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Abstract

Most social mobility studies take a two-generation perspective, in which intergenerational 

relationships are represented by the association between parents’ and offspring’s socioeconomic 

status. This approach, albeit widely adopted in the literature, has serious limitations when more 

than two generations of families are considered. In particular, it ignores the role of families’ 

demographic behaviors in moderating mobility outcomes and the joint role of mobility and 

demography in shaping long-run family and population processes. This paper provides a 

demographic approach to the study of multigenerational social mobility, incorporating 

demographic mechanisms of births, deaths, and mating into statistical models of social mobility. 

Compared to previous mobility models for estimating the probability of offspring’s mobility 

conditional on parent’s social class, the proposed joint demography-mobility model treats the 

number of offspring in various social classes as the outcome of interest. This new approach shows 

the extent to which demographic processes may amplify or dampen the effects of family 

socioeconomic positions due to the direction and strength of the interaction between mobility and 

differentials in demographic behaviors. I illustrate various demographic methods for studying 

multigenerational mobility with empirical examples using the IPUMS linked historical U.S. 

census representative samples (1850 to 1930), the Panel Study of Income Dynamics (1968 to 

2015), and simulation data that show other possible scenarios resulting from demography-mobility 

interactions.

Keywords

Social mobility; demography; multigenerational inequality; Markov chain processes

1 INTRODUCTION

Studies on social mobility are dominated by a two-generation perspective, in which 

researchers analyze the extent to which one’s socioeconomic status, in terms of education, 

income, occupations, and the like, is associated with that of one’s parent (Blau and Duncan 

1967; Breen 2004; Erikson and Goldthorpe 1992; Featherman and Hauser 1978; Hout 1983). 
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The most common method of analysis uses mobility tables, a contingency-table technique 

that summarizes the probability a child will be in a certain social position given his parent’s 

position (e.g., Ginsberg 1929; Glass 1954). From a statistical view, mobility tables are 

equivalent to a single transition matrix of a Markov chain, which describes the transition 

probability of moving from one social class to another in one generation step (Bartholomew 

1967; Hodge 1966; Prais 1955; Svalastoga 1959; White 1963).

Mobility tables provide an elegant and effective approach to summarizing the transmission 

of social status across two generations, but this method’s limitations are widely discussed 

and debated. Duncan (1966b: 17), for example, cautioned mobility researchers more than 50 

years ago that,

What is fundamental is that the process by which occupation structures are 

transformed—the succession of cohorts and intracohort net mobility—are not 

simply translatable into the processes one may observe in a so-called 

intergenerational occupation mobility table.

Duncan did not explicitly use the phrase “demography,” but his critique points to the 

importance of accounting for demographic processes that govern the transmission of social 

status from parents to offspring and the succession of generations in a population. More 

specifically, as Duncan (1966a) noted, the conventional mobility approach relies on a sample 

of respondents and their reports of their own parents. The parents are not representative of a 

previous generation or any cohort in “some definite prior moment in time” because the 

sample (1) necessarily excludes individuals who never had children; (2) overrepresents 

parents who have many offspring; and (3) includes parents born into different birth cohorts 

who vary by childbearing age.

From a demographic perspective, generations within families are linked not only by their 

socioeconomic statuses but also by their fertility, mortality, and marriage, among other 

demographic behaviors. These demographic outcomes, often stratified by social class, lead 

to variations between families in resources allocation, household formation, and changes in 

kinship structure, which, in turn, limit and condition the amount of family capital that can be 

inherited by subsequent generations (see examples in Lam 1986; Mare 1997; Mare and 

Maralani 2006; Maralani 2013; Preston and Campbell 1993). Compared to the traditional 

approach based on mobility tables, the demographic approach provides a more complete 

account of intergenerational processes, shifting attention from “how likely that offspring’s 

status resembles that of their parents” to “how intergenerational effects transpire” (Mare 

2015: 101). By doing so, researchers are no longer restricted to the analysis of parents and 

offspring conditional on the existence of a given offspring but are now also able to consider 

the degree to which offspring will come into existence as an integral part of intergenerational 

influences (Mare and Maralani 2006). The demographic view of social mobility, albeit long 

established in the literature (e.g., Matras 1961, 1967), has been largely overlooked by major 

studies on social mobility until recently (Breen and Ermisch 2017; Lawrence and Breen 

2016; Maralani 2013; Mare 1997; Mare and Maralani 2006).

The present study generalizes the demographic approach, which has hitherto focused on 

social mobility between two generations, to multiple generations. Multigenerational mobility 
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research has proliferated in recent years, with new studies leveraging the increased 

availability of longitudinal, genealogical, and linked administrative data that provide 

information on family members over three or more generations (reviewed in Ruggles 2014; 

Ruggles et al. 2015; Song and Campbell 2017). Yet, most of these studies follow the 

tradition of mobility tables, examining the association of social status across three 

generations, especially the role of grandparents in their grandchildren’s status attainment, 

net of the widely-studied effects of parents (Chan and Boliver 2013; Ferrie et al. 2016; Jæger 

2012; Mare 2011, 2014; Pfeffer 2014; Song 2016; Zeng and Xie 2014). Despite the 

considerable merit of these studies, the complexity of multigenerational influences has not 

been fully explored. To pass on their advantages or disadvantages, families must first have at 

least one offspring in each generation who can carry the family legacy. In the long run, 

families’ demographic behaviors may mute or exacerbate the effect of social mobility, 

leading to varying numbers and types of offspring in families. Eventually, some families 

may grow and account for a disproportionately large share of the population after several 

generations or hundreds of years, whereas others may decline or even become extinct (Song, 

Campbell, and Lee 2015). This paper illustrates multigenerational models that not only 

account for the circulation of elites in society due to social immobility but also provide 

aggregate-level inferences about long-term population renewal and change.

Building on previous theoretical constructs and contributions of social mobility and 

population renewal models, I introduce several joint demography-mobility models. The 

models incorporate a few new features into conventional discrete-state Markov chain 

mobility models (Bartholomew 1967; Blumen et al. 1955; Hodge 1966; Matras 1961; Singer 

and Spilerman 1973) by (1) adding multigenerational effects; (2) combining demographic 

processes with the transmission of social status; (3) addressing population heterogeneity in 

social mobility; (4) allowing the transition matrix to evolve over time; and (5) differentiating 

between one-sex and two-sex approaches. These models are extensions to the two-

generation social reproduction model that focuses on female populations.

The rest of the paper proceeds as follows. In section 2, I describe traditional methods based 

on discrete-time Markov chains in which time is measured as “generations” and social status 

is measured by a finite number of discrete, qualitatively different categories.1 Section 3 

introduces a joint demography-mobility model, also known as the social reproduction 

model, which reflects the evolution of socioeconomic distributions over generations in a 

population. It also provides examples of higher-order social reproduction models that 

include additional parameters for ancestral influences. Section 4 introduces various 

definitions of multigenerational effects based on models in Section 3 and shows how to 

decompose the effects into demographic and mobility components. Section 5 shows long-

term equilibria of multigenerational social reproduction models compared to those implied 

by simple Markov models. Section 6 illustrates a mixture model that allows for 

heterogeneous mobility and demographic regimes among subpopulations. Section 7 

1I will not discuss continuous-time Markov chain models, which require extensive information about mobility measured in “real” time 
(Blumen et al. 1955; Goodman 1961; Singer and Spilerman 1976, 1977; Spilerman 1972b). Also, this paper does not address models 
that rely on continuous measures of social status. These models, exemplified by the path analysis used in Blau and Duncan (1967), 
often focus on answering questions related to the determinants of social status rather than the overall extent of social mobility.
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describes a two-sex version of the multigenerational social reproduction model that accounts 

for interactions between males and females, namely, the process through which two sexes 

mate and produce offspring with others of similar social statuses and jointly influence the 

social mobility outcomes of their offspring. Section 8 provides empirical examples of 

various types of multigenerational mobility and demographic models using data from the 

IPUMS linked representative samples of U.S. census data (IPUMS linked, 1850 to 1930), 

the Panel Study of Income Dynamics (PSID, 1968 to 2015), and simulation data that show a 

range of hypothetical demography-mobility interactions. Section 9 concludes the paper by 

identifying areas for future research on multigenerational methodology.

2 CLASSICAL SOCIAL MOBILITY MODELS BASED ON MARKOV CHAINS

From the outset of studies on social mobility, important theoretical and empirical advances 

have accompanied the development of new methods of data collection, measurement, and 

analysis (Ganzeboom et al. 1991; Treiman and Ganzeboom 2000). In one of the earliest 

studies on social mobility, Prais (1955) showed that the Markov chain representation of 

mobility processes has methodological advantages over contingency tables (e.g., Ginsberg 

1929; Glass 1954). The Markov chain is a simple form of stochastic modeling in which the 

outcome state of the present generation depends only on that of the parent generation, not 

any other preceding generation. The model provides new measures of mobility—such as 

equilibrium distribution of social classes and the average time spent in a social class—

beyond measures used in contingency tables, such as vertical and horizontal mobility rates 

(Sorokin 1959 [1927]), inflow and outflow percentages (Lipset and Bendix 1959), and 

mobility ratios (Carlsson 1958; Glass 1954; Rogoff 1953; Tyree 1973). These early 

endeavors, widely considered to be the first generation of mobility research, all relied on 

descriptive, global measures to summarize mobility patterns (Ganzeboom et al. 1991; 

Boudon 1973).

Below, I provide a brief overview of classic mobility models based on Markov chains. These 

models typically start with a mobility table in which rows refer to fathers’ positions and 

columns refer to sons’ positions (with I and J categories, respectively, and typically, I = J) 

(Bartholomew 1967). Mobility tables can be converted into a Markov chain transition matrix 

by standardizing mobility rates between categories as follows:

∑
j = 1

J
pY2 = j ∣ Y1 = i = ∑

j = 1

J nij
ni +

= 1 (1)

where PY2 = j ∣ Y1 = i denotes the probability that the son (G2) of a father (G1) in social 

position i ends up in position j; nij denotes the number of father-son dyads in positions i and 

j; and ni+ denotes the total number of fathers in position i regardless of their sons’ positions.

Suppose we observe fi fathers in social position i and sj sons in position j. The transition 

matrix P that transforms the distribution of fathers into the distribution of sons satisfies
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sj = ∑
i = 1

I
fi ⋅ pY2 = j ∣ Y1 = i (j = 1, 2, …, J) . (2)

In matrix notation, fathers and sons in different positions are denoted by vectors F = [f1, f2, 

…, fi, …, fn] and S = [s1, s2, …, si, …, sn], respectively. The matrix of mobility probabilities 

P with pj|i in the ith row and jth column is represented as a square matrix. A transition 

matrix has all entries as mobility probabilities between 0 and 1. The sum of entries in each 

row equals 1. The matrix shows the probability of change in social position from one 

generation to the next.

The matrix form of the intergenerational transmission of social classes is written as

S1 × n = F1 × nPn × n . (3)

Assuming mobility rates are fixed over time, we can derive the distribution of men after two 

generations as

S(2) = F(0) ⋅ P ⋅ P = F(0) ⋅ P2 . (4)

Furthermore, the distribution of descendants, namely the expected proportion of men in 

various social positions after t generations, can be projected by taking the matrix P to the tth 

power,

S(t) = S(t − 1) ⋅ P = F(0) ⋅ Pt . (5)

where F(t) and S(t) refer to the status distribution of fathers and sons in the tth generation, 

respectively. This equation shows the process through which the initial progenitor 

distribution is transformed into subsequent generations after several generations of social 

mobility. The process retains no memory, in the sense that a man’s social position entirely 

depends on that of his father. If the position of one’s father has been taken into account, then 

his grandfather, great-grandfather, and earlier ancestors have no impact on his probability of 

attaining a specific position. A grandfather who fails to transmit his position to his son is 

incapable of influencing the outcomes of his grandson independently of his son. The 

memoryless property also makes it possible to predict how the Markov process behaves in 

the long run; that is, the eventual distribution of descendants after a sufficient number of 

generations. Provided that the transition matrix is regular, as time progresses, the process 

will “forget” its initial distribution and converge to a unique equilibrium distribution of the 

descendants that is unrelated to the initial distribution (Norris 1998).2 This property implies 

that

lim
t ∞

F(0) ⋅ Pt = π (6)

2Regular means all entries in some power of the transition matrix are positive, or more strictly speaking, a Markov chain is irreducible, 
positive recurrent, and aperiodic.
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where π is called the equilibrium vector of the Markov chain. This property suggests that in 

the short run, the initial distribution of progenitors influences future generations, but the 

influence diminishes as time passes. In the long run, the descendant distribution is only 

determined by the transition matrix P.

According to Coleman (1964a: 462), “the intent of the (Markov) model is not to mirror 

reality in all its facets. It is, instead, to see just how much of reality can be mirrored by a 

highly constrained process. That is, our question will be: How well does this rather 

restrictive assumption allow us to account for the data on intergenerational mobility?” To 

evaluate the suitability of a Markov chain model for representing a multigenerational 

process, it is important first to identify assumptions implied in this model. Below, I list five 

key assumptions that are modified from Pullum (1975: 16–17).

Assumption 1 [No Demography].

Families’ social mobility, PY2 ∣ Y1, is assumed to be independent of demographic behaviors, 

such as mortality, fertility, adoption, mating, and migration, as well as the timing of these 

events, in any generation, R. In particular, families’ social status, Y, does not affect their 

number of children or long-term reproductive success.

Assumption 2 [Markov Property].

The father mediates all multigenerational influences on his son, 

PYn ∣ Yn − 1 = PYn ∣ Yn − 1, Yn − 2⋯Y1 = PYn ∣ Yn − 1. The grandfather, great-grandfather, remote 

ancestors, and wider kin network do not affect the son when accounting for the father’s 

influence. Thus, the total influences of one’s ancestors are equal to the total influence of the 

father.

Assumption 3 [Homogeneous Mobility Regime].

A single mobility regime, P, in the society is assumed, so that all individuals in a population 

are subject to the same set of mobility probabilities given their fathers’ social class, pY2 ∣ Y1. 

This assumption also implies that the population is homogeneous concerning characteristics 

other than the measure of the social class under consideration.

Assumption 4 [Transition Stationarity].

The intergenerational transition matrix does not change as the history unfolds, that is, P(t) = 

P. All multigenerational relationships can be derived from the time-invariant two-generation 

mobility table.

Assumption 5 [One-Sex Mobility].

The model includes only fathers and sons; it ignores women’s social statuses and the 

potential influence of mothers and maternal ancestors, namely, 

PYgn = son ∣ Ygn − 1 =  father = PYgn = son, daughter ∣ Y gn − 1 = father, mother . The role of mating 

rules, such as assortative mating according to social status in determining the number of 

marriages and families’ reproductive behaviors in a population, is not considered.
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Mare (2011) provided examples of social contexts in which these assumptions may be 

violated and discussed the implications of these violations to clarify multigenerational 

mechanisms. In the following sections, I modify each of the five assumptions and show 

variants of stochastic models that may better characterize multigenerational processes under 

different circumstances.

3 A JOINT DEMOGRAPHY-SOCIAL MOBILITY MODEL

3.1 A Two-Generation Setup

The mobility table in Markov chain models provides a straightforward way of assessing the 

degree of social mobility between generations. Yet, as discussed earlier, mobility tables 

represent fathers’ and sons’ occupational distributions by giving equal weight to sons from 

families of unequal size, ignoring the fact that some fathers may have many sons while 

others have none. The transmission of social status from fathers to sons is not a simple, one-

to-one mapping; instead, demographic processes, such as births, deaths, and migrations, may 

all influence the number of offspring observed in a mobility table (Kahl 1957; Pullum 1970).

Thus far, we do not have an agreed-upon solution for translating a Markov mobility model 

into a model that illustrates changes in social structure and population renewal 

simultaneously. Conceptually, the Markov model is flawed by the lack of a distinction 

between generation and birth cohort. If we define the son generation as a birth cohort whose 

occupational distribution is observed at a recent point in time, then fathers’ occupations—

represented by the marginal distribution of the mobility table—do not comprise the 

occupational distribution of any birth cohort at any prior point in time (Duncan 1966a). As 

fathers’ levels and timing of fertility vary, a generation of fathers consists of a group of men 

whose birth years are not well-defined—and often not even reported in retrospective surveys 

of sons. Such ambiguity also occurs in the definition of the sons’ birth cohort when mobility 

tables are constructed from a prospective perspective (Song and Mare 2015; Yasuda 1964). 

Methodologically, a mobility table is not equivalent to a population projection matrix that 

can be used to describe population dynamics. Mobility tables often exclude age-specific 

information that could be used to predict the progression of birth cohorts. They also exclude 

individuals’ life history events—such as the school-to-work transition, job promotion and 

changes, retirement, or even death—that could be used to predict occupational compositions 

of fathers and sons in the labor market. Despite all these potential difficulties in combining a 

mobility model with demographic components, a few studies have proposed variants of 

Markov models that allow for differential demographic rates (Chu and Koo 1990; Matras 

1961, 1967; Mare 1997; Mare and Maralani 2006; Maralani 2013; Preston 1974; Preston 

and Campbell 1993; Lam 1986, 1997). These models provide a good starting point for future 

work.

To relax Assumption 1, Matras (1961) first proposed a Markov model that incorporates 

differential population growth as follows:

sj = ∑
i = 1

I
fi ⋅ ri ⋅ pY2 = j ∣ Y1 = i (j = 1, 2, …, J) . (7)
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where fi denotes the number of fathers in social class i; sj denotes the number of sons in 

class j; ri denotes the expected number of sons born to a man in class i who survive to 

adulthood or are old enough to acquire a social position;3 and PY2 = j ∣ Y1 = i denotes the 

probability that a son born to a father in class i will attain class j.4

Relying on the recursive form of the model, we can model the socioeconomic distribution of 

descendants given that intergenerational fertility and mobility processes are fixed over time 

(namely, a time-homogeneous Markov chain). Set a diagonal matrix for the differential 

fertility component, R = [rij], where rij = ri for i = j and rij = 0 for i ≠ j. P is the same 

mobility matrix defined in equation (2). Let R · P = C, and we obtain the intergenerational 

relationship, S(2) = S(1) · C = F(0) · C2. In general, the generation-to-generation change is 

represented by

S(t) = F(0) ⋅ Ct . (8)

Subsequent work has extended this basic model in several ways. Matras (1967) introduced a 

model that incorporates the age structure of each generation, which was later analyzed 

empirically by Lam (1986) and Mare (1997). Preston (1974) developed a model that 

separates white and non-white families. Mare and his collaborators further decomposed the 

differential reproduction rates into marriage, fertility, and mortality components (Kye and 

Mare 2012; Maralani 2013; Mare and Maralani 2006; Maralani and Mare 2005; Mare and 

Song 2014).5

Overall, these models show the effect of a person’s social class in one generation on the 

expected number of offspring in various social classes in the next generation; that is, the 

joint effects of a man’s social class on his demographic behaviors and his offspring’s 

socioeconomic attainment. Therefore, these models illustrate the transformation from F to S 
as a sociodemographic process rather than strictly a social mobility process. In subsequent 

sections, I refer to these models as social reproduction models or sociodemographic mobility 

models.

As discussed earlier, the model specified in equation (7) may simplify demographic 

processes in social mobility, especially by relying on the concept of generation rather than 

using a real-time scale (Duncan 1966a). Projections from the model often do not mirror 

observed empirical processes that continuously evolve. Yet, taken qualitatively, conclusions 

from these models may still reflect general trends in family dynamics in the long run.

3In population data, the average number of sons who survived to adulthood may not be available. An approximate measure is the 
Gross Reproduction Rate, namely, the average number of sons who would be born to a man during his lifetime if he lives through his 
childbearing years and conforms to the age-specific reproduction rates of a given year.
4Matras (1961) used the proportion of fathers (sons) in each occupation, but here we use the number of fathers (sons) to be consistent 
with equation (7).
5Coleman (1975) developed a Markov chain model with demography for the study of intragenerational mobility. His model combines 
an intragenerational occupational mobility matrix with a birth and survival matrix to reflect the flow of workers among occupations in 
a social system.
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3.2 Multigenerational Models

One central assumption of the Markov chain model is that each generation directly 

influences only the immediately following generation, exerting no direct effect beyond its 

offspring (Assumption 2). No matter how much influence parents have on their children’s 

outcomes, they do not influence their grandchildren’s outcomes independently of their own 

children. Therefore, the social system has no memory: if a family loses its existing 

advantages, it has to start from scratch. This assumption may be invalid under some social 

circumstances, such as when multigenerational social processes are non-Markovian. In 

particular, individuals’ social mobility may depend on various forms of multigenerational 

influence, such as direct influences from grandparents and great-grandparents, cumulative 

advantages (or disadvantages) of prior generations, legacy influences of remote ancestors 

who experienced extreme hardship or success, or supplementary influences of nonresident 

kin in extended families (Mare 2011). Some of these processes can be represented by 

second- or higher-order Markov chains (see, e.g., Goodman (1962) on attitude change and 

Hodge (1966) on three-generation mobility). I will refer to them as non-Markovian 

generational processes.

The simplest way to relax the Markovian assumption is to incorporate the effect of 

grandparents into Matras’s model shown in equation (7):

sj = ∑
i

∑
k

fik ⋅ rik ⋅ pY3 = j ∣ Y2 = i, Y1 = k (9)

where sj denotes the number of men in the offspring generation who are in class j (j = 1, …, 

J); fik denotes the number of men in the paternal generation who were in class i and whose 

fathers were in class k; rik denotes the expected number of sons born to each man in fik; and 

pY3 = j ∣ Y1 = i, Y2 = k denotes the probability that a son with a father in class i and a 

grandfather in class k will attain class j. More generally, if the model parameters depend on 

the socioeconomic status of all prior generations, Yn − 1 = Y 1, Y 2, ⋯, Y n − 1 , the model can 

be written as

sYn = ∑
Y1

⋯ ∑
Yn − 1

fYn − 1 ⋅ rYn − 1 ⋅ pYn ∣ Yn − 1 (10)

Despite the importance of validating the Markovian assumption in mobility models, only a 

few studies have tested the assumption empirically (Hodge 1966; Warren and Hauser 1997; 

see a review of these studies in Appendix Table S1). The increasing availability of 

longitudinal data in recent years has facilitated a growing body of scholarship that 

investigates the Markovian assumption more thoroughly from a wide range of countries.6 

The findings from these studies are far from conclusive, suggesting that the validity of the 

6Empirical studies on Markov chain mobility have drawn on evidence from the United Kingdom (Chan and Boliver 2013), the United 
States (Jæger 2012; Liu 2018; Song 2016; Wightman and Danziger 2014), Germany (Hertel and Groh-Samberg 2014), the 
Netherlands (Bol and Kalmijn 2016; Knigge 2016), Sweden (Hällsten 2014; Hällsten and Pfeffer 2017), Denmark (Møllegaard and 
Jæger 2015), Finland (Erola and Moisio 2007), mainland China (Zeng and Xie 2014), Taiwan (Chiang and Park 2015), and South 
Korea (Park and Kim 2019).
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Markovian assumption may vary across time and social context. Even within a society, 

patterns of social mobility may vary based on the form of social status classification, be it 

stocks of social advantages, such as business, land, or estate ownership, or flows of 

advantages, such as income, occupation, and education. Moreover, any test of the Markovian 

assumption may be subject to the “lumpability” problem (Kemeny and Snell 1960: pp.123–

139): a non-Markovian chain may become Markovian if we combine or divide some of the 

transition states. Therefore, any conclusion regarding the mobility pattern is valid only under 

the condition that the states are defined the way they are (McFarland 1970).

3.3 Demographic Change and Structural Mobility

Social mobility analyses, typically in the form of mobility tables, have a dual character: the 

number of parents and offspring in different occupations reflects both the relative chances of 

social movement and the changing availability of job opportunities. Most analytical 

techniques have focused on separating circulation mobility, also known as exchange or 

relative mobility, from mobility caused by changes in social structures. These structural 

changes may emerge from exogenous shocks, such as industrialization, technological 

revolution, economic growth, growing new jobs, and the increasing division of labor, which 

reflect the changing occupational needs of the economy. For example, new technology 

reduced the number of agricultural jobs, and thus some offspring of farm workers would be 

forced out of occupations in the primary industry. However, structural changes may also 

result from the process of “social metabolism” produced by birth, death, migration, and 

retirement from economic activities (Duncan 1966b). These fundamental demographic 

forces change the supply and demand for workers in different age groups and of different 

qualifications, and interact with macroeconomic changes in ways that contribute to structural 

change (White 1963: p.27).7 As Watkin, Menken, and Bongaarts (1987) argue, demography 

is the foundation of social change. A demographic perspective will provide insights into the 

amount of mobility generated by structural change, which is often eliminated in previous 

mobility analyses (reviewed in, e.g., Hauser 1978).

4 SOCIAL MOBILITY EFFECT VS. DEMOGRAPHIC EFFECT

Using the models described above, we can estimate the effect of one generation on the next 

or several generations later in terms of the pure mobility effect based on the classic Markov 

models in equation (2) and the joint mobility and demography effect based on the social 

reproduction model in equation (7). The effects can be defined either in ratio measures or 

difference measures. The ratio measure refers to arithmetic quotients of mobility or 

demographic outcomes between two types of families; the difference measure refers to the 

difference score between the two. Both measures are widely used in social sciences (see a 

recent review and critique by Stolzenberg 2018). Ratio measures are more popular in the 

social mobility literature, especially in mobility models based on log-linear analysis and 

odds ratios (Agresti 2013; Powers and Xie 2000), whereas difference measures are widely 

used in the demographic literature for decomposition analyses. This section illustrates how 

7In his discussion of causes of change in social mobility, White (1963: p.27) pointed out that “such mechanisms would have to specify 
the effects of variations in the prestige distribution of available jobs and in differential class fertility on the size of Rij in fixed cells.”
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to quantify various components of mobility and demography effects using the following 

definitions and decomposition techniques.

4.1 Net and Total Mobility Effects

In traditional mobility models, researchers typically measure mobility by estimating 

differences in the probability of children who grew up in rich versus poor families to achieve 

high social status.8 The total mobility effect (TME) of having a parent in high status (social 

class k) relative to low status (social class j) on children’s attainment of high status can be 

defined using the following ratio measure,

TMEP = pY2 = k ∣ Y1 = k/pY2 = k ∣ Y1 = j . (11)

Likewise, the total mobility probability effect of having grandparents in high status relative 

to low status is estimated by combining the mobility from grandparents to parents and from 

parents to offspring:

TMEGP = ∑
i

pY3 = k ∣ Y2 = i, Y1 = k ⋅ pY2 = i ∣ Y1 = k/∑
i

pY3 = k ∣ Y2 = i, Y1 = j

⋅ pY2 = i ∣ Y1 = j
(12)

If we remove the effect of grandparents on parents by fixing the status of the parent 

generation to i, the mobility ratio represents the net mobility effect (NME) of grandparents:

NMEGP = pY3 = k ∣ Y2 = i, Y1 = k/pY3 = k ∣ Y2 = i, Y1 = j . (13)

The total and net effects are often unequal for the grandparent generation, but they are the 

same for the parent generation by definition in equation (11).

4.2 Net and Total Social Reproduction Effects

Next, we consider the joint effects of demography and mobility on the number of offspring 

and descendants in various social classes. The net Social Reproduction Effects (SRE) of 

parents are defined as the effects of a targeted social class relative to a baseline class on the 

number of offspring in the targeted social class. For example, the expected number of high-

status individuals from high-status rather than low-status parents is specified as:9

SREk ∣ j =
sY2 = k ∣ Y1 = k
sY2 = k ∣ Y1 = j

=
fk ⋅ rk ⋅ pY2 = k ∣ Y1 = k
fj ⋅ rj ⋅ pY2 = k ∣ Y1 = j

. (14)

8For example, Chetty et al. (2014) showed that for individuals born in 1971, the probability of reaching the top fifth income quintile 
group conditional on a parent (either father or mother) being in the top quintile is 31.1%, compared to 8.4% for individuals whose 
parents’ income is in the bottom quintile.
9Note that in traditional mobility studies, the mobility effect is often defined in terms of odds ratios, that is 

pY2 = k Y1 = k/pY2 = j Y1 = k
pY2 = k ∣ Y1 = j/pY2 = j ∣ Y1 = j

. The odds ratio measure, however, cannot reflect the demography effect if we define SRE as 

=
fk ⋅ rk ⋅ pY2 = k ∣ Y1 = k/fk ⋅ rk ⋅ pY2 = j ∣ Y1 = k
fj ⋅ rj ⋅ pY2 = k ∣ Y1 = j/fj ⋅ rj ⋅ pY2 = j ∣ Y1 = j

 because the reproduction parameter as a common factor is cancelled.
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We do not differentiate between net and total SRE because they are the same by definition. 

If we consider multiple generations, we define the net social reproduction effect (NSRE) of 

grandparents as the comparative advantage of a low-status parent and a high-status 

grandparent over a low-status parent and a low-status grandparent on producing high-status 

grandchildren:

NSREk ∣ j
GP =

sY3 = k ∣ Y2 = j, Y1 = k
sY3 = k ∣ Y2 = j, Y1 = j

=
fjk ⋅ rjk ⋅ pY3 = k ∣ Y2 = j, Y1 = k
fjj ⋅ rjj ⋅ pY3 = k ∣ Y2 = j, Y1 = j

. (15)

The choice of the parent’s status is, to an important extent, arbitrary. Alternatively, we can 

fix the parents’ social class at k. The two NSRE definitions will lead to the same estimates if 

there are no interaction effects between grandparents’ class and parents’ class in determining 

levels of r and p.10

By contrast, the total social reproduction effect is the comparative advantage of a high-status 

grandparent over a low-status grandparent on producing high-status grandchildren, 

regardless of the parent’s social status. Specifically,

TSREk ∣ j
GP =

sY3 = k ∣ Y1 = k
(2)

sY3 = k ∣ Y1 = j
(2)

=
∑i fk ⋅ rk ⋅ pY2 = i ∣ Y1 = k ⋅ rik ⋅ pY3 = k ∣ Y2 = i, Y1 = k
∑ifj ⋅ rj ⋅ pY2 = i ∣ Y1 = j ⋅ rij ⋅ pY3 = k ∣ Y2 = i, Y1 = j

(16)

where sY3 = k ∣ Y1 = j
(2)  (and sY3 = k ∣ Y1 = k

(2) ) refers to the number of high-status grandchildren 

whose grandparents are in low status j (and high-status k).

Note that we define the net and total effects of a prior generation based on a ratio measure, 

but this tells us nothing about the absolute difference between the number of various types of 

descendants from two ancestral groups of different social statuses. Revising equation (9), we 

can define SRE in the parent generation as a difference measure:

SREk ∣ j = sY2 = k ∣ Y1 = k − sY2 = k ∣ Y1 = j = fk ⋅ rk ⋅ pY2 = k ∣ Y1 = k − fj ⋅ rj
⋅ pY2 = k ∣ Y1 = j . (17)

More generally, the net SRE and total SRE of an ancestor who lives n generations back are 

expressed as

10This conclusion implies that the net social reproduction effect of grandparents can be defined as 

NSREk ∣ j
GP =

sY3 = k ∣ Y2 = j, Y1 = k
sY3 = k ∣ Y2 = j, Y1 = j =

fjk ⋅ rjk ⋅ pY2 = j ∣ Y1 = k
fjj ⋅ rjj ⋅ pY3 = k ∣ Y2 = j, Y1 = j

. This NSREGP will yield the same estimate as that 

in equation (15) if 
fkk
fkj

=
fjk
fjj

=
f . k
f ⋅ j

,
rkk
rkj

=
rjk
rjj

=
r ⋅ k
r ⋅ j

, and 

pY3 = k ∣ Y2 = k, Y1 = k
pY3 = k ∣ Y2 = k, Y1 = j

=
pY3 = k ∣ Y2 = j, Y1 = k
pY3 = k ∣ Y2 = j, Y1 = j

=
pY3 = k ∣ Y1 = k
pY3 = k ∣ Y1 = j

.
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NSREk ∣ j
(n) = fYn − 1, k ⋅ rYn − 1, k ⋅ pYn = k ∣ Yn − 1, k − fYn − 1, j ⋅ rYn − 1, j

⋅ pYn = k ∣ Yn − 1, j
(18)

TSREk ∣ j
(n) = ∑

Y2
⋯ ∑

Yn − 1
fk ⋅ ∏

i = 1

n − 1
rYi, k ⋅ pYi + 1 ∣ Yi, k − fj ⋅ ∏

i = 1

n − 1
rYi, j

⋅ pYi + 1 ∣ Yi, j .
(19)

where Yi, k refers to {Yi, Yi−1 ⋯ Y2, Y1 = k} in which the social status of the first generation 

is fixed at Y1 = k. The net effect suggests the comparative advantage of a family with an nth 

ancestor in high status k rather than in low status j in producing high-status sons. Social 

statuses of intermediate generations are fixed to be the same for these two families. By 

contrast, the total effect suggests the cumulative advantage of a high-status ancestor 

compared to a low-status ancestor in producing high-status descendants after n generations, 

regardless of the social positions of intermediate generations. In equations (18) and (19), the 

position of the nth generation is fixed at k, namely, pYn = k ∣ Yn − 1, k (and pYn = k ∣ Yn − 1, j).

4.3 Effect Standardization and Decomposition

Based on the definition of the social reproduction effect, one may ask, “how much of the 

difference in social reproduction between two families is attributable to differences in their 

levels of fertility versus differences in social mobility probabilities?” This type of question is 

addressed through decomposition techniques in demography (Kitagawa 1955). Below, I 

decompose social reproduction effects into fertility and mobility components. The two 

components completely account for the original difference without introducing a residual 

term. The decomposition method shows the relative importance of demographic and social 

pathways in explaining differences between descendants from two ancestral groups of 

different social statuses.

To begin with, I use Kitagawa’s method to decompose the social reproduction effect of a 

high-status parent relative to a low-status parent in equation (17).

SREk ∣ j = sY2 = k ∣ Y1 = k − sY2 = k ∣ Y1 = j

= rk − rj ⋅
pY2 = k ∣ Y1 = k + pY2 = k ∣ Y1 = j

2
  demography effect  

+ rk + rj
2 ⋅ pY2 = k ∣ Y1 = k − pY2 = k ∣ Y1 = j

  mobility effect  

(20)

The demography effect reflects differences in SRE attributed to differences in reproduction 

rates of high-status and low-status fathers, where the mobility probability of their offspring 

is fixed at the mean level, p =
pY2 = k ∣ Y1 = k + pY2 = k ∣ Y1 = j

2 ; and the mobility effect refers 

to differences in SRE due to differences in mobility probabilities of offspring from high-
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status and low-status fathers, where fathers’ reproduction rates are fixed at the mean level, 

r =
rk + rj

2 .11

Similarly, I decompose the SRE of a high-status grandparent versus a low-status grandparent 

in producing high-status grandchildren into the total effects of the grandparent via 

differences in demographic rates r and differences in mobility probabilities p.

TSREk ∣ j
GP = ∑

i
rk ⋅ pY2 = i ∣ Y1 = k ⋅ rik ⋅ pY3 = k ∣ Y2 = i, Y1 = k − ∑

i
rj

⋅ pY2 = i ∣ Y1 = j ⋅ rij ⋅ pY3 = k ∣ Y2 = i, Y1 = j
(21)

= ∑
i

rk ⋅ rik − rj ⋅ rij ⋅
pY2 = i ∣ Y1 = k ⋅ pY3 = k ∣ Y2 = i, Y1 = k + pY2 = i ∣ Y1 = j ⋅ pY3 = k ∣ Y2 = i, Y1 = j

2
  demography effect  

+ ∑
i

rk ⋅ rik + rj ⋅ rij
2 ⋅ pY2 = i ∣ Y1 = k ⋅ pY3 = k ∣ Y2 = i, Y1 = k − pY2 = i ∣ Y1 = j ⋅ pY3 = k ∣ Y2 = i, Y1 = j

  mobility effect  

(22)

Applying Das Gupta’s decomposition method (1993) for rates of four factors, one can 

further decompose compound demography and mobility effects into effects from different 

generations. To simplify the notations below, I use r1 = rk, r1′ = rj, r1 = rik, r2′ = rij, 

p1 = pY2 = i ∣ Y1 = k, p1′ = pY2 = i ∣ Y1 = j, p2 = pY3 = k ∣ Y2 = i, Y1 = k, p2′ = pY3 = k ∣ Y2 = i, Y1 = j.

demography effect  (1) = ∑
Y2

p1r2p2 + p1′r2′p2′
4

+
p1r2p2′ + p1r2′p2 + p1′r2p2 + p1′r2′p2 + p1′r2p2′ + p1r2′p2′

12 ⋅ r1 − r1′
(23)

mobility effect    (1) = ∑
Y2

r1r2p2 + r1′r2′p2′
4

+
r1r2p2′ + r1r2′p2 + r1′r2p2 + r1′r2′p2 + r1′r2p2′ + r1r2′p2′

12 ⋅ p1 − p1′
(24)

demography effect    (2) = ∑
Y2

p1r1p2 + p1′r1′p2′
4

+
p1r1p2′ + p1r1′p2 + p1′r1p2 + p1′r1′p2 + p1′r1p2′ + p1r1′p2′

12 ⋅ r2 − r2′
(25)

11Following the definitions in equation (15), the difference measure of the net social reproduction effect of grandparents can be 

decomposed into NSREk ∣ j
GP = rkk − rkj ⋅

pY3 = k ∣ Y2 = k, Y1 = k + pY3 = k ∣ Y2 = k, Y1 = j
2 +

rkk + rkj
2

⋅ pY3 = k ∣ Y2 = k, Y1 = k − pY3 = k ∣ Y2 = k, Y1 = j

.
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mobility effect    (2) = ∑
Y2

p1r1r2 + p1′r1′r2′
4

+
p1r1r2′ + p1r1′r2 + p1′r1r2 + p1′r1′r2 + p1′r1r2′ + p1r1′r2′

12 ⋅ p2 − p2′   .  
(26)

Mobility effect (1) refers to the effect of grandparents on grandchildren via the influence of 

grandparents on parents’ social mobility. Mobility effect (2) refers to the effect of 

grandparents on grandchildren via the influence of grandparents on grandchildren’s social 

mobility. The demography effects (1) and (2) can be interpreted in the same vein.

A generalization of the decomposition method to n generations is discussed in Appendix C. 

Note that the decomposition method assumes that families’ social mobility does not affect 

their reproduction, or vice versa. If this assumption is violated, such that the level of parents’ 

fertility influences the offspring’s mobility outcomes, the effects of demography and 

mobility cannot be completely separated into two independent components. Instead, the 

decomposition results can be roughly interpreted as the effect of differences in reproductive 

rates (not via mobility) and the effect of differences in mobility rates (not via reproductive 

behaviors).

5 SHORT-TERM EFFECT, LONG-TERM EFFECT, AND EQUILIBRIUM 

EFFECT

Based on the recursive form of the multigenerational model in equation (7), one can quantify 

the relative importance of mobility and demography in shaping short-term and long-term 

family inequality dynamics. The equilibrium properties of the model show the eventual 

population composition of individuals descended from different families. A critical property 

of the Markov model is that if the transition matrix is time-invariant, the distribution of 

social classes after t generations, that is, S(t) = F(0)Pt, will gradually converge to a stationary 

distribution that is determined only by the transition matrix, not by the initial distribution of 

F(0).12 This property suggests that a family’s initial social class may influence the social 

mobility probability for several generations, but eventually, its influence will fade away. As 

such, after enough generations, the social class of a descendant will eventually become 

independent of the social class of the lineage founder. The social class distribution between 

descendants from high-status and low-status origin lineages will become identical. 

Therefore, the social advantages associated with any generation will not permanently change 

the prospects of social attainment in future generations. Any short-term effect of one 

generation does not translate into long-term inequality between families that originate from 

unequal social statuses. This property is illustrated by equation (27). The long-term mobility 

effect is defined as the ratio of descendants in high-status k from a high-status rather than 

low-status lineage founder:

12This conclusion relies on the assumption that pij > 0, so that the Markov chain is aperiodic and has a single recurrent class. This 
condition ensures that the Markov chain of the mobility process can always converge to a stable distribution (“equilibrium”), which is 
independent of the initial distribution.
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LSRE = lim
t ∞

Sk ∣ k
(t)

Sk ∣ j
(t) = lim

t ∞

Fk
(0) ⋅ Pt

Fj
(0) ⋅ Pt = π

π = 1. (27)

where π is the equilibrium distribution for a Markov chain with the transition matrix P. If 

social mobility follows a second- or higher-order Markov process with a time-invariant 

transition matrix, the LSRE will also converge to 1 in the long run. Such a conclusion, 

however, may not hold when we examine the social reproduction effect rather than the 

mobility effect alone. Assume S(t) = F(0) · Ct, where C = R · P, a combination of the 

reproduction and mobility components. Suppose the number of social classes is the same for 

fathers and sons, and the reproduction and mobility matrices have no structural 0s (i.e., pj|i > 
0 and ri > 0 for all i and j). According to the Perron-Frobenius theorem, if C is a square 

matrix with positive entries and a unique dominant eigenvalue, the long-term behavior of S(t) 

would depend on the largest eigenvalue of C.

After enough generations, families starting with high-status k will eventually produce 
a1k
a1j

times as many descendants in high-status k as low-status families do. The terms a1k and a1j 

refer to coefficients associated with the first eigenvector when Fk
(0) and Fj

(0) are decomposed 

into multiple vectors using the eigenvectors of C. A proof of this equilibrium effect is shown 

in Appendix D. Therefore, the asymptotic distribution of descendants is path-dependent in 

that not all families produce the same number of descendants in the long run. By contrast, 

regular Markov mobility models with no demographic effects are ergodic. The transition 

matrix P can be viewed as a special case of matrix C as the sum of each row is constrained 

to 1. This constraint also guarantees that λ1 = 1 and a1k = a1j. As a result, the equilibrium 

distribution of the Markov mobility model will not depend on the social class of the initial 

generation.

6 HETEROGENEOUS MOBILITY REGIMES

The regular Markov mobility model assumes that all individuals in a population have 

identical transition probabilities conditional on their parents’ social status (Assumption 3). 

This assumption overlooks many possible sources of heterogeneity associated with 

individual-level social attributes and macro-level social structures (Blau 1977). Below, I 

group sources of population heterogeneity discussed in previous mobility research into three 

types: (1) individual, time-invariant heterogeneity, (2) individual, time-dependent 

heterogeneity, and (3) heterogeneity in mobility regimes.

The idea of mobility heterogeneity with time-invariant properties can be traced back to 

Blumen et al.’s (1955) pioneering study on intragenerational labor mobility. A similar notion 

can be applied to the analysis of intergenerational mobility of family lines (e.g., White 

1970). Blumen et al. (1955) identified two types of individuals in a population: movers, who 

change jobs over time according to a time-constant Markov transition matrix, and stayers, 

who remain in the same job category with probability 1. The model includes the proportions 

of movers and stayers and the transition probability matrix for movers. A person’s attribute
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—as either a mover or a stayer—does not change during the entire period of study. The 

model is formulated as follows:

S = F ⋅ (Λ + (I − Λ) ⋅ P) (28)

where S and F are social class distributions of sons and fathers, respectively; Λ is a diagonal 

matrix with the proportions of stayers in each social class on the diagonals; the diagonal 

matrix I − Λ includes the proportions of movers as diagonal entries; and the matrix P refers 

to the transition mobility matrix for the movers. The mover-stayer model considers one of 

many possible types of time-invariant heterogeneity by assuming only two distinct 

subpopulations. In general, individuals may conform to miscellaneous transition 

probabilities, or in a more extreme scenario, each person follows a mobility process 

governed by a unique set of mobility probabilities (Xie 2013).13

To model individual heterogeneity, Spilerman (1972a) proposed a Markov model that 

estimates individual transition probabilities with regression models. We first convert the 

father-son transition matrix into a person-transition dataset, where each observation is 

represented by a possible transition.14 For each father in social class i and son in social class 

j, define an indicator variable Zij = zY1 = i, Y2 = 1, zY1 = i, Y2 = 2, ⋯, zY1 = i, Y2 = J , which 

equals 1 if a person born into class i moves to class j, and 0 otherwise. We then fit I × J 
(often I = J) linear probability equations, and in each equation, Zij is predicted by a set of 

social attributes X.

For individual c from social class i with attributes (X1c, X2c, ⋯ , XVc), his probability of 

moving into class j is

Pr Zijc ∣ Xc = aij + ∑
v = 1

V
b ijvXvc (29)

where aij and b ijv are regression coefficient estimates.15 If we estimate a separate transition 

matrix Pc(Xc) for each person c using the predicted probabilities based on attributes Xc, 

intergenerational mobility from fathers to sons can be represented in the following matrix 

form:

S = F ⋅ 1
C ⋅ ∑

c = 1

C
Pc Xc (30)

where P(Xc) is known as the individual transition matrix (McFarland 1970; Spilerman 

1972a). The overall transition matrix is estimated from the sum of all individual transition 

matrices divided by the population size C.16

13Previous research on continuous Markov chain models also discusses heterogeneity in mobility rates versus heterogeneity in 
transition matrices (Bartholomew 1967; Spilerman 1972b).
14Assume we have N father-son dyads in the data. To generate the indicator variable, we create J observations for each son and the 
sample size becomes N × J.
15We can also use other regression models, such as logistic or probit functions, to estimate the transition probability.
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The second type of heterogeneity assumes that the mobility matrix operates as a function of 

time. Studies on intragenerational mobility have proposed the “Retention Model” (Henry 

1971) and the “Cornell Mobility Model” (McGinnis 1968) in which movers’ transition 

probability is assumed to change over time. Below, I modify these models for the analysis of 

intergenerational mobility. Stayers are defined as individuals who remain in the same 

occupation as their parents and movers as those who enter an occupation different from that 

of their parents. These models show examples when the stationarity assumption 

(Assumption 4) fails.

The Retention Model allows the proportion of movers and stayers in equation (28) to be 

time-dependent, so the mover-stayer model becomes

S = F ⋅ Λt + I − Λt ⋅ P (31)

where Λt is a diagonal matrix with the diagonal cells indicating the proportion of stayers in 

each social class as a function of time, and P refers to the transition matrix of the movers.

The Cornell Mobility model postulates that individuals’ tendency to leave a social class 

declines as a strictly monotonic function of the duration of staying in that class. In the 

context of intergenerational mobility, this “cumulative inertia” property implies that the 

longer a family has been in its current social class, the higher its probability of remaining 

there for yet another generation. Following the notation in McGinnis (1968), let 

dPY2 = j ∣ Y1 = i(t) refer to the transition probability from class i to class j at generation t 

when a family has remained in class i for d consecutive generations prior to generation t. 
The distribution of social classes in the father’s generation is F = [1f1, 1f2, ⋯ , 1fI, 2f1, ⋯ , 

2fI, df1, ⋯ , dfI]. The duration-specific transition matrix can be partitioned into the transition 

matrices of movers and stayers, both of which are also duration specific:

dPY2 = j ∣ Y1 = i(t) =d PY2 = j ∣ Y1 = i
mover (t) +d PY2 = j ∣ Y1 = i

stayer  (t) (32)

The stayers’ transition matrix dPY2 = j ∣ Y1 = i
stayer (t) is the diagonalization of dPY2 = j ∣ Y1 = i(t), 

which satisfies that

dPY2 = j ∣ Y1 = i
stayer  (t) = dPY2 = j ∣ Y1 = i(t)   if   j = i

0   otherwise  

The relationship between the movers’ and stayers’ transition matrices satisfies that

dPY2 = j ∣ Y1 = i
mover (t) = I −d PY2 = j ∣ Y1 = i

stayer  (t) ⋅ R (33)

16If we are only interested in the intergenerational mobility of a certain social group (e.g., non-white, Nc), the intergenerational 

mobility can be represented as: S = F ⋅ NC
−1 ⋅ ∑c = 1

NC Pc Xc .

Song Page 18

Sociol Methodol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where R = [rij] subject to rii = 0 is shown to always exist and does not vary by d. Because of 

the cumulative inertia property, the model also requires that 

d + 1PY2 = j ∣ Y1 = i
stayer  >d PY2 = j ∣ Y1 = i

stayer  .17 Note that this model violates the stationarity 

assumption in the regular Markov model by introducing a time component into the transition 

probability. It also violates the Markovian assumption by linking individuals’ mobility 

outcomes with the entire history of moves in previous generations.

The third type of heterogeneity concerns the mixture of mobility regimes in a society or in a 

broader stratification system created by spatial, cultural, or institutional forces of 

segregation. Using occupational mobility as an example, many studies have shown variation 

in intergenerational mobility among industrial societies in the mid to late 20th century 

(DiPrete 2002; Lipset and Bendix 1959; Featherman et al. 1975; Grusky and Hauser 1984; 

Erikson and Goldthorpe 1992; Xie 1992; Yamaguchi 1987). Even within a society, several 

mobility regimes may coexist. One instructive example provided by Mare (2011) postulates 

a stratification system consisting of three strata: the top, middle, and bottom classes. The 

persistence of social status is stronger at the top and bottom of the social hierarchy compared 

to the middle due to social policies and family norms that create a cumulative advantage or 

disadvantage for families. In cross-country comparisons, social boundaries among mobility 

regimes are often assumed to be impermeable, in contrast to within-society comparisons in 

which families that start in one mobility regime may circulate in and out of other regimes 

after generations of movement. These mobility processes can be represented in the following 

matrix form:

S1 × n = F1 × n ⋅ ∑
c = 1

C
λ(c) ⋅ Pn × n(c) (34)

where λ(c) denotes the weight of each subgroup c, λ(c) > 0, ∑c λ(c) = 1 and P(c) denotes 

the mobility probability matrix for subgroup c (c = 1, 2, …, C). For example, Mare and Song 

(2014) analyzed the social mobility of descendants from imperial and peasant families using 

Chinese family genealogies and linked historical censuses (c = 1 descendants of emperors; c 
= 2 descendants of peasants). If subgroups are distinct and time-invariant, then pij(c) will be 

fixed over generations. If social boundaries are permeable, families’ membership c may 

change over time, leading to time-varying weights λ(c, t) and mobility matrix P(c, t).

Compared to regular mobility models, mixture Markov models that account for population 

heterogeneity often represent observed mobility processes better in terms of model 

goodness-of-fit, such as the χ2 test (Goodman 1962). However, McFarland (1970: 475) 

noted about these heterogeneous mobility models that, “any real adequate model would be 

too cumbersome to be fitted to numerical data.” Mobility researchers will always face a 

trade-off between model accuracy and simplicity.

17One example illustrated by McGinnis (1968) is dPstayer  = I − 1 − 1
a

d − 1
I −1 Pstayer  , a > 1 and 

dPmover  = 1 − 1
a

d − 1
I −d Pstayer  ⋅ R.
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7 A TWO-SEX APPROACH

Traditional social mobility studies typically take a one-sex approach by focusing exclusively 

on the intergenerational association of social status between fathers and sons while ignoring 

the independent role of mothers or the joint role of parents (Assumption 5). The one-sex 

approach is also widely adopted in demographic models, which assume population 

dynamics are determined by the vital rates of one sex only, often women, or that the roles of 

both sexes are identical (Caswell 2001). In multigenerational analyses, the one-sex approach 

is useful when the transmission of social characteristics is sex-linked or predominantly 

influenced by one parent. For example, in many patriarchal societies, social positions were 

passed down the male lineage from paternal grandfathers to fathers and their sons. When 

comparing descendants who carry sex-linked characteristics from families of unequal 

origins, we only need to count male descendants in the population.

In most western societies, however, this theoretical assumption may be invalid in practice 

(Song and Mare 2017). First, mothers, grandmothers, and maternal grandparents may 

influence individuals’ socioeconomic outcomes, in addition to the influences of patrilineal 

kin. The increasing roles of mothers and grandmothers are associated with the rise in female 

labor force participation, gender economic equality, and the growth of single-parent or 

skipped-generation households (e.g., Beller 2009). Second, mobility probabilities and 

demographic rates also vary by gender for both sociological and biogenetic reasons (e.g., 

Reskin 1993; Jacobs 1989; Preston et al. 2001). If we apply the one-sex social and 

demographic mobility model in equation (7) to men and women separately, the results may 

disagree. Third, the one-sex approach does not account for interactions between men and 

women through the formation of marriages, a mechanism that determines the social makeup 

of families and creates the family background of the next generation (Mare and Schwartz 

2006). The formation of marriages depends on the abundance and preferences of mates in a 

population. On the one hand, the number and types of marriages are constrained by the 

“marriage squeeze,” or the imbalance between the number of men and women considered 

marriageable (Akers 1967; Schoen 1983). The marriage squeeze may produce significant 

changes in the timing and patterns of marriage and fertility levels in a population. On the 

other hand, men and women tend to marry others with similar socioeconomic 

characteristics. The degree of assortative mating influences not only socioeconomic 

resemblance between couples but also the amount of social advantage or disadvantage 

transmitted to the offspring generation.

Previous demographic studies have proposed various two-sex models that account for the 

interdependence of demographic behaviors of both sexes in determining the number of 

marriages and births in a population. These models have been used to predict the size, 

composition, and growth of future populations (Caswell 2001; Caswell and Weeks 1986; 

Goldman et al. 1984; Goodman 1953, 1968; Jenouvrier et al. 2010; Kendall 1949; Miller 

and Inouye 2011; Pollak 1986; Pollard 1973). Below, I illustrate how to adapt these 

demographic models for multigenerational mobility research using the Birth Matrix-Mating 
Rule (BMMR) model developed by Pollak (1986, 1987, 1990a,b) as an example. In parallel 

to the one-sex model in equation (7), the two-sex model for men and women is specified as
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sk = ∑
i

∑
j

μij Nm, Nf ⋅ rijm ⋅ pY2 = k ∣ Y1 = i, j
m

(35)

dk = ∑
i

∑
j

μij Nm, Nf ⋅ rij
f ⋅ pY2 = k ∣ Y1 = i, j

f
(36)

where sk (dk) denotes the number of sons (daughters) in the offspring generation who are in 

social class k; μij(Nm, Nf) denotes the number of marriages between fathers in class i and 

mothers in class j;18 and rijm rij
f  denotes the mean number of surviving sons (or daughters) 

born from each union of class i fathers and class j mothers with completed reproduction 

history. In general, the differences between rijm and rij
f  are determined by male-to-female sex 

ratios at birth in a population and differential survival rates of boys and girls to adulthood. In 

most populations, the two estimates can be considered equal. Finally, pY2 = k ∣ Y1 = i, j
m  and 

pY2 = k ∣ Y1 = i, j
f  refer to the probability of obtaining class k for sons and daughters born to 

class i fathers and class j mothers, respectively.

To model the mating rule term, μij(Nm, Nf), I adopt Schoen’s harmonic mean mating rule 

(Schoen 1981, 1988), which assumes that the number of marriages between two social 

groups depends on the relative number of single women and men in these groups and the 

attractiveness of these group members to each other. The harmonic mean mating rule 

specifies that

μij Nm, Nf =
αijNi

mNj
f

Ni
m + Nj

f , αij > 0, ∑
j

αij ≤ 1, ∑
i

αij ≤ 1 (37)

where αij is the “force of attraction” between males in class i and females in class j, which 

results from constraints imposed by the abundance of mates as well as preferences among all 

class groups (Schoen 1988). In empirical studies, αij is often estimated from the number of 

marriages and single individuals in different social classes (Qian 1998; Qian and Preston 

1993; Raymo and Iwasawa 2005). Ni
m is the total number of eligible men in class i, and Nj

f is 

the total number of eligible women in class j.

Using the two-generation model in equations (35) and (36), we can derive the 

socioeconomic distribution of the grandchild generation. Specifically, the number of 

granddaughters (grandsons) in class k, denoted as dk
(2) sk

(2) , can be estimated as:

sk
(2) = ∑

i′
∑
j′

μi′j′(S, D) ⋅ ri′j′
m ⋅ pk ∣ i′j′

m
(38)

18Following the tradition in the demographic literature, the number of marriages between fathers in class i and mothers in class j is 

denoted as μij(Nm, Nf) rather than μ Ni
m, Ni

f
 because the number of marriages between men in class i and women in class j may 

depend on the number of men and women in social classes other than i and j, namely, competition among different classes.
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dk
(2) = ∑

i′
∑
j′

μi′j′(S, D) ⋅ ri′j′
f ⋅ pk ∣ i′j′

f
(39)

where the number of parents μi′j′(S, D) is generated by men in class i′ in the father 

generation, si′, and women in class j′ in the mother generation, dj′. These men and women 

in the parent generation can be estimated by men and women in the grandparent generation 

recursively.19 The formulas above show a nonlinear, compound relationship between the 

distributions of grandparents and grandchildren. Given that there is no simple analytical 

form of the distribution of descendants after n generations, I simulate the two-sex long-term 

social reproduction effect (LSRE) in the next section and compare it with its one-sex 

counterpart discussed in Section 3.

In most societies, individuals tend to choose spouses with similar socioeconomic 

characteristics more frequently than would be expected under random mating (Schwartz 

2013). Two other mating patterns, random mating and endogamous mating, which assume 

individuals either select mates irrespective of social background or marry only within their 

own social classes respectively, are less common in practice but have important theoretical 

implications. Formally, the random mating rule is specified as

μij Nm, Nf =
Ni

mNj
f

Nm + Nf /2
(40)

where Nm = ∑iNi
m and Nf = ∑jNj

f. The above equation assumes the number of marriages 

between men in class i and women in class j is constrained by the abundance of both males 

and females. Other possible definitions of random mating functions are described in 

Appendix E. For endogamous mating, I assume marriages only happen between men and 

women within the same social class and thus are constrained by the gender group with fewer 

members:

μij Nm, Nf = min Nim, Nj
f ,   if   i = j

0,   if   i ≠ j

To evaluate the role of assortative mating in multigenerational processes, I compare long-

term multigenerational social reproduction effects estimated from various two-sex mating 

and mobility scenarios in the next section.

It is worth noting that although the two-sex models provide a more complete set of 

demographic mechanisms compared to the one-sex models, the two-sex approach is not 

always preferred over the one-sex models. The two-sex models rely on additional 

assumptions about mating patterns and require data from individuals’ paternal and maternal 

ancestors. Such data are often not available for some subgroups in a population (e.g., 

19That is, si′ = ∑i ∑jμij Nm, Nf ⋅ rijm ⋅ pi′ ∣ ij
m  and dj′ = ∑i ∑jμij Nm, Nf ⋅ rij

f ⋅ pj′ ∣ ij
f

. The parameters Nm and Nf refer 

to the number of men and women in the grandparent generation, respectively.
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children born outside of marriage or from single-parent families) and for ancestors beyond 

the grandparent generation.20 One limitation of most assortative mating functions is that 

they assume no competition among different classes (“zero spillover mating rule”) (Pollak 

1990a) and thus do not provide a dynamic perspective on the formation of marriages. Miller 

and Inouye (2011) provided a list of candidate two-sex mating rules and evaluate their pros 

and cons using empirical data. In addition, the one-sex models are still useful when the 

transmission of socioeconomic status is sex-linked. For example, in some historical 

populations, high social status, religious positions, and royal titles were inherited only 

through male lines (Lee and Campbell 1997; Mare and Song 2014; Goldstein 2008). The 

two-sex models are not simply an extension of the one-sex models. The two approaches 

imply different institutional frameworks and social processes underlying the inheritance of 

social status and kinship networks formed by blood and marriage.

8 ILLUSTRATIVE EXAMPLES: MULTIGENERATIONAL SOCIAL MOBILITY 

AND REPRODUCTION IN THE UNITED STATES

8.1 Data Description

In this section, I illustrate two-generation and three-generation mobility models, with and 

without demography, using two sources of empirical data: (1) the IPUMS linked 

representative samples of U.S. censuses (1850 to 1930) (Ruggles et al. 2019) and (2) the 

Panel Study of Income Dynamics (1968 to 2015) (PSID Main Interview User Manual 2019). 

The IPUMS linked data are constructed from linking the 1880 complete-count database to 

1% samples of the 1850 to 1930 U.S. censuses of the population. The data combine samples 

from seven pairs of years—1850–1880, 1860–1880, 1870–1880, 1880–1900, 1880–1910, 

1880–1920, and 1880–1930—where parents’ information is available in the first census year 

and offspring’s in the second. Each year contains three independent but linked samples: one 

of men, one of women, and one of married couples.21 Given that the female data contain 

many missing cases in occupational variables, the following illustration focuses only on 

male mobility. Occupations in the historical census data are coded using the 1950 Census 

occupation classifications scheme.22

The empirical analysis also includes three-generation data from the 1968 to 2015 Panel 

Study of Income Dynamics. The PSID began in 1968 with a household sample of more than 

18,000 Americans from roughly 5,000 families. Original panel members were followed each 

year prospectively through 1997 and then biannually. The study follows targeted respondents 

according to a genealogical design. All household members recruited for the PSID in 1968 

carried the PSID “gene,” and their detailed socioeconomic information was collected. 

Members of new households created by offspring of the originally targeted household heads 

retained the PSID “gene” themselves and became permanent PSID respondents. The PSID 

Family Identification Mapping System (FIMS) provides a tool to create multigenerational 

20The number of ancestors increases exponentially across generations. For example, individuals have two parents, four grandparents, 
eight great-grandparents, and so forth. No data contain individuals’ ancestors from both paternal and maternal sides beyond three 
generations.
21More information about the data can be found on the IPUMS website: https://usa.ipums.org/usa/linked_data_samples.shtml
22See the original occupation codes at the IPUMS website: https://usa.ipums.org/usa-action/variables/OCC1950#codes_section.
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linked samples.23 I supplement the analysis with simulation data to illustrate a wide range of 

scenarios that are theoretically important (e.g., perfect immobility or random mating) but 

generally not observed in empirical data.

The PSID survey asked household heads and wives to report their occupations in almost 

every wave of the survey. These data have been coded into detailed three-digit census 

categories since 1980. As a part of a retrospective project, PSID created the Retrospective 

Occupation-Industry file by collecting three-digit occupation codes for the 1968 to 1980 

period (Survey Research Center 1999). I merged these data with cross-year individual files. 

The occupational variables in the 1968 to 2001 PSID file were originally coded using 

Census 1970 classification codes, and those in the 2003 to 2015 file were coded using 

Census 2000 classification codes. Following Hauser (1980), I converted these three-digit 

occupations into five major occupational groups (upper nonmanual, lower nonmanual, upper 

manual, lower manual, and farming).24 Because the longitudinal data provide multiple-year 

observations of each respondent, I use the mode of the cross-year occupational variables 

(i.e., the occupation that appears most often) to define a person’s working-life major 

occupation.

The reproduction rates by fathers’ social class were calculated from the average number of 

sons in the data. Strictly speaking, this measure is not equivalent to the typical Gross 

Reproduction Rate (GRR) measure, because GRR is defined as the average number of sons 

who would be born to a man during his lifetime if he lives through his childbearing years 

and conforms to the age-specific reproduction rates of a given year.25 The surveys omitted 

sons who died during young childhood before the next census recorded them or before they 

became a PSID respondent. Additionally, this measure may have underestimated some 

fathers’ fertility if they were not linked to some of their sons or if they did not live with their 

sons in the same household.

8.2 Empirical Results

To estimate the two-generation social reproduction model in equation (7), I first calculate 

transition probabilities and GRR using the IPUMS linked historical census data and the 

contemporary PSID sample. The mobility probabilities are estimated from multinomial 

logistic regressions shown in Appendix Tables S1 and S3. The regression models only 

include fathers’ and grandfathers’ occupations as predictors. If other individual-level 

covariates are included, the model can be considered as a heterogeneous mobility regime, 

which is discussed in Section 6.26 The GRRs are estimated from Poisson regression models 

23More information about the Family Identification Mapping System can be found on the PSID website http://simba.isr.umich.edu/
FIMS/.
24For broad occupational groups based on the Census 1970 classification codes, I define upper nonmanual as professional and 
administrative workers (codes 1/246); lower nonmanual as sales and clerical workers (codes 260/396); upper manual as craftsmen 
(codes 401/696); lower manual as operatives, laborers, and service workers (codes 701/785, 901/984); and farming as farmers, farm 
managers, and farm laborers (codes 801/846). For broad occupational groups based on the Census 2000 codes, upper nonmanual 
includes managerial and professional workers (codes 1/354); lower nonmanual includes service, clerical, and sales occupations (codes 
360/593); upper manual includes construction, extraction, maintenance, and production workers (codes 620/896); lower manual 
includes transportation and material moving workers (codes 900/975); and farming includes all the farming- and fishing-related 
workers (codes 600/613). The Census 1970 and 2000 occupational classifications can be found at the IPUMS website: https://
usa.ipums.org/usa-action/variables/OCC#codes_section.
25If the sex ratio at birth is assumed at 1, GRR is approximately half of the Total Fertility Rates.
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in which all fathers in each sample are treated as a synthetic cohort. For the historical 

sample, over 55% (= 43,079/78,133) of fathers belonged to the farming population. This 

number declined to 6% (=262/4,142) in the contemporary sample. In the late 19th and early 

20th centuries, more than half of sons born into lower manual families inherited their father’s 

occupations, as compared to 30.1% of their counterparts in the contemporary sample. The 

results of GRR show that fertility has declined over time, from more than 2.6 sons per father 

on average at the beginning of the historical sample to less than 1.6 sons per father in the 

most recent data. This trend is even more pronounced for farmers whose GRR decreased 

from 3.1 sons per father to 1.6 sons per father. The social class gradient in fertility has also 

become less remarkable over time. The gap in GRR between farmers and upper nonmanual 

workers decreased from 0.5 in the historical sample to 0.1 in the contemporary sample.

Table 2 shows similar estimates from three-generation mobility transition matrices by taking 

into account grandfathers’ occupational class. Numbers in the mobility table refer to the 

percentage of sons who would achieve a certain occupational group conditional on the 

father’s and grandfather’s occupations. Numbers in the column of reproduction rates refer to 

the number of sons of a father conditional on his own and his father’s occupations. These 

numbers are estimated from the multinomial logistic regressions and Poission regressions 

shown in Tables S2 and S4 in the appendix. In both samples, the highest GRR is observed in 

families in which both fathers and grandfathers are farmers. Some estimates may not be 

reliable; for example, the category of farmers with fathers in lower nonmanual occupations 

included only one case in the PSID sample. For illustration purposes of the methods, I 

ignore such possible inaccuracies, but future research should be cautious about fertility 

estimates from surveys. The models do not account for the age structure of the population 

either, as age-classified models require mobility, fertility, and mortality rates by age group 

and social class, but such estimates are often unreliable in surveys due to small sample sizes. 

Further discussions about age-classified models are included in Appendix B.

I estimate mobility effects and social reproduction effects discussed in Sections 4.1 and 4.2 

using mobility matrices and GRRs shown in Tables 1 and 2. According to the definition in 

equation (11), the mobility effect is the ratio of the probability of sons from upper 

nonmanual fathers to that of sons from lower nonmanual fathers to become upper 

nonmanual workers. The results in Table 3 show that the mobility advantage of children 

born to upper nonmanual fathers relative to those born to lower nonmanual fathers is 1.317 

in the historical sample and 1.596 in the contemporary sample. Note that the result shows 

only one of many possible choices of the target group (upper nonmanual) and the baseline 

(lower nonmanual) group in the definitions of mobility and social reproduction effects. The 

measures of social reproduction effects are defined analogously, except that the outcome 

measure is the number of sons in upper nonmanual occupations rather than their mobility 

probabilities (see equation (14)). Upper nonmanual fathers produced 1.456 times as many 

sons in upper nonmanual occupations than did lower nonmanual fathers in the historical 

26We can further divide individuals in each cell of the mobility matrix into subgroups that vary by their characteristics relevant for 
mobility and estimate the mobility probability in each cell using regression techniques (Sørensen 1975; Spilerman 1972a). For 
example, if demography also affects the mobility matrix, one can use a father’s number of offspring or a son’s number of siblings to 
predict the effect of demography on mobility probabilities (e.g., Mare and Song 2014).
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data. The ratio increased to 1.622 in the contemporary sample, indicating stronger 

intergenerational effects in recent decades than in the past.

The net and total effects are, by definition, the same for the father generation, but they may 

differ for the grandfather generation. The net mobility effect of grandfathers in the PSID 

shows that grandchildren with both upper nonmanual grandfathers and fathers are 1.566 

times more likely to attain upper nonmanual occupations compared to grandchildren with 

lower nonmanual grandfathers and fathers. By contrast, the net social reproduction effect of 

grandfathers shows that upper nonmanual grandfathers and fathers produce 1.691 times as 

many upper nonmanual grandchildren than do lower nonmanual grandfathers and fathers. 

The net effects of grandfathers are bigger than the total effects of grandfathers because the 

former is estimated by assuming the father and grandfather are in the same occupation, 

whereas the latter is estimated by assuming the father’s occupation is uncontrolled. Thus, 

compared to the total effect, the net effect shows differences in descendants from advantaged 

and disadvantaged families under a more extreme condition. Furthermore, the total mobility 

and social reproduction effects of grandfathers are smaller than those of fathers because not 

all fathers stay in the same occupations as the grandfathers. Some family advantages are lost 

during the intergenerational transmission of status, also known as the “regression toward the 

mean” phenomenon.

Table 4 shows the effect decomposition based on difference measures described in Section 

4.3. The total effect of parents (or grandparents) reflects differences in the total number of 

sons (or grandsons) in upper nonmanual occupations of fathers (or grandfathers) who are in 

upper nonmanual occupations versus lower nonmanual occupations. For example, in the 

historical census data, an upper nonmanual father produces 0.253 more sons who are in 

upper nonmanual occupations than does a lower nonmanual father. Consistent with our ratio 

measures in Table 3, parent or grandparent effects shown in the TSRE column are smaller in 

the contemporary data than in the historical data. The Kitagawa decomposition shows the 

parts of the social reproduction effects associated with fertility (26.7%) and mobility 

(73.3%). The proportion of the TSRE explained by the fertility effect is small in the 

contemporary data (3.5%) because of the small difference in GRR between men in upper 

and lower nonmanual occupations. As a result, the mobility effect accounts for over 96% of 

the total social reproduction effect. The Das Gupta decomposition method further partitions 

the total effect into the mobility and demography effect of the grandparent on the parent 

generation and of the grandparent on the grandchild generation net of the parent generation. 

For example, the total effect of grandparents contains the effect of grandparents’ own 

fertility, the effect of grandparents on parents’ fertility, the effect of grandparents on parents’ 

mobility, and the effect of grandparents on grandchildren’s mobility. In the historical data, 

the mobility advantage of grandchildren born to upper nonmanual grandparents relative to 

those born to lower nonmanual grandparents to achieve upper nonmanual occupations 

themselves accounted for 41.9% of the total social reproduction effect of grandparents. This 

proportion declines to 30.5% in the contemporary data. Most interestingly, in the historical 

data, most influences from grandparents to grandchildren operated through the influence of 

grandparents’ occupation on their own fertility (33.8%) and the influence of grandparents’ 

occupation on grandchildren’s social mobility (41.9%). In the contemporary data, however, 

most influences from grandparents to grandchildren work through the influence of 
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grandparents’ occupation on parents’ mobility (38.7%) and grandchildren’s mobility 

(30.5%).

Table 5 illustrates the long-term property of multigenerational processes described in 

Section 5. The long-term SRE suggests the degree to which an individual in an upper 

nonmanual occupation, compared to one in a lower nonmanual occupation, has descendants 

in upper nonmanual occupations. In the historical sample, the effect begins with a value of 

1.46 and eventually converges to equilibrium at 1.16, rather than 1. Thus, differential 

reproduction rates that favor upper nonmanual men further amplify the effects of 

intergenerational transmission of status in the historical sample. By contrast, in the 

contemporary data, an upper nonmanual man has approximately 1.02 times as many upper 

nonmanual descendants as his counterpart in lower nonmanual occupations in the long run. 

Upper nonmanual men produce significantly more descendants in upper nonmanual 

occupations in the first few generations, but this advantage gradually disappears in the long 

run. This result can be explained by the fact that GRR for men in upper nonmanual 

occupations is only slightly higher than that for men in lower nonmanual occupations 

(shown in Table 1).

The results in Tables 1–5 rely on one-sex models that account for only the male population. 

As discussed earlier, the one-sex model is useful when the intergenerational transmission of 

social statuses is sex-linked or identical for both sexes. Below, I describe the two-sex social 

reproduction model described in Section 7. This model relies on additional assumptions 

about mate selection behaviors. I first estimate assortative mating patterns using the “force 

of attraction,” which represents the likelihood that men and women from different 

occupation groups will form unions, sometimes known as an indicator of preferences 

between two occupation groups. Table 6 presents the attraction estimates and the number of 

marriages between husbands and wives in different occupations in the PSID data. These 

numbers are observed in the first generation but are estimated in the following generations as 

a function of the force of attraction using equation (37).

I estimate the number of marriages and the size of male and female populations in 

subsequent generations recursively using equations (35)–(37), assuming that the force of 

attraction is timeconstant. The total social reproduction effects are then calculated from the 

combined distributions of male and female descendants. To evaluate the effect of assortative 

mating on families’ social reproduction, I compare the results from three mating rules: 

random mating, endogamous mating, and assortative mating. The functions that characterize 

these mating rules are described in Section 7. The random mating rule assumes individuals 

sort into marriages irrespective of their occupational characteristics. The number of 

marriages is only constrained by the abundance of eligible men and women in each pair of 

occupations. The endogamous mating rule assumes men and women marry only within their 

own occupation groups. The number of marriages between men and women in different 

occupations is zero, and the number of marriages between men and women of the same 

occupation is constrained by the group with fewer members. I also consider three mobility 

rules: two-sex mobility assumes that both parents influence their offspring’s occupational 

attainment equally, same-sex mobility assumes that individuals are influenced only by their 

same-sex parent, and immobility assumes that sons inherit occupations from their fathers 
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and daughters inherit occupations from their mothers. Although some of these mating and 

mobility rules are unrealistic in practice, they provide benchmarks for comparison when the 

roles of observed mating and mobility patterns are evaluated.

The results in Table 7 suggest that the strongest parent effect emerges when men and women 

marry within their own occupation group, and offspring inherit occupations perfectly from 

their parents. The ratio measure for this scenario is undefined because it is impossible for 

offspring born to lower nonmanual parents to become an upper nonmanual worker. The 

effect is smallest when people mate randomly, and offspring’s mobility is influenced only by 

their same-sex parent. The TSRE under assortative mating and two-sex mobility, the most 

common type of mating and mobility rules in human populations, is 0.125 based on the 

difference measure and 3.18 based on the ratio measure. The results suggest that both 

parents in upper nonmanual occupations produce 0.125 more offspring in upper nonmanual 

occupations compared to parents who are both in lower nonmanual occupations, or 3.180 

times as many upper nonmanual offspring as their counterparts in lower nonmanual 

occupations do. The TSRE from the two-sex model under assortative mating rules is smaller 

than that from the one-sex model in Table 4 (0.125 vs. 0.215). The results imply that the 

interactions between males and females in union formation and intergenerational mobility 

weaken the intergenerational influences of parents on offspring and reduce inequality 

between families in the number of offspring in high-status occupations.

9 CONCLUSIONS

This paper provides an integrated methodological framework that allows researchers to 

analyze the combined effects of social mobility and demography in the process of 

multigenerational social inequality among families. It shifts the focus from a pure 

probabilistic view on individuals’ mobility probabilities to a distributional view that 

emphasizes the number of offspring and descendants who vary in their social class in 

succeeding generations. Families who have more high-status offspring may be different from 

families whose offspring have a higher probability of achieving high status because the joint 

effect of fertility and mortality may operate against families’ advantages in social mobility. 

The moderating effects of demographic forces often accumulate over time, as the 

intergenerational reproduction of families is a dual endeavor to achieve both reproductive 

success and status inheritance across generations. Table 8 summarizes statistical models 

used in classic mobility research and recent work that incorporates the role of demography 

in social mobility processes. Building on this line of previous works, I illustrated how to 

define and estimate various types of multigenerational processes and effects with and 

without the role of demography from both short- and long-term perspectives. More 

specifically, these methodological issues include differences between two-generational and 

multigenerational transition matrices, net and total social reproduction effects from one 

generation to succeeding generations, the effect decomposition, equilibrium states of long-

term multigenerational effects, three types of heterogeneity in multigenerational mobility, 

and two-sex versus one-sex multigenerational models and their different implications for 

population dynamics. Careful and creative use of these models with appropriate 

multigenerational data will advance our knowledge of family processes that were occurring 

in the past and help forecast trends in the future.

Song Page 28

Sociol Methodol. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Despite their advantages over conventional two-generation mobility methods based on 

Markov chains, the multigenerational models proposed in this paper are far from complete. I 

outline several promising directions for future research when more refined statistical and 

demographic techniques are available to model the complex interactions among family 

members.

First, all models discussed in this paper assume a single, constant measure of socioeconomic 

status for each generation, ignoring changes in parents’ status across their own and their 

children’s life spans. From a life-course perspective, common indicators of social status—

including education, employment, and earnings prospects—evolve over time. Life-cycle 

changes in labor supply, human capital accumulation, consumption, and nonmarket returns 

to education jointly shape individuals’ life trajectories and their offspring’s childhood skill 

formation (Heckman 1976; Heckman et al. 2013). Ignoring parents’ and offspring’ life 

cycles in the estimation of intergenerational association may lead to “life-cycle bias” 

(Mazumder 2005; Haider and Solon 2006). Furthermore, shared lifetimes, namely years 

during which two or more generations overlap, often vary across families and may predict 

the cumulative amount of influence from one generation to another (Song and Mare 2019). 

The complex linkage between within-generation status changes with age and between-

generation transmission of statuses also warrants future consideration, given the growth of 

precarious work and earnings instability in the U.S. labor market and elsewhere (Gottschalk 

et al. 1994; Kalleberg 2009). Appendix B illustrates an age-classified model that refines the 

social reproduction model in equation (9) by adding age-specific fertility and mortality rates. 

The model can further incorporate intragenerational status mobility if age-specific mobility 

rates from high-quality longitudinal data are available (Lipset and Bendix 1952; Cheng and 

Song 2019).

Second, models in this paper do not address problems of causal inference, especially 

mechanisms and identification issues, in estimating the causal effects of grandparents and 

the other kin. Fast-growing literature in sociology and economics points to causality as a 

central problem in multigenerational research and offers various approaches to gauging 

biases in traditional association measures. Anderson et al. (2018) provided a meta-analysis 

of recent studies on grandparent effects on education, showing a wide range of effect 

estimates that vary by social contexts, analytical methods, and the operationalization of the 

concept of grandparent effects. Other problems, such as collider bias, unobserved 

confounders, and survivorship selection (e.g., Breen 2018; Sharkey and Elwert 2011; Song 

2016), have also appeared in studies that aim to make causal claims about multigenerational 

influence using counterfactual analyses, causal graphical models, and methods based on 

inverse probability treatment weighting (IPTW).

Third, models in this paper ignore the complex role of migration in shaping 

multigenerational influences and population dynamics. Without migration, all changes in a 

closed population result only from births and deaths, as illustrated in the social reproduction 

model. Yet, migration, both internal and international, may change the composition of a 

population, household structure, and relationships among extended family members in origin 

and destination places. Zeng and Xie (2014) provided an example of grandparent influences 

in rural China with many skipped-generation households where children are living with their 
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grandparents while their parents leave to work in urban areas. More work is needed to test 

whether and how the mobility process is interdependent with migration, even many 

generations back, as well as how big events, such as mass migration and refugee 

resettlement, influence social mobility of descendants of migrant and native-born 

populations.

Fourth, all socioeconomic measures embrace some degree of uncertainty that may result 

from random measurement errors or systematic biases. Substantive and methodological 

issues in the latent structure of variables are an old topic in sociology (e.g., Coleman 1964b), 

but they have recently been highlighted in analyses of multigenerational mobility (Solon 

2018; Torche and Corvalan 2018; Clark 2014). Random noise in socioeconomic measures 

may lead to attenuation bias, the classical errors-in-variables problem, which shrinks 

estimated intergenerational correlations toward zero. Yet, no matter how accurately 

measured, indicators like income, occupation, and education are always a proxy for the 

underlying concept of “social status.” Almost all methodological issues described in this 

paper are still valid in models that incorporate measurement errors or a latent structure of 

underlying variables. However, as Singer and Spilerman (1976: 454) noted, dealing with the 

hidden structure of variables in Markov chains would lead to a considerable increase in 

complexity in both theory and methods.

All of these issues lie outside the scope of this paper, but they are central to the study of 

social stratification and mobility and to a better understanding of the social mechanisms that 

govern continuity and changes within families, dynasties, and populations. I leave these 

important modifications and challenges to future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Two-Generation Mobility Transition Matrices and Gross Reproduction Rates

Father’s Occupation

Gross Reproduction Rate 
(GRR)

Historical Social Mobility Son’s Occupation

1 2 3 4 5 Total N

1. Upper nonmanual 2.6 31.1 32.2 8.0 20.9 7.8 100.0 8,564

2. Lower nonmanual 2.4 23.6 44.9 8.8 17.7 5.0 100.0 3,575

3. Upper manual 2.6 10.0 21.6 24.1 36.4 7.9 100.0 9,609

4. Lower manual 2.6 7.7 15.8 9.8 58.6 8.1 100.0 13,306

5. Farming 3.1 7.0 2.9 2.4 9.2 78.5 100.0 43,079

N 8,514 9,806 5,656 17,684 36,473 78,133

Father’s Occupation

Gross Reproduction Rate 
(GRR)

Contemporary Social Mobility from PSID Son’s Occupation

1 2 3 4 5 Total N

1. Upper nonmanual 1.5 38.5 22.5 22.5 14.9 1.5 100.0 910

2. Lower nonmanual 1.4 24.1 28.8 26.2 20.3 0.6 100.0 473

3. Upper manual 1.4 16.7 21.5 38.6 22.2 1.0 100.0 1,473

4. Lower manual 1.4 12.7 22.0 33.2 30.1 2.1 100.0 1,024

5. Farming 1.6 13.4 10.7 37.8 20.2 17.9 100.0 262

N 875 911 1,337 920 99 4,142

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010); Panel Study of Income Dynamics, 1968–2015.

Notes: The two-generation transition matrices show percentages converted from mobility probabilities, e.g., pY2 = j ∣ Y1 = i; namely, the son of 

a father in social position i ends up in position j (see equation (1)).
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Table 2.

Three-Generation Mobility Transition Matrices and Gross Reproduction Rates

Grandfather’s 
Occupation Father’s Occupation

Gross Reproduction 
Rate (GRR)

Historical Social Mobility Son’s Occupation

1 2 3 4 5 Total N

1. Upper nonmanual 1. Upper nonmanual 2.5 37.6 34.1 7.4 16.1 4.7 100.0 3,204

2. Lower nonmanual 2.3 28.9 46.5 8.0 13.4 3.2 100.0 934

3. Upper manual 2.5 16.3 27.2 21.6 29.5 5.3 100.0 660

4. Lower manual 2.5 13.8 21.6 10.9 48.0 5.7 100.0 753

5. Farming 2.8 17.5 6.2 4.6 12.0 59.7 100.0 1,034

N 1,869 1,934 585 1,322 875 6,585

2. Lower nonmanual 1. Upper nonmanual 2.4 33.6 37.0 7.9 17.6 3.9 100.0 403

2. Lower nonmanual 2.2 25.3 49.5 8.4 14.3 2.6 100.0 637

3. Upper manual 2.4 14.0 28.4 22.3 31.1 4.2 100.0 156

4. Lower manual 2.3 11.8 22.4 11.2 50.1 4.5 100.0 228

5. Farming 2.6 17.4 7.6 5.5 14.6 54.9 100.0 150

N 371 571 154 347 131 1,574

3. Upper manual 1. Upper nonmanual 2.5 25.8 32.3 12.2 22.7 7.0 100.0 1,135

2. Lower nonmanual 2.3 19.7 43.8 13.1 18.7 4.7 100.0 451

3. Upper manual 2.5 9.1 21.1 29.2 34.1 6.5 100.0 4,648

4. Lower manual 2.5 7.6 16.5 14.5 54.5 6.8 100.0 2,051

5. Farming 2.8 9.2 4.5 5.8 12.9 67.7 100.0 1,573

N 1,107 1,954 1,944 3,248 1,605 9,858

4. Lower manual 1. Upper nonmanual 2.6 23.6 32.2 8.6 29.1 6.5 100.0 1,142

2. Lower nonmanual 2.4 18.1 44.0 9.4 24.1 4.4 100.0 591

3. Upper manual 2.6 8.4 21.1 20.7 43.8 6.0 100.0 1,797

4. Lower manual 2.5 6.4 15.0 9.3 63.6 5.7 100.0 6,056

5. Farming 2.8 8.7 4.7 4.3 17.2 65.1 100.0 2,596

N 1,139 2,038 1,202 5,557 2,246 12,182

5. Farming 1. Upper nonmanual 2.8 28.2 29.3 6.7 22.9 12.9 100.0 2,680

2. Lower nonmanual 2.6 22.5 41.4 7.5 19.7 9.0 100.0 962

3. Upper manual 2.8 10.9 20.9 17.4 37.7 13.0 100.0 2,348

4. Lower manual 2.8 8.5 15.1 8.0 55.7 12.7 100.0 4,218

5. Farming 3.1 6.5 2.6 2.0 8.4 80.4 100.0 37,726

N 4,028 3,309 1,771 7,210 31,616 47,934

Grandfather’s 
Occupation Father’s Occupation

Gross Reproduction 
Rate (GRR)

Contemporary Social Mobility from PSID Son’s Occupation

1 2 3 4 5 Total N

1. Upper nonmanual 1. Upper nonmanual 1.4 48.1 22.5 17.7 10.6 1.1 100.0 234

2. Lower nonmanual 1.4 33.4 30.3 21.2 14.6 0.4 100.0 63

3. Upper manual 1.4 26.4 25.3 31.2 16.4 0.7 100.0 109

4. Lower manual 1.4 21.1 27.4 27.7 22.4 1.5 100.0 63

5. Farming 1.5 25.6 17.7 29.4 15.2 12.1 100.0 13

N 179 119 110 68 6 482
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2. Lower nonmanual 1. Upper nonmanual 1.3 45.2 25.1 14.9 13.5 1.3 100.0 131

2. Lower nonmanual 1.3 30.7 33.0 17.6 18.2 0.5 100.0 69

3. Upper manual 1.3 24.6 27.9 26.1 20.7 0.8 100.0 89

4. Lower manual 1.3 19.0 29.3 22.5 27.4 1.7 100.0 66

5. Farming 1.4 23.5 19.2 24.2 18.9 14.1 100.0 1

N 115 100 70 67 4 356

3. Upper manual 1. Upper nonmanual 1.5 34.2 25.0 25.0 14.0 1.8 100.0 206

2. Lower nonmanual 1.4 22.1 31.2 27.9 18.0 0.7 100.0 125

3. Upper manual 1.4 16.5 24.7 38.7 19.0 1.0 100.0 422

4. Lower manual 1.4 12.9 26.0 33.5 25.4 2.2 100.0 200

5. Farming 1.5 15.2 16.3 34.5 16.7 17.4 100.0 9

N 195 248 320 184 15 962

4. Lower manual 1. Upper nonmanual 1.4 32.5 23.6 23.6 18.9 1.4 100.0 196

2. Lower nonmanual 1.4 20.7 29.0 26.0 23.8 0.6 100.0 141

3. Upper manual 1.4 15.4 22.8 35.9 25.1 0.8 100.0 466

4. Lower manual 1.4 11.7 23.5 30.3 32.7 1.7 100.0 390

5. Farming 1.5 14.6 15.6 33.1 22.8 13.9 100.0 44

N 217 292 383 325 20 1,237

5. Farming 1. Upper nonmanual 1.6 30.9 15.2 32.4 19.2 2.3 100.0 143

2. Lower nonmanual 1.6 19.8 18.9 36.0 24.4 0.9 100.0 75

3. Upper manual 1.5 13.9 14.0 46.8 24.2 1.2 100.0 387

4. Lower manual 1.6 10.7 14.6 40.1 32.0 2.6 100.0 305

5. Farming 1.7 12.1 8.8 39.6 20.2 19.3 100.0 195

N 169 152 454 276 54 1,105

Source: IPUMS Linked Representative Samples, 1850–1930 (final data release June 2010); Panel Study of Income Dynamics, 1968–2015.

Notes: The three-generation transition matrix shows percentages converted from mobility probabilities, e.g., pY3 = j ∣ Y2 = i, Y1 = k; namely, 

the son of a father in social position i and a grandfather in social position k ends up in position j.
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Table 6.

Two-Sex Assortative Mating and Force of Attraction (Age 25–60)

Occupation, Women

Occupation, Men 1. Upper nonmanual 2. Lower nonmanual 3. Upper manual 4. Lower manual 5. Farming N

1. Upper nonmanual 0.858 0.723 0.181 0.253 0.018

(348) (431) (78) (146) (2) 1,005

2. Lower nonmanual 0.321 0.643 0.219 0.323 0.010

(98) (259) (70) (127) (1) 555

3. Upper manual 0.274 0.677 0.642 0.673 0.164

(126) (487) (316) (465) (19) 1,413

4. Lower manual 0.220 0.400 0.560 0.849 0.307

(95) (263) (259) (537) (35) 1,189

5. Farming 0.078 0.142 0.194 0.409 0.863

(13) (27) (33) (77) (69) 219

N 680 1,467 756 1,352 126 4,381

Source: Panel Study of Income Dynamics, 1968–2015.

Notes: Numbers in parentheses refer to the number of marriages within each assortative mating category. The parameter for the “force of attraction” 
(αij) represents the likelihood that men and women from two occupation groups will form unions. This value is a function of preferences between 

two occupation groups and constraints imposed by the sizes of the two groups. The force of attraction is defined in equation (37).
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Table 7.

Ratio Measures of Social Reproduction Effects under Different Mating and Mobility Rules

Total Social Reproduction Effects of Upper Nonmanual vs. Lower 
Nonmanual Parents

Mating Rule Intergenerational Mobility Rule Difference measure Ratio measure

Random mating Same-sex (father-son; mother-daughter) 0.034 2.014

Two-sex 0.041 1.987

Immobility (perfect inheritance) 0.160 ∞

Endogamous mating Same-sex (father-son; mother-daughter) 0.193 2.940

Two-sex 0.234 2.900

Immobility 0.695 ∞

Assortative mating Same-sex (father-son; mother-daughter) 0.103 3.225

Two-sex 0.125 3.180

Immobility (perfect inheritance) 0.356 ∞

Source: Panel Study of Income Dynamics (1968–2015) and simulation data.

Notes: The total effect of parents compares parents who are in upper nonmanual occupations with those in lower nonmanual occupations in 
producing upper nonmanual offspring. The ratio = 1 means no effect. The effect accounts for probabilities that men and women in upper 
nonmanual (or lower nonmanual) occupations will form unions, produce offspring, and transmit their social status to their offspring. The random 
mating rule assumes mating between individuals where the choice of partner is not influenced by occupations. The endogamous mating rule 
assumes men and women marry only within their own occupation groups. The assortative mating rule assumes individuals with similar occupations 
mate with one another more frequently than would be expected under a random mating rule. The same-sex mobility rule assumes individuals are 
influenced by their same-sex parent only (namely, sons by fathers and daughters by mothers). The two-sex mobility rule assumes individuals’ 
occupations are influenced by occupations of both parents. The immobility rule assumes sons inherit occupations from their fathers and daughters 
inherit occupations from their mothers.
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