al., 2007; Leal et al., 2012). Likewise, C. neoformans
Yap1 is also involved in the regulation of antioxidant genes, such
as thioredoxins and glutathione peroxidases (Paul et al., 2015).
Accordingly, the thioredoxin system is known to be required
for the response against oxidative stress. It is composed by two
thioredoxin proteins and one thioredoxin reductase. The absence
of these two thioredoxin proteins, Trx1 and Trx2, leads to growth
defect and sensitivity to multiple stresses, while Trx2 is especially
important for nitric oxide stress. These findings highlight a high
degree of function conservation among Yap1 proteins in several
fungal species.

Another conserved regulator of oxidative stress resistance
in fungi is Skn7. C. albicans Skn7 was described as required

for hydrogen peroxide resistance in a phenotypic screening
(Homann et al., 2009). Phylome analysis revealed as
Skn7 predicted homologs one uncharacterized protein in
C. parapsilosis (encoded by ORF CPAR2_304240) and the
C. glabrata Skn7 (Figure 6). C. glabrata Skn7 is involved
in hydrogen peroxide response by inducing the expression
of the thioredoxins Trx2, Trr1, Tsa1, and the catalase Cta1
(Cuéllar-Cruz et al., 2008; Saijo et al., 2010). Interestingly,
there is interdependence of both C. glabrata Yap1 and Skn7
over the regulation of a set of genes—such as TRR1, GPX2,
PKH2, TSA1, and CTA1. Additionally, besides Yap1 and Skn7,
the transcription factors Msn2 and Msn4 are also involved
in the regulation of oxidative stress through regulation of the
Cta1, in a concerted action between these four transcription
factors (Cuéllar-Cruz et al., 2008). The described interplay of
regulatory networks suggests that C. glabrata expression of
oxidative stress protective genes is well adapted for when it
faces a host-pathogen interaction (Roetzer et al., 2011). The
C. tropicalis Skn7 transcription factor was found to be closely
related to its CTG clade homologs, which is reinforced by a
high sequence homology determined by BLASTp. Furthermore,
A. fumigatus and C. neoformans also express Skn7 transcription
factors. Interestingly, reciprocal phylome analysis revealed a
phylogenetic relationship between these regulators and the
Skn7 protein from C. albicans. Curiously, A. fumigatus Skn7
was found to be closer to the remaining yeast proteins than
C. neoformans Skn7, located significantly further away from the
remaining proteins. This is probably due to the fact that while
A. fumigatus Skn7 has a conserved role in mediating resistance
to peroxides (Lamarre et al., 2007), C. neoformans Skn7 was
found to diverge from the remaining proteins as it specialized in
the C. neoformans specific trait of melanin production through
the activation of the LAC1 gene (Jung et al., 2015). Melanin
accumulates in the cell wall of C. neoformans having a protective
role against oxidative and temperature stresses. In fact, melanin
is an effective antioxidant, protecting C. neoformans cells against
oxygen and nitrogen oxidants (Wang and Casadevall, 1994).
Nevertheless, all Skn7 proteins have a conserved heat shock
factor (HSF) DNA binding domain.

Other than the Yap1 and Skn7 families, there are additional
less studied regulators of oxidative stress response inA. fumigatus
and C. neoformans, AtfA and Atf1, respectively. AtfA is a
transcription factor that targets antioxidant-related genes such
as catalase encoding catA and dehydrin-like encoding dprA,
which mediate cellular defense against oxidative stress (Hagiwara
et al., 2014). This transcription factor has been also identified in
Saccharomyces species, but its role in A. fumigatus needs further
assessment (Hong et al., 2013). As for Atf1, it is described to
be required for oxidative stress induction of the thioredoxin
genes TRX1 and TRX2 in C. neoformans (Missall and Lodge,
2005). Interestingly, Atf1 was also found to repress melanin and
capsule formation, as null Atf1 mutants show increased capsule
and melanin production. Since Atf1 is regulated by Can2, Pka1,
and Rim101, it is possible that once again the cAMP pathway
might be involved in this network (Kim et al., 2010). Additionally,
Atf1 was also found to play a role in thermotolerance and drug
resistance, given that its absence was seen to increase resistance
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FIGURE 5 | Phylogenetic analysis of the C. albicans Cap1 homologs. Phylome predicted homologs of Cap1 are marked with (�). Unmarked branches

represent additional proteins showing some degree of similarity identified by BLASTp (E < 10−50). The tree was constructed using the Molecular Evolutionary

Genetics Analysis (MEGA 7) software (Kumar et al., 2016). Multiple alignments of the amino acid sequences were calculated by ClustalW algorithm (Sneath and Sokal,

1973). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary

distances were computed using the JTT matrix-based method (Jones et al., 1992) and are in the units of the number of amino acid substitutions per site. The rate

variation among sites was modeled with a gamma distribution (shape parameter = 1).

against amphotericin B and fluconazole (Kim et al., 2010). In
this case, phylome analysis predicted AtfA and Atf1 as homologs,
thus showing a high degree of sequence similarity, translated in
their functional conservation. Curiously, the Sko1 transcription
factor from C. albicans was found to share sequence similarity
with A. fumigatus AtfA, by phylome analysis. Given this finding,
other potential Sko1 proteins were searched in other Candida
spp. Sko1 phylome predicted one uncharacterized C. tropicalis
homolog (encoded by ORF CTRG_04352) and the C. glabrata
Sko1 protein. All proteins contain a bZIP domain, but given the
knowledge concerning C. albicans Sko1 it is possible that these
proteins have a participation in additional roles (e.g., cell wall
stress and virulence) while still maintaining activity in oxidative
stress response, as it was described for C. albicans Sko1 control
over the dehydrogenase Ifd4 (Alonso-Monge et al., 2010; Singh
et al., 2011).

Nitrosative Stress Regulators
In what concerns resistance to nitrosative stress, one of the best
studied cases is the C. albicans regulator Cta4, a Zn(2)-Cys(6)
zinc finger positive regulator of nitrosative stress response. It
is upregulated upon nitric oxide exposure and it was found to
be required for the expression of the nitric oxide dioxygenase
Yhb1, required for NO consumption and detoxification, by
directly binding the regulatory region of its gene (Ullmann

et al., 2004; Chiranand et al., 2008). In C. glabrata, the
transcription factor Yap7 was shown to exert control over
Yhb1 by strongly inhibiting its expression in a direct manner;
a regulatory association also verified in S. cerevisiae (Merhej
et al., 2015). Another described player in nitrosative stress
response in pathogenic yeasts is C. neoformans Yap4, an activator
of the thioredoxin genes in C. neoformans in response to
nitrosative stress, especially Trx2 (Missall and Lodge, 2005). Just
as the Yap1 case, C. neoformans Yap4 contains a bZIP domain,
however, Yap4 phylome did not reveal any homologs in the
studied species. Nevertheless, there are known Yap4 proteins in
some Candida spp., namely C. albicans Cap4 and C. glabrata
Yap4/6. These proteins remain uncharacterized, therefore it
would be interesting to assess if their role has diverged, given
that no relationship was identified with the nitrosative stress
regulatorC. neoformansYap4. Using phylome analysis, homology
relationships among C. albicans Cap4, C. glabrata Yap4/6 and
the C. parapsilosis protein encoded by ORF CPAR2_11470 were
identified.

Amino Acid Starvation Regulators
One additional factor also thought to play a role in
phagocyte persistence and evasion by pathogenic yeasts is
the reprogramming of carbohydrate and amino acid metabolism.
This has to do with the fact that the environment present inside
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FIGURE 6 | Phylogenetic analysis of the C. albicans Skn7 and C. neoformans Skn7 homologs. Phylome predicted homologs of C. albicans Skn7 are marked

with (�). Phylome predicted homologs of C. neoformans Skn7 are marked with (N). Unmarked branches represent additional proteins showing some degree of

similarity identified by BLASTp (E < 10−50). The tree was constructed using the Molecular Evolutionary Genetics Analysis (MEGA 7) software (Kumar et al., 2016).

Multiple alignments of the amino acid sequences were calculated by ClustalW algorithm (Sneath and Sokal, 1973). The tree is drawn to scale, with branch lengths in

the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the JTT matrix-based

method (Jones et al., 1992) and are in the units of the number of amino acid substitutions per site. The rate variation among sites was modeled with a gamma

distribution (shape parameter = 1).

phagocytic cells is often limiting in terms of nutrients, especially
nitrogen sources (Pérez-delos Santos and Riego-Ruiz, 2016). In

this context, the bZIP transcription factor Gcn4 was identified in

C. albicans as playing a key role in amino acid control response
and was found to be expressed upon neutrophil phagocytosis
(Fradin et al., 2005). It activates the transcription of amino acid
biosynthetic genes (HIS4, HIS7, LYS1, LYS2, and ARO4) via
Gcn4-response elements (GCRE) (Tripathi et al., 2002). Among
others, Gcn4 plays a role in the biosynthetic pathway of arginine,
which in turn is involved in the production of CO2 and urea;
products that induce filamentation inside macrophages as an
escape mechanism and neutralization of the acidic pH of the
phagolysosome (Ghosh et al., 2009; Vylkova et al., 2011). This is
further supported by the observation that Gcn4 is required for
Efg1-dependent filament induction by amino acid starvation, but
not by serum (Tripathi et al., 2002). C. albicans Gcn4 is closely
related to proteins found in other CTG clade species, including
a C. tropicalis protein encoded by ORF CTRG_02060 and a
C. parapsilosis Gcn4 protein. Additionally, phylome analysis
also revealed the C. glabrata Gcn4 regulator as being closely

related. Moreover, A. fumigatus harbors a regulator with a related
function: CpcA. Despite not showing enough similarity with
Gcn4, CpcA was also found to be a transcriptional activator of
amino acid biosynthesis and to play a role in virulence in this
filamentous fungus (Krappmann et al., 2004).

Gliotoxin and Melanin Production
Regulators
An additional host immune evasionmechanism is the production
of toxins by some pathogens. This is particularly true for
A. fumigatus, in which the C2H2 zinc finger containing
transcription factor MtfA is involved in the expression of
gliotoxin genes, gliZ and gliP, and its biosynthesis, as well as
protease activity in the secretome and conidiation (Smith and
Calvo, 2014). Gliotoxins have been described as possessing anti-
inflammatory and immunosuppressive activities toward the host
immune effector cells, including neutrophils and macrophages
(Stanzani et al., 2005; Orciuolo et al., 2007; Scharf et al., 2012).
No homologs in the additional fungal pathogens considered in
this review are predicted by phylome analysis, which can be
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correlated with the specialized function of MtfA in gliotoxin
production regulation.

Another important immune evasion mechanism displayed
in C. neoformans is melanin synthesis, which is possible in
the presence of exogenous dihydroxyphenols, catalyzed by a
phenoloxidase (Almeida et al., 2015). Once yeast cells are
phagocytosed, the production of melanin protects cells against
the oxidative environment inside the phagolysosome (Panepinto
and Williamson, 2006). According to a systematic functional
profiling analysis, several transcription factors are assumed to
be involved in the regulation of melanin production, including
Mbs1 (Jung et al., 2015), however the particular pathways and
role it regulates are still unknown. Despite melanin production is
a specific trait of neurotropic fungi, such as C. neoformans, and is
not known to occur inCandida spp. orA. fumigatus, investigating
possible homologous proteins in other fungal species can help
to shed light in this regard by unveilling putative related roles.
Evaluating possible homology relationships of C. neoformans
Mbs1 with other species, C. albicans Mbp1, Swi4 and Swi6

were identified as homologs by phylome analysis, despite not
appearing to have a conserved function, given their involvement
in G1/S cell cycle progression (Côte et al., 2009; Hussein et al.,
2011). Additionally, one uncharacterized A. fumigatus protein,
encoded by ORF Afu7g05620, was also identified as a homolog.
Interestingly, one additional C. neoformans protein, encoded
by ORF CND05520, was found to be phylogenetically related
to Mbs1. Also, BLASTp unveiled the A. fumigatus protein
encoded by ORF Afu3g13920 as a possible homolog. As referred,
C. albicans Mbp1 was found to share significant similarity
with C. neoformans Mbs1. Reciprocal phylome analysis did not
reveal C. neoformans Mbs1 as a predicted homolog, instead,
four proteins within Candida spp. were predicted as homologs,
namely C. tropicalis Mbp1, a C. parapsilosis protein encoded by
ORF CPAR2_102740 and two C. glabrata proteins encoded by
ORFs CAGL0D01012g and CAGL0A04565g. Other than Candida
spp. homologs, the same A. fumigatus protein found to share
homology with C. neoformans Mbs1 was also identified to be
related to C. albicansMbp1 by reciprocal phylome analysis.

FIGURE 7 | Transcriptional networks of described transcription factors among A. fumigatus, C. neoformans and Candida spp. Transcriptional factors

regulating distinct biological mechanisms are shown. Full lines represent positive regulation, dotted lines represent negative regulation. Colored boxes indicate

the species that include characterized homologs of the indicated transcription factor, according to the following color code: Single species: Green, Candida spp.;

Pink, A. fumigatus; Blue, C. neoformans; Multiple species: Orange, Candida spp. + C. neoformans; Yellow, Candida spp. + A. fumigatus; Purple, Candida spp. +

A. fumigatus + C. neoformans.
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TABLE 1 | Conservation of function between described transcription factors in A. fumigatus, C. neoformans and Candida spp. and their correspondent

homologs predicted by the Phylome DB.

Function Transcription

factor

Similar function

(homologs)

Distinct function

(homologs)

Unknown function (homologs) Similar function

(non-homologs)

Drug resistance (efflux Pdr1 (C. glabrata) N.A. N.A. N.A. Tac1 (C. albicans)

pumps expression) Mrr1 (C. albicans)

Mrr2 (C. albicans)

Stb5 (C. glabrata) Stb5 (C. albicans) N.A. CPAR2_109760; CTRG_04421* N.A.

Tac1 (C. albicans) N.A. Znc1 (C. albicans) CPAR2_303510;CPAR2_303520 Pdr1 (C. glabrata)

CPAR2_303500; CTRG_05307 Mrr1 (C. albicans)

Hal9 (C. albicans) CTRG_05306;CTRG_05308 Mrr2 (C. albicans)

Mrr1 (C. albicans) Mrr1 (C. parapsilosis) Cta4 (C. albicans) orf19.5133; orf19.7371 Pdr1 (C. glabrata)

CPAR2_501570;CPAR2_405260

CPAR2_405270;CPAR2_704130

Tac1 (C. albicans)

Mrr2 (C. albicans)

CPAR2_807260;CTRG_02269*

CTRG_02696*;CTRG_02712*

CTRG_02268*;CTRG_05208*

CTRG_00538*;CTRG_02271*

CPAR2_501570;CPAR2_405260

CPAR2_405270;CPAR2_704130

Mrr2 (C. albicans) Mrr1 (C. parapsilosis) Cta4 (C. albicans) CPAR2_405270;CPAR2_807820 Pdr1 (C. glabrata)

CAGL0M12298g;CTRG_05568* Tac1 (C. albicans)

Mrr1 (C. albicans)

Drug resistance

(ergosterol biosynthesis)

Upc2 (C. albicans) Upc2 (C. parapsilosis) N.A. Ecm22 (C. albicans) N.A.

Upc2a (C. glabrata)* Upc2 (C. tropicalis)*

Upc2b (C. glabrata)*

SrbA (A. fumigatus) SrbB (A. fumigatus) N.A. N.A. Sre1 (C. neoformans)

Virulence (hyphal

growth/biofilm formation)

Efg1 (C. albicans) Efg1 (C. parapsilosis) StuA (A. fumigatus) CAGL0L01771g N.A.

StuA (A. fumigatus)

Efh1 (C. albicans) CTRG_01780

Efh1 (C. albicans) Efg1 (C. albicans) N.A. Efh1 (C. parapsilosis);CTRG_01780 StuA (A. fumigatus)

Cph1 (C. albicans) Ste12 (C. glabrata) N.A. Cph1 (C. parapsilosis) N.A.

Cph1 (C. tropicalis)*

Ste12 (C. glabrata) Cph1 (C. albicans) N.A. CAGL0H02145g;

SteA (A. fumigatus)

N.A.

Tec1 (C. albicans) N.A. N.A. CPAR2_805930 AbaA (A. fumigatus)

Bcr1 (C. albicans) Bcr1 (C. parapsilosis) N.A. CTRG_00608 N.A.

Cst6 (C. glabrata) N.A. N.A. N.A. Rca1 (C. albicans)

Rca1 (C. albicans) N.A. N.A. CPAR2_109540;CTRG_04281* N.A.

SomA (A. fumigatus) N.A. N.A. N.A. N.A.

BrlA (A. fumigatus) N.A. N.A. N.A. N.A.

MedA (A. fumigatus) CNAG_03859* N.A.

Znf2

(C. neoformans)

Csr1 (C. albicans) ZafA (A. fumigatus) N.A. N.A.

Nrg1 (C. albicans) Nrg1 (C. tropicalis) N.A. CPAR2_300790;CTRG_00608 N.A.

CAGL0G08107g

Csr1 (C. albicans) N.A. N.A. CPAR2_403080;CTRG_03883 N.A.

CAGL0J05060g

Rfg1 (C. albicans) N.A. N.A. CPAR2_801100 N.A.

(Continued)
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TABLE 1 | Continued

Function Transcription

factor

Similar function

(homologs)

Distinct function

(homologs)

Unknown function (homologs) Similar function

(non-homologs)

Ace2 (C. glabrata) Swi5 (C. glabrata) N.A. N.A. Ace2 (C. albicans)

Ace2 (A. fumigatus)

Ace2 (C. albicans) Ace2 (C. parapsilosis) N.A. CTRG_03073* Ace2 (C. glabrata)

Ace2 (A. fumigatus)

Virulence (nitrogen use) Gat1 (C. albicans) N.A. N.A. Gat1;CTRG_03831* AreA (A. fumigatus)

Virulence (pH and weak

acid response)

Rim101 (C. albicans) N.A. N.A. CPAR2_700450 PacC (A. fumigatus)

Rim101 (C. tropicalis)*

War1 (C. albicans) N.A. N.A. CPAR2_110360;CTRG_04350 N.A.

War1 (C. glabrata)

Afu7g01640;Afu8g00950

Mnl1 (C. albicans) N.A. N.A. CPAR2_204380 Msn4 (C. albicans)

Msn2 (C. glabrata)

CTRG_03074 Msn4 (C. glabrata)

SebA (A. fumigatus)

Msn4 (C. albicans) N.A. N.A. CPAR2_301730 Mnl1 (C. albicans)

Msn2 (C. glabrata)

CTRG_03253 Msn4 (C. glabrata)

SebA (A. fumigatus)

Phenotypic switching Wor1 (C. albicans) N.A. N.A. CPAR2_805000;CTRG_03345 N.A.

Afu6g04490

Wor2 (C. albicans) N.A. N.A. CPAR2_405400 N.A.

Czf1 (C. albicans) N.A. N.A. CTRG_03771 N.A.

Wor3 (C. albicans) N.A. N.A. CPAR2_202450;CTRG_00711 N.A.

Wor4 (C. albicans) N.A. N.A. CPAR2_808100;CTRG_05581 N.A.

Iron homeostasis HapX (A. fumigatus) N.A. N.A. N.A. Hap43 (C. albicans)

Hap43 (C. albicans) N.A. N.A. CPAR2_209090;CTRG_04121* N.A.

SreA (A. fumigatus) Sfu1 (C. albicans) N.A. N.A. N.A.

Sfu1 (C. albicans) N.A. N.A. CPAR2_700810;CTRG_03356 N.A.

Oxidative stress Cap1 (C. albicans) Yap1 (C. glabrata) N.A. CPAR2_405030 Yap1 (A. fumigatus)

resistance (antioxidant Yap1 (C. tropicalis)* Yap1 (C. neoformans)

gene expression) Skn7 (C. albicans) Skn7 (C. glabrata) N.A. CPAR2_304240; Skn7 (C.

tropicalis)*

Skn7 (A. fumigatus)

Skn7 (A. fumigatus) Skn7 (C. albicans) Skn7

(C. neoformans)

N.A. Skn7 (C. glabrata)

AtfA (A. fumigatus) Atf1 (C. neoformans) Atf1 (C. neoformans) N.A. N.A.

Sko1 (C. albicans) AtfA (A. fumigatus) N.A. CTRG_04352; Sko1 (C. glabrata) N.A.

Nitrosative stress

resistance

Cta4 (C. albicans) N.A. Mnl1 (C. albicans) N.A. N.A.

Msn4 (C. albicans)

Yap4

(C. neoformans)

N.A. N.A. N.A. N.A.

Amino acid starvation Gcn4 (C. albicans) N.A. N.A. Gcn4 (C. parapsilosis) CpcA (A. fumigatus)

(Continued)
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TABLE 1 | Continued

Function Transcription

factor

Similar function

(homologs)

Distinct function

(homologs)

Unknown function (homologs) Similar function

(non-homologs)

CTRG_02060; Gcn4 (C. glabrata)

Gliotoxin production MtfA (A. fumigatus) N.A. N.A. N.A. N.A.

Melanin production Mbs1

(C. neoformans)

N.A. Mbp1 (C. albicans) Swi6 (C. albicans); Afu7g05620 N.A.

Swi4 (C. albicans) Afu3g13920*; CND05520

Cell cycle Mbp1 (C. albicans) N.A. N.A. CPAR2_102740;CAGL0D01012g N.A.

CAGL0A04565g; Afu7g05620

Mbp1 (C. tropicalis)

N.A., Not Available; *Homologs identified by BLASTp.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The study of drug resistance, virulence and immune evasion
mechanisms in fungal pathogens has advanced considerably
over the past years. However, the transcriptional control of
such mechanisms has been studied to a different extent.
The most studied transcriptional regulators in A. fumigatus,
C. neoformans, and Candida spp. are those relevant to their
virulence features. Nonetheless, this review highlights that
major transcriptional regulators vary among species, leading
to disperse information regarding regulatory networks in each
pathogen.

The regulatory networks analyzed in this review are compiled
in Figure 7. It is possible to observe that only the Yap1
and Skn7 transcription factors, involved in the response to
oxidative stress, are conserved with similar functions in all
the fungal pathogens considered in this review (Figure 7,
purple). This fact points out to the primordial importance
of being able to fight reactive oxygen species inside the
host, and specifically, within macrophages, something that is
common to all pathogens. Other transcription factors, such
as Ace2, Ste12, Nrg1, Gat1, Upc2/Ecm22, and Rim101, were
also found in most, but not all, of the considered species
(Figure 7, yellow and orange), playing important roles in
morphological switching, nutrient homeostasis, drug resistance
and nitrosative and pH stress tolerance. It is interesting to point
out, however, that most of the characterized transcription factors
are specific for Candida species (Figure 7, green), C. neoformans
(Figure 7, blue) or A. fumigatus (Figure 7, pink), an observation
that highlights the divergence of regulatory control in these
different fungal pathogens, suggesting that different molecular
mechanisms have been adopted to tackle similar biological
needs.

Another interesting feature that comes from the observation
of Figure 7 is that, in general, transcriptional control of a given
mechanism is controlled by one or a few major regulators,
that may also play complementary roles in other biological
process. Examples of these occurences are transcription factors

involved in morphology changes that are also often associated
with biofilm formation, given that the two processes are
associated. Common regulatory networks are also found in
the establishment of biofilms and resistance to oxidative stress
or drug resistance. The existence of regulatory circuits in
which transcription factors do not regulate directly effector
genes, but rather other transcription factors is also commonly
verified. All these aspects translate complex intricated circuits
with a series of interconnect relationships among regulators
and the biological processes regulated by them. Regulatory
network architecture is significantly complex, comprising
multiple layers of regulation among expression control
of transcription factors, effector genes and environmental
conditions.

Differential knowledge concerning transcriptional control can
be associated with the occurence of specific traits not known
to occur in every fungal pathogen. These include gliotoxin
production in filamentous fungi such as A. fumigatus and
melanin production in neurotropic fungi such as C. neoformans.

The occurence of known or predicted homologous
regulators among the different fungal pathogens considered
in this review and the corresponding degree of functional
conservation in infection-related processes is summarized
in Table 1. To be highlighted is the presence of conserved
transcriptional regulators that present divergent roles among
species, participating in distinct mechanisms and regulating
distinct targets. Examples of such ocurrences are the cases of
Mbs1 and ZafA, which acquired new functions in C. neoformans
and A. fumigatus, respectively, in comparison to their homologs.
In some cases, this situation represents a specialization of
a given protein to pathogen-specific pathway. The inverse
situation is also observed, where distinct regulators in different
species are found to participate in the control of similar
features, such as the C. albicans Tac1 and the C. glabrata Pdr1
transcription factors, or C. albicans Efh1 and A. fumigatus
StuA.

The regulation of transcriptional networks is complex and
presents significant variations among different fungal pathogens,
either in terms of regulators themselves or their regulatory
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targets. The study of regulatory circuits should therefore be a
prime strategy in the fight against fungal infections, allowing to
develop better diagnostic and treatment approaches according to
each pathogen’s conserved or specific pathways.
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