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A B S T R A C T

Lyme disease (LD) is the most common vector-borne illness in the USA. Incidence is related to specific envi-
ronmental conditions such as temperature, metrics of land cover, and vertebrate species diversity. To determine
whether greenness, as measured by the Normalized Difference Vegetation Index (NDVI), and other selected
indices of land cover were associated with the incidence of LD in the northeastern USA for the years 2000–2018,
we conducted an ecological analysis of incidence rates of LD in counties of 15 “high” incidence states and the
District of Columbia for 2000–2018. Annual counts of LD by county were obtained from the US Centers for
Disease Control and values of NDVI were acquired from the Moderate Resolution Imaging Spectroradiometer
instrument aboard Terra and Aqua Satellites. County-specific values of human population density, area of land
and water were obtained from the US Census. Using quasi-Poisson regression, multivariable associations were
estimated between the incidence of LD, NDVI, land cover variables, human population density, and calendar year.
We found that LD incidence increased by 7.1% per year (95% confidence interval: 6.8–8.2%). Land cover vari-
ables showed complex non-linear associations with incidence: average county-specific NDVI showed a “u-shaped”
association, the standard deviation of NDVI showed a monotonic upward relationship, population density showed
a decreasing trend, areas of land and water showed “n-shaped” relationships. We found an interaction between
average and standard deviation of NDVI, with the highest average NDVI category; increased standard deviation of
NDVI showed the greatest increase in rates. These associations cannot be interpreted as causal but indicate that
certain patterns of land cover may have the potential to increase exposure to infected ticks and thereby may
contribute indirectly to increased rates of LD. Public health interventions could make use of these results in
informing people where risks may be high.
1. Introduction

The US Centers for Disease Control and Prevention (CDC) reports that
there are more than 300,000 cases of Lyme disease (LD) each year in the
USA, making it the most prevalent vector-borne disease (CDC, 2019). LD
is transmitted through the bite of a tick that has been infected with
Borrelia burgdorferi spirochaetes (CDC, 2019). In the northeastern USA,
Ixodes scapularis, commonly referred to as the black-legged tick, is the
most abundant vector for LD (CDC, 2019).

Ticks become infected with Borrelia burgdorferi by feeding on an or-
ganism infected with this spirochaete. Small rodents are the primary
sources of infection, with the white-footed mouse being the principal
reservoir in eastern North America (Allan et al., 2003). Other species of
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mammals and birds may also act as reservoirs, such as eastern chipmunks
(Tamias striatus) and American robins (Turdus migratorius) (Mather,
1993). An infected tick life stage can then transmit the bacterium in its
next blood meal. LD is seasonal, with high rates of infections occurring in
spring and summer, especially during the first week of July (Schwartz
et al., 2017). The different tick life stages (larvae, nymphs, adults) are
active in specific temperature ranges (Alonso-Carn�e et al., 2015).

One would expect on average that the trend in the abundance of ticks,
and thus the incidence of LD, should decrease from high (e.g. urban or
built environments) to lower human population density areas in rural
and semi-rural areas because ticks are often found in wooded and brushy
areas where their main food sources live (such as deer, rabbits, birds)
(Jobe et al., 2007; Hamer et al., 2012; VanAcker et al., 2019). Those areas
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Table 1
Distribution of county-specific values of counts and rates of Lyme disease, NDVI and selected other variables, 2000–2018 (580 counties, 15 states, 11,020 observations).

Variable Minimum 1st Quartile Median Mean 3rd Quartile Maximum Standard deviation

Number of cases of Lyme disease 0 1 6 46.1 40 1720 104.1
Rates of Lyme disease (per 100,000 population) 0 < 0.1 11.6 40.2 48.4 1581.2 73.2
Total human population 2196 20,368 44,324 141,210 122,142 2,611,232 271,081.4
Human population density (per km2) 1.0 14.9 32.0 290.9 117.3 27,681.8 1480.5
Average NDVI 0.22 0.75 0.81 0.78 0.85 0.92 0.10
Standard deviation of NDVI < 0.01 0.03 0.05 0.06 0.08 0.33 0.04
Total land area (km2) 19.4 914.6 1353.5 1652.0 2021.1 17,278.0 1515.2
Area of water (km2) 0.05 9.8 31.2 197.7 98.9 4890.6 520.6
Rural area (km2) 0 792.0 1231.9 1,537.0 1881.4 17,253.8 1534.6

Notes: The following eight counties were excluded from the variance, standard deviation, 25%, 50%, 75% of NDVI: Charlottesville City, VA; Colonial Heights City, VA;
Frankline City, VA; Fredericksburg City, VA; Galax City, VA; Hopewell City, VA; Martinsville City, VA; and Winchester City, VA.

Fig. 1. Predicted rates of Lyme disease from a quasi-Poisson regression model that included year as a linear term, and natural cubic splines for average NDVI, the
standard deviation of NDVI, population density, area of water, and total area of the county for the years 2000–2018, including 580 counties in 15 states (11,020
observations). Three degrees of freedom were used for all variables except for standard deviation of NDVI (df ¼ 2). The solid line represents the predicted value and
the grey area surrounding the line represents the pointwise 95% confidence interval. The rug plot (tick marks) on the x-axis represents the location of the data points.
A Response function for year. B Response function for average NDVI. C Response function for standard deviation of NDVI. D Human population density. E Total land
area of the county. F Total area of water.

Fig. 2. Interaction analysis of standard deviation of NDVI and rates of Lyme disease. Interaction between average NDVI and standard deviation of NDVI adjusted for
other covariables. Average NDVI was split into 3 categories. Category 1 includes average NDVI from 0 to 0.4. Category 2 includes average NDVI from 0.4 to 0.6.
Category 3 includes average NDVI from 0.6 to 1.0. For each category of average NDVI, the fitted response curves of the interaction analysis are shown. A Lyme disease
rates and standard deviation of NDVI. Category 1 (0–0.4). B Lyme disease rates and standard deviation of NDVI. Category 2 (0.4–0.6). C Lyme disease rates and
standard deviation of NDVI. Category 3 (0.6–1.0).
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Fig. 3. Subgroup analyses of the associations between rates of Lyme disease and average NDVI and according to calendar year in which rates began to become
underestimated (2013) as well as in different states. A Lyme disease rates and average NDVI for the years 2000–2012. B Lyme disease rates and average NDVI for the
years 2013–2018. C Lyme disease rates and average NDVI for the years 2013–2018 but excluding New York State, Maryland, Minnesota, and Connecticut.
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with a mixture of habitats that include forest, various types of open and
mixed areas, as well as wildland-urban interfaces should have lower tick
densities (Diuk-Wasser et al., 2021). Wood and Lafferty (2013) suggested
that biodiversity of vertebrates played an important role in infections
when comparing rates in urban, semi-urban, to rural areas but were not
convinced of the effect of biodiversity within forests. They also suggested
non-linear associations between the incidence of LD and land cover
whereby the incidence of LD increased with the degree of forest cover
until a certain level of biodiversity becomes protective (“n-shaped
curve”).

Metrics of land cover may be interpreted as indirect measures of the
density of infected ticks (Kotchi et al., 2021) but may also represent the
potential for human exposures to infected ticks, and so it is plausible that
potential exposures would increase with increasing density of green
landscapes including forests (Wood and Lafferty, 2013; Kilpatrick et al.,
2017; Diuk-Wasser et al., 2021). Infections may also occur in urbanites
when they travel to areas of higher densities of infected ticks, but in-
fections can also occur in urban areas (Jobe et al., 2007; Hamer et al.,
2012; VanAcker et al., 2019).

Remote sensing has been proposed as a tool for assessing vegetation
cover (Gabriele-Rivet et al., 2017). In particular, the Normalized Differ-
ence Vegetation Index (NDVI) (Huete et al., 2002; Tucker et al., 2005)
provides a measurement of vegetation canopy “greenness” (Myneni et al.,
1995), as it measures a combination of leaf chlorophyll, leaf area, canopy
cover, and structure. This is quantified through the ratio of the absorp-
tion of red light (R) by photosynthesis and reflectance of near-infrared by
leaves (Tucker, 1979). NDVI is calculated as (NIR – R)/(NIRþ R). Values
of NDVI range from -1.0 to þ1.0, where very low and negative values
indicate an absence of vegetation, as found in areas of barren soils, snow,
or water, and built environments in urban areas, and high values corre-
spond to dense vegetation, as found in temperate or tropical forests
(Trishchenko et al., 2002). A study using remotely sensed greenness and
wetness in Westchester County that compared two communities in one
county of New York State (Dister et al., 1997) reported higher incidence
rates of LD in greener and wetter residential properties. With the con-
siderations above, our objective was to determine whether the incidence
of LD in the northeastern part of the USA was associated with NDVI and
other metrics of land cover.

2. Materials and methods

2.1. Incidence of Lyme disease

Counts of new cases of LD by county were obtained from the Centers
for Disease Control for the years 2000–2018 (CDC, 2019). Surveillance of
LD was established in the early 1990s, but we used counts starting in
2000 because this was the first year of available remote sensing data from
MODIS (Justice et al., 2002). Since 1991, local and state health de-
partments are required to report confirmed cases to the CDC (Schwartz
3

et al., 2017).
Over 95% of all LD cases in the USA occur in the 15 states classified as

having high incidence rates (at least 10 confirmed cases per 100,000
persons for the prior three reporting years) (CDC, 2019). We thus
included in our analyses Connecticut, Delaware, Maine, Maryland,
Massachusetts, Minnesota, New Hampshire, New Jersey, New York,
Pennsylvania, Rhode Island, Vermont, Virginia, West Virginia, Wiscon-
sin, and the District of Columbia.
2.2. Normalized Difference Vegetation Index (NDVI)

We used high fidelity preprocessed NDVI time series available at the
Climate Modelling Grid at a resolution of 0.05 degrees (Didan and Bar-
reto, 2016a). NDVI data covering the period 2000–2016 was acquired
from the Land Processes Data Active Archive Center (Didan and Barreto,
2016a) from the Moderate Resolution Imaging Spectroradiometer (Shu
et al., 2020). MODIS is an instrument on board both Terra and Aqua
satellites, operated by NASA since 2000 (Justice et al., 1998). MODIS
acquires quasi-daily multispectral surface reflectance images of the Earth
at 250 m, 500 m, and 1 km resolutions.

The full NDVI time series is a 35-year-long multi-sensor NDVI record
at 5.6 km resolution (Climate Modelling Grid derived from the remote
sensing instruments AVHRR (1981–1999), SPOT (1998–2002) and
MODIS (2000–2016) (Didan and Barreto, 2016b). This high-fidelity time
series is free from spatial gaps that result from clouds and atmospheric
contaminants, like heavy aerosols. We obtained the NDVI time series
from the Vegetation Index and Phenology Laboratory at the University of
Arizona.

This time series was generated from the finer 250 m resolution
MODIS daily observations. Surface reflectance observations were cali-
brated, corrected for atmosphere attenuation, aerosols, and screened for
clouds (Justice et al., 1998). The daily surface reflectance were then
filtered, refined and composited into multiday value-added measures of
vegetation greenness (Huete et al., 2002, 2010), such as NDVI, and any
remaining spatial gaps resulting from cloud screeningwere filled-in using
a simple moving window regression or with long-term average data if the
gaps were persistent for long periods of time (Didan and Barreto, 2016b).
These resulting high fidelity data records are used for long-term vege-
tation-climate interactions, detecting changes, modelling, and other de-
rivative studies like public health (Tourre et al., 2008; Jamison et al.,
2015).

The resulting NDVI images provide a spatially explicit measure of
vegetation canopy greenness, health, and productivity over space and
time (Myneni and Williams, 1994) and serves as a proxy for many
structural and functional ecosystem parameters (Krishnaswamy et al.,
2009).

We used NDVI data only for the month of July as it corresponds to the
time of high ecosystem productivity and peak incidence of LD (Schwartz
et al., 2017). For July of each year, we spatially aggregated the pixel data
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at the county level and generated multiple statistical parameters that
represent the distribution of NDVI within the county (Supplementary file
1: Fig. S1 shows the geographical distribution in the continental USA of
maximum NDVI for July 2000.)

Because the NDVI data record ends at 2016 and the CDC LD data end
in 2018, we extended the NDVI record through years 2017 and 2018
using a simple regressionmodel for average and the standard deviation of
NDVI. This latter statistic may be interpreted as indicating fragmented
areas of greenness within a county. This prediction model uses a county-
specific linear regression in which we regressed the natural logarithm of
NDVI versus time to generate predicted county-specific values for the
missing two years.

2.3. County-specific characteristics

Human population counts at the county level were obtained from the
US Census (USA Census Bureau, 2020) downloaded as county pop-
ulations for the years 2000–2010 and 2010–2018. The population for the
year 2010 was used from the county population for the 2010–2018
dataset, as new estimates incorporated the most up-to-date data for this
year. In addition, we obtained from the census annual estimates of total
land area, area of water, and we computed population density (USA
Census Bureau, 2020).

2.4. Statistical analysis

Counts of LD were not characterized by any personal characteristics,
such as age and sex. As the outcome data are counts (or equivalently
rates), the statistical model should follow approximately a Poisson dis-
tribution (Cameron and Trivedi, 2013). We thus used generalized linear
models (McCullagh and Nelder, 1989) in which the natural logarithm of
rates (or counts with a fixed offset for the logarithm of the population)
was regressed against a linear combination of covariables. The counts
were over-dispersed, so we used quasi-likelihood Poisson and negative
binomial models to account for extra Poisson variability.

The variables included in the models were calendar year, human
population density, total land area, area of water, average NDVI, and the
standard deviation of NDVI. These variables were computed for each year
from 2000 to 2018. Weather variables which vary on short time scales,
such as days, were not included because we only had annual counts of LD.

We made use of natural cubic splines to model the functional form of
each covariable. These smoothers have a tunable parameter (number of
knots or degrees of freedom, df) that allows for a different level of
smoothness, with a higher number of knots or degrees of freedom
allowing for more variability (less smoothing). We used the following
algorithm to select the degrees of freedom: we modelled each covariable
separately, adjusting for calendar year, and investigated the pattern of
the graphs from 2 df to 6 df. The final value for the number of df was
assessed visually by comparing the graphs and selecting the lowest df that
revealed the pattern without having unnecessary variability that would
likely be due to random fluctuations. We then modelled all of the cova-
riables together; we used these multivariable models as the main results
of the analysis, where we present graphs of marginal effects (Lüdecke,
2018). As well, because the patterns were complex, to provide quanti-
tative estimates of rates, we computed rate ratios between selected cut
points for each covariable, adjusting for all of the other covariables (Cao
et al., 2006).

2.5. Sensitivity analyses

We also conducted additional analyses using various cut points of the
human population of each county, and we conducted separate analyses of
each of the 14 states (the District of Columbia was excluded because it
comprises only one area).

We investigated interactions between selected variables, and we
assessed these interactions using the likelihood ratio test as well as
4

through fitted marginal graphs. As it is exceedingly difficult to graph the
interaction of two nonlinear functions, we categorized one variable and
then fitted the fully adjusted model on the subset of data points defined
by the different values of the categorical variable.

In addition, because there are reports of under-reporting of LD in
many states (Schwartz et al., 2017; Rutz et al., 2018; Schiffman et al.,
2018; White et al., 2018) we conducted a number of additional analyses
excluding certain states as well as certain years.

3. Results

3.1. Main analyses

Table 1 shows the distribution of the variables included in the anal-
ysis (2000–2018 for the selected states). The area of some counties was
too small to measure the variability of NDVI, and thus these counties
were excluded from the substantive analyses (193 observations).

The counties included in our analyses varied dramatically in area and
population density and this type of heterogeneity is a cardinal charac-
teristic of this administrative unit. The ratio of the population size be-
tween the largest to the smallest county was 1200 and that of the total
land area was 78. Rates of LD (per 100,000 persons) varied from 0 to
1581.2 with a mean of 40.2 and standard deviation of 0.73. Counts of LD
did not follow a Poisson distribution: the mean number of incident cases
was 46.1 (range of 0–1720) and the variance was 10,837 (ratio of vari-
ance to mean of 235), implying considerable overdispersion (Table 1).

Average county-specific NDVI also varied considerably, from a very
low value of 0.22 to a maximum of 0.92 (dense forest cover). There was
also considerable variability in NDVI across counties, as shown by the
distribution of its standard deviation. The predictions of NDVI to 2017
and 2018 were similar to the observed values for 2000–2016 (Supple-
mentary file 1: Fig. S2).

We present results for the quasi-Poisson model, as the results with the
negative binomial model were similar (see Supplementary file 1: Fig. S3).
The fitted response curves (Lüdecke, 2018) for the model that included
all variables are shown in Fig. 1. The estimate of the dispersion parameter
in the quasi-Poisson model was 0.0012, close to the crude value. Calen-
dar year was modelled using a linear function, the standard deviation of
NDVI was modelled using 2 df, and all other variables were modelled
using 3 df.

The predicted response function for calendar year, adjusted for all the
other variables in the model, is shown in Fig. 1A. In this plot, each tick on
the rug plot represents a value for year, with each county contributing 19
values to the analyses. Although we fitted a linear term for year, the
reason the graph shows some curvature is because the predicted values
were computed by taking their exponent. The estimated annual increase
in rates was 7.1% (95% CI: 6.8–8.2%).

Themarginal response patterns for average NDVI are shown in Fig. 1B
where we found a non-monotonic function for rates of LD whereby
adjusted rates decreased between about 0.2 to about 0.6 and then
increased from 0.6 to 1.0. The rate ratio for an increase of average NDVI
from 0.2 to 0.6 was 0.56 (95% CI: 0.38–0.82), showing that higher
average NDVI values conferred lower rates of LD and the rate ratio from
0.6 to 0.85 was 1.60 (95% CI: 1.37–1.88), showing a 60% increase of
rates of LD for this increment of average NDVI.

For the standard deviation of NDVI (Fig. 1C), we found a monotonic
increase in the rate ratio, with a modest change from 0 to 0.2 and then
increasing more dramatically, although the confidence intervals were
wide at the upper end. Namely, for greater variability in NDVI, related
partly to land fragmentation from cities, water, roads, etc., the rate ratio
between a value of 0 to 0.2 was 1.61 (95% CI: 1.25–2.07) and from 0.2 to
0.3 the rate ratio was 3.12 (95% CI: 2.14–4.56).

The predicted marginal relationship for human population density is
shown in Fig. 1D. Most counties had population densities under 10,000
per km2 with three clusters at higher values representing larger urban
centers. These three clusters represented three counties and the different
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population densities in each cluster represented values for different
years, hence the 95% confidence bands were wide. The upward line at
zero is an artifact of seven counties having very low population densities
(< 2 per km2). Rates decreased up to a population density of about
12,000 and then increased slowly. The rate ratio from a population
density of 500 persons per km2 up to 10,000 was 0.04 (95% CI:
0.02–0.10) and from 10,000 to 30,000 the rate ratio was 9.49 (95% CI:
1.84–49.02). Counties with the highest population densities such as New
York County or Philadelphia County led to considerable uncertainty at
the high end.

The marginal response functions for total land area and area of water,
respectively, are shown in Fig. 1E, F. Fifteen counties had a total area
greater than about 5000 km2 and 35 counties had areas of water greater
than 1000 km2. For total land area, we found another non-monotonic
function increasing at the low values of the land area until about 5000
km2 and then decreasing. The rate ratio from a minimum of 20 until
4500 km2 was 1.53 (95% CI: 1.22–1.91) and from 4500 to 10,000 km2

the rate ratio was 0.39 (95% CI: 0.26–0.58).
For area of water, rates increased at lower values and then dropped

off rapidly; for example, from 10 to 100 km2 the rate ratio was 1.69 (95%
CI: 1.56–1.83) and from 100 to 2000 km2 the rate ratio was 0.84 (95% CI:
0.72–0.99). Although there are few observations for larger areas of
water, the decreasing trend covers the entire range.

3.2. Sensitivity analyses

We investigated the interaction between average NDVI and the
standard deviation of NDVI. The likelihood ratio test adding in the
interaction term between these two variables indicated an important
synergistic effect. We then categorized average NDVI into three groups
(0–0.4; > 0.4–0.6; and > 0.6–1.0) and we estimated the adjusted
response curves for the standard deviation of NDVI for each separate
category of average NDVI (Fig. 2). Although we found a “u-shaped”
response in rates of LD with increasing standard deviation of NDVI in the
lowest category of average NDVI (0 to 0.4), the wide confidence intervals
do not admit any meaningful interpretation. As shown in Fig. 2, rates for
LDwere constant in the second category of average NDVI (> 0.4–0.6) and
increased marginally in the third category of average NDVI (> 0.6–1.0).

We excluded counties with populations greater than 100,000 and
populations greater than 381,000 but they exhibited functional forms
and rate ratios comparable to the main analysis (Supplementary file 1:
Fig. S4).

State-specific analyses for the two indices of NDVI are shown in
Supplementary file 1: Figs. S5 and S6. The patterns for NDVI differ be-
tween states and many states exhibit different patterns from the average
shown above. The state-specific patterns are more difficult to interpret as
there are few counties in each state, leading to considerable variability in
these associations.

We conducted a series of separate analyses for different time periods
in which the definitions used for LD changed, namely 2000–2008,
2008–2011, and 2011–2018. Because of the fewer numbers of observa-
tions, variability was increased but the general patterns found in the
main analyses were similar (results not shown).

We also conducted analyses splitting the time period according to
when public health departments began to experience difficulties in
recording cases (around 2013) (Rutz et al., 2018; Schiffman et al., 2018;
White et al., 2018). The response patterns for average NDVI split between
the time periods 2000–2012 and 2013–2018 are shown in Fig. 3. For the
period prior to 2013, we found a flat response until around average NDVI
of 0.8 (Fig. 3A) whereas for the latter period we found higher rates below
values of 0.4 and then subsequently a flat response for larger values
(Fig. 3B). We hypothesized that the change in pattern observed in this
latter analysis may have been due to serious underreporting in certain
states (New York, Maryland, Minnesota and Connecticut) (Schwartz
et al., 2017; Lukacik et al., 2018) so we excluded these states (Fig. 3C)
and indeed recovered the pattern seen in Fig. 3A for the earlier period
5

(2000–2012).

4. Discussion

4.1. Findings

We found that the reported incidence of LD increased by 7.1% per
year for the period 2000–2018, consistent with other reports (Murphree
Bacon et al., 2008; Kugeler et al., 2015; Schwartz et al., 2017).

The definition of LD changed in the years 2008 and 2011. Before
2008, a confirmed case of LDwas “a case with erythemamigrans or a case
with at least one late manifestation that is laboratory confirmed” (CDC,
2019). From 2008 to 2011, a confirmed case was defined as “a case of
erythema migrans with a known exposure, or a case of erythema migrans
with laboratory evidence of infection and without a known exposure or a
case with at least one late manifestation that has laboratory evidence of
infection” (CDC, 2019). From 2011 to 2017, the definition of a confirmed
case remained the same, but the laboratory criteria for diagnosis became
more specific as the presence of antibodies for Borrelia burgdorferi were
used (CDC, 2019). Although these modifications were minor, these
changes may have influenced the number of reported cases.

Part of the secular increase was due to improvements in reporting but
also likely reflects increased rates of infection (Murphree Bacon et al.,
2008; Kugeler et al., 2015). There has been under-reporting (Schwartz
et al., 2017; Rutz et al., 2018; Schiffman et al., 2018; White et al., 2018)
because public health departments could not deal with the volume of
cases, healthcare providers could not order tests to detect LD and, thus,
many cases were missed because the complete clinical information was
not available. For example, White et al. (2018) found that over a
three-year period, three counties in New York State failed to report 20%
of LD cases through standard surveillance. Our reported response func-
tions could be biased if under-reporting was also associated with the
variables in the model. The sensitivity analyses shown in Fig. 3 indicated
that this was the case, especially after 2013, but that the overall pattern
for average NDVI that we found (Fig. 1) likely is correct.

We found complex relationships in the functional forms of rates of LD
and various indicators of greenness and land cover. We found that for
increasing values of average NDVI from 0 to 0.6 lower rates of LD were
observed at higher values of average NDVI, and for increasing values of
average NDVI from 0.6 to 1.0 we found increases in disease rates. Low
values of average NDVI, from 0.2 to 0.3 reflect areas in which there is
relatively sparse vegetation (Weier and Herring, 2000). This may include
areas such as urban centers, unvegetated areas, or sparsely vegetated
meadows. For example, our data showed the average NDVI value for
Kings County, NY, which comprises Brooklyn, NY, had an average NDVI
value of 0.25 in 2002 which is comparable, for example, to desert-like
regions.

Low values of average NDVI should imply that vegetation is largely
absent, which should in theory translate to an absence of habitats for
ticks and the vertebrate species that carry ticks. Indeed, living in ur-
banized areas is sometimes thought to be protective of LD (Glass et al.,
1995), but our model found the highest rates of LD in areas with little
vegetation and areas with dense vegetation. Higher rates of LD in areas of
little vegetation may be partly the result of travel-related behaviour, such
as when a person acquires LD elsewhere, and the infection is reported in
their urban/residential county. However, studies have shown that most
cases of LD are acquired around people’s homes, such as in one’s lawn or
backyard (Falco and Fish, 1988; Maupin et al., 1991; Smith et al., 2001).
Furthermore, our sensitivity analysis suggests that after excluding large
cities we observed the same functional form, where the highest rates of
LD were associated with the lowest and highest levels of average NDVI
(Supplementary file 1: Fig. S4B). This suggests that travel-related
behaviour may not fully explain the relationship between higher rates
of LD in areas of little vegetation.

The incidence of LD in the USA cities is understudied and is likely
more prevalent in cities than thought previously (Jobe et al., 2007;
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Hamer et al., 2012; VanAcker et al., 2019). VanAcker et al. (2019) found
that 17 out of 24 parks in New York City contained the tick Ixodes
scapularis, and of all the ticks sampled, an average of 26.6%were infected
with the LD spirochaete. Cities contain a high density of people, making it
especially important to be aware of the expansion of this zoonotic disease
into cities. Additionally, lower to moderate levels of NDVI averaged in a
county reflect a mixture of residential/urban areas and a small amount of
forested area, such as the edge of forests. Many of these areas may be in
proximity to forest edge habitats that may increase the interaction be-
tween disease vectors and humans and thus increase risk (Brownstein
et al., 2005; Jackson et al., 2006a).

The diversity of vertebrate species (DeLong, 1996) may affect the
ecology and epidemiology of vector-borne zoonoses through a process
called the “dilution effect” (Ostfeld and Keesing, 2000) which posits that
a greater variety of species dilutes the proportion of infected rodents for
ticks to feed on. A loss of biodiversity can indirectly increase risk of
disease, as species carrying the LD spirochaete are predominately small
rodents that are better able to survive and adapt to loss and change of
habitats. Although biodiversity is difficult to measure across large spatial
scales, indirect measures that relate to land cover have been used (Bawa
et al., 2002; Grantham et al., 2008). The hypothesized dilution effect
implies that the greater diversity of species in communities may dilute
the number of infected white-footed mice and as a result reduce the
incidence of LD (Ostfeld and Keesing, 2000). Habitat fragmentation and
destruction of forests can be an important driving force in the loss of
many species in a community (LoGiudice et al., 2003). The dilution effect
has been referenced (LoGiudice et al., 2003) as a means in which
biodiversity can ameliorate LD risk, but in few studies using direct
metrics of biodiversity has this hypothesis been studied or confirmed
(Wood and Lafferty, 2013).

As average NDVI increased in the range 0.6–0.8 (which corresponds
to highly vegetated counties), higher rates of LD were observed. This
finding is compatible with various studies in the northeastern United
States which suggest that the risk of LD increases with increasing fores-
tation (Glass et al., 1995; Kitron and Kazmierczak, 1997; Brownstein
et al., 2005). A review on spatial patterns and environmental correlates of
human cases of LD by Killilea et al. (2008) found that the only envi-
ronmental variable consistently associated with increased LD risk was the
presence of forests. However, possible non-linear relationships between
forest coverage and LD were not assessed in the studies included in this
review (Kitron and Kazmierczak, 1997; Orioski et al., 1998). Our model
is consistent with previous findings where higher rates of LD were
associated with greater forestation (Glass et al., 1995; Kitron and Kaz-
mierczak, 1997; Brownstein et al., 2005).

We also found increased rates of LDwith higher values of the standard
deviation of NDVI. Higher variability in NDVI reflects fragmentation of
landscapes and/or the presence of large urban to natural interfaces.
Landscape likely contributes to the incidence of LD through the reservoir
species it supports, namely the white-footed mouse (Falco and Fish,
1988; Brownstein et al., 2005). White-footed mice can tolerate frag-
mented habitats while many other species cannot (LoGiudice et al.,
2003). This is a possible explanation for higher disease rates in areas with
a higher standard deviation of NDVI. As it has been found that most LD
cases are contracted peri-domestically, the landscape can further
contribute to LD risk through promoting the interaction between infected
ticks and humans. An area with an increasing variation of NDVI may have
a greater area of interface between residential property and forest edge.
This is supported by several studies showing that fragmented landscapes
are associated with either greater disease rates or acarological risk (Allan
et al., 2003; Brownstein et al., 2005; Tran andWaller, 2013; Diuk-Wasser
et al., 2021). It is likely important to consider educating people living in
or interacting with areas of highly fragmented vegetation.

The interaction analysis (Fig. 2) of average NDVI and standard de-
viation of NDVI suggests that the relationship between standard devia-
tion of NDVI and rates of LD at low levels of average NDVI have too much
variability to make firm conclusions. At moderate levels of average NDVI,
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increases in standard deviation of NDVI showed constant rates of LD. The
highest levels of average NDVI showed slight increases of rates of LD with
increasing standard deviation of NDVI, which is similar to the finding of
the main analysis. This may suggest that fragmentation of forests within
counties of high levels of NDVI have higher rates of LD, which may
provide support of the dilution effect.

We found increased rates of LD with counties with lower population
densities, compatible with a previous study (Seukep et al., 2015), and
also consistent with our findings for average and the standard deviation
of NDVI as one would expect that more sparsely populated areas would
have more forested areas and a greater presence of infected ticks. There
was a suggestion, however, of increased rates in high density human
populations that may be due to the presence of ticks in city parks or to
people being infected while traveling. As LD continues to expand into
cities, we may see a shift in this relationship between population density
and LD rates.

Rates of LD increased with the greater total land area until 5000 km2.
The size of the county has not been found previously to predict LD risk
(Jackson et al., 2006b), but larger counties likely indicate a higher
probability they harbor more infected ticks and hence higher rates of LD.
For example, Maine has both the highest rates of LD and relatively large
counties which contribute to the finding that the relationship between
county area size and LD risk is greater. On the other hand, the largest
counties exhibited rates that diminished with land area. The decrease in
rates of LD in counties with land areas above 5000 km2 occurred in 15
counties: six in Maine, eight in Minnesota, and one in New York State.
Collectively, they have a median population of 15,000, a median popu-
lation density of 6.1 per km2, and a rural area that is about 46% of the
total. These lower rates are unlikely due to lower densities of ticks
infected with Borrelia burgdorferi spirochaetes (e.g. 50% of deer ticks
tested positive in St. Lawrence County, NY) but could be due to human
populations better protecting themselves.

Finally, as water area increased, LD rates initially increased in smaller
areas, and steadily decreased afterward. Naturally, in areas with large
tracts of water, where there is sparse to no vegetation, there will be no
viable habitat for the ticks or their hosts, and as we expect, there may be
lower rates of disease.

4.2. Methodological aspects

The strengths of this study include the utilization of the MODIS sensor
that allowed us to include a long time series of observations in this
analysis. These spaceborne platforms provide quasi-daily observations
about the Earth’s surface and enable novel data fusion techniques and
insights into how this disease is moderated by environmental factors. Our
study considered only the month of July, when vegetation is at its peak,
while minimizing NDVI noise, like clouds, atmosphere contaminants, and
maximizing illumination. Instruments like MODIS have been providing
consistent and accurate measures, like NDVI, a proxy of vegetation health
and productivity, at a resolution of 250 m. We have used coarser spatial
resolution NDVI data (5.6 km) that were derived from the native finer
250 m resolution observations making our estimates of county-specific
variability reasonably accurate and robust. We note here that some
counties were simply too small to estimate variability in NDVI and were
omitted from the multivariable analyses.

We used standard statistical models for rates of diseases, namely the
quasi-Poisson and negative binomial regression models that account for
the variability in LD counts and rates, and both models yielded similar
results. Moreover, we did not assume one value for any of the covariables
but allowed them to vary by year over the 19 years of observation,
thereby reducing measurement error. Lastly, we did not assume any
specific functional form for the associations between LD and the cova-
riables, such as linear relationships, and by doing so we reduced bias
from mis-specifying the regression model.

Our study is limited by the complex processes underlying the epide-
miology of LD. As mentioned above, cases of LD are quantified based on
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their county of residence, which assumes that the person contracting LD
will visit the medical centre in closest proximity to where they acquired
LD. As well, where LD is endemic, it is frequently acquired at home from
activities in the lawn or backyard (Falco and Fish, 1988; Connally et al.,
2006). Our data, however, cannot be used to establish the place of
infection. As well, we did not have information on patientsʼ specific
characteristics, such as age, sex, and income.

We could not investigate the effects of age because we did not have
counts of LD by age. But, because the age distribution of LD is bimodal
(Mead, 2015), it is possible that different relationships by age may exist,
that could be related to behaviour-related differences and age-related
differences in susceptibility and care-seeking behaviors (Mead, 2015).

We focused only on land cover, the habitat of the vector and hosts,
while numerous other factors contribute to the dynamics of the infection
such as changes in temperature and human interactions within ecosys-
tems. We did not account for temperature as we only had annual data for
LD. As well, temperature does not vary dramatically between areas; for
example, the meanmaximum temperature in July is about 26 �C inMaine
and 30 �C in Delaware.

Furthermore, we were only able to incorporate reported cases in the
analysis, as LD is underreported and misdiagnosed in the USA (Schwartz
et al., 2017; Rutz et al., 2018; Schiffman et al., 2018; White et al., 2018).
The increased number of cases reported throughout our study period can
be partly explained by true increases in rates, improved techniques to
detect LD, and the changing definition of what constitutes a positive case
of LD.

4.3. Study contribution

The present analysis contributes to the literature by confirming prior
findings about LD dynamics while providing a simple framework for
studying key parameters of the spatial dynamics of LD (Killilea et al.,
2008). Our findings show clear non-linear relationships for many vari-
ables which may prove useful in designing future studies. One of the
best-suited epidemiological designs for making causal inferences is the
case-control study in which one can design detailed investigations of
factors related to exposure in cases and appropriately selected controls
(non-cases) (Orioski et al., 1998; Connally et al., 2009).

We found associations with land cover variables that can be utilized
in predicting exposure and risk of LD and may suggest where it may be
important to focus on prevention and early detection. Our results suggest
that both urban areas (such as cities with large parks) along with sub-
urban and natural settings may be critical areas of infection. We also
found associations between increased rates of LD with higher values of
the variability of NDVI within counties. Public health education pro-
grammes would focus not just on rural areas but also on urban and
suburban areas and those people traveling to natural settings in which
there is the likelihood of infection, including those living in fragmented
areas. Additionally, people may be less likely to be vigilant about LD
infection whilst walking through a city park rather than those traveling to
natural settings. As LD continues to expand into cities, future studies on
LD should also have a strong focus on its dynamic in urban areas along
with rural and natural settings.

5. Conclusions

The relationships uncovered and reported in the present analysis
cannot be interpreted as causal, rather, they indicate that certain patterns
of land cover may increase or decrease exposure to infected ticks and
thereby may contribute indirectly to increased rates. Only properly
conducted cohort or case-control studies can be used to make causal
inferences. Generally, our study points to a complex relationship between
land cover and LD incidence rates, with the most critical being a
segmented response to NDVI, a proxy of landscape vegetation greenness,
showing a strong decrease of rates with increasing average NDVI (up to
NDVI ~0.6), then a strong positive relation with rates increasing with
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increasing average NDVI. We suspect this complex association could be
capturing aspects of the structure of landscapes, in particular fragmen-
tation and hence the quality of habitats. Furthermore, our study pre-
sented a simple framework to fuse remote sensing time series data and
census data and the incidence of LD that have not been carried out pre-
viously to elucidate how the distribution and trends in landscapes may be
playing a role in moderating reservoirs for ticks and spread of disease.

Funding

This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors. This work was
partially supported by NASA EOS-MODIS grant number
80NSSC18K0617 (K. Didan, PI).

Ethical approval

Not applicable.

CRediT authorship contribution statement

Sydney Westra: Conceptualization, Methodology, Formal analysis,
Writing – original draft, Writing – review & editing, Visualization. Mark
S. Goldberg: Conceptualization, Methodology, Formal analysis, Writing
– original draft, Writing – review & editing, Visualization, Supervision.
Kamel Didan: Writing – review & editing, Visualization, Resources,
Formal analysis.
Declaration of competing interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

All data are published and accessible as described in the methodology.
Data can be found from the CDC (https://www.cdc.gov/lyme/stats/
survfaq.html), from the USA Census (https://www.census.gov/newsroom/
press-kits/2020/population-estimates-detailed.html), and from The Vege-
tation Index and Phenology Lab (https://lpdaac.usgs.gov/products/
mod13c2v006/; https://lpdaac.usgs.gov/products/vip30v004/).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https
://doi.org/10.1016/j.crpvbd.2023.100132.

References

Allan, B.F., Keesing, F., Ostfeld, R.S., 2003. Effect of forest fragmentation on Lyme disease
risk. Conserv. Biol. 17, 267–272.

Alonso-Carn�e, J., García-Martín, A., Estrada-Pe~na, A., 2015. Assessing the statistical
relationships among water-derived climate variables, rainfall, and remotely sensed
features of vegetation: Implications for evaluating the habitat of ticks. Exp. Appl.
Acarol. 65, 107–124.

Bawa, K., Rose, J., Ganeshaiah, K.N., Barve, N., Kiran, M.C., Umashaanker, R., 2002.
Assessing biodiversity from space: an example from the Western Ghats, India.
Conserv. Ecol. 6, 7.

Brownstein, J.S., Skelly, D.K., Holford, T.R., Fish, D., 2005. Forest fragmentation predicts
local scale heterogeneity of Lyme disease risk. Oecologia 146, 469–475.

Cameron, A.C., Trivedi, P.K., 2013. Regression Analysis of Count Data, vol. 53. Cambridge
University Press, New York, NY, USA.

Cao, J., Valois, M.F., Goldberg, M.S., 2006. An S-Plus function to calculate relative risks
and adjusted means for regression models using natural splines. Comput. Methods
Progr. Biomed. 84, 58–62.

CDC, 2019. Lyme disease: Data and surveillance. Centers for Disease Control and
Prevention, Atlanta, USA. https://www.cdc.gov/lyme/stats/survfaq.html.

Connally, N.P., Ginsberg, H.S., Mather, T.N., 2006. Assessing peridomestic entomological
factors as predictors for Lyme disease. J. Vector Ecol. 31, 364–370.

https://www.cdc.gov/lyme/stats/survfaq.html
https://www.cdc.gov/lyme/stats/survfaq.html
https://www.census.gov/newsroom/press-kits/2020/population-estimates-detailed.html
https://www.census.gov/newsroom/press-kits/2020/population-estimates-detailed.html
https://lpdaac.usgs.gov/products/mod13c2v006/
https://lpdaac.usgs.gov/products/mod13c2v006/
https://lpdaac.usgs.gov/products/vip30v004/
https://doi.org/10.1016/j.crpvbd.2023.100132
https://doi.org/10.1016/j.crpvbd.2023.100132
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref1
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref1
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref1
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref2
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref2
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref2
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref2
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref2
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref2
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref2
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref3
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref3
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref3
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref4
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref4
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref4
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref5
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref5
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref6
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref6
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref6
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref6
https://www.cdc.gov/lyme/stats/survfaq.html
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref8
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref8
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref8


S. Westra et al. Current Research in Parasitology & Vector-Borne Diseases 4 (2023) 100132
Connally, N.P., Durante, A.J., Yousey-Hindes, K.M., Meek, J.I., Nelson, R.S., Heimer, R.,
2009. Peridomestic Lyme disease prevention: Results of a population-based
case–control study. Am. J. Preventive Med. 37, 201–206.

DeLong, D.C., 1996. Defining biodiversity. Wildl. Soc. Bull. 24, 738–749.
Didan, K., Barreto, A., 2016a. NASA MEaSUREs vegetation index and phenology (VIP)

vegetation indices 15 Days global 0.05 Deg CMG [Data set]. NASA EOSDIS Land
Processes DAAC 4. https://lpdaac.usgs.gov/products/vip15v004/. (Accessed 8
November 2019).

Didan, K., Barreto, A., 2016b. NASA MEaSUREs vegetation index and phenology (VIP)
vegetation indices monthly global 0.05 Deg CMG. NASA EOSDIS Land Process. DAAC
4. https://lpdaac.usgs.gov/products/vip30v004/. (Accessed 8 November 2019).

Dister, S.W., Fish, D., Bros, S., Frank, D.H., Wood, B.L., 1997. Landscape characterization
of peridomestic risk for Lyme disease using satellite imagery. Am. J. Trop. Med. Hyg.
57, 687–692.

Diuk-Wasser, M.A., VanAcker, M.C., Fernandez, M.P., 2021. Impact of land use changes
and habitat fragmentation on the eco-epidemiology of tick-borne diseases. J. Med.
Entomol. 58, 1546–1564.

Falco, R.C., Fish, D., 1988. Prevalence of Ixodes dammini near the homes of Lyme disease
patients in Westchester County, New York. Am. J. Epidemiol. 127, 826–830.

Gabriele-Rivet, V., Koffi, J.K., Pelcat, Y., Arsenault, J., Cheng, A., Lindsay, L.R., et al.,
2017. A risk model for the Lyme disease vector Ixodes scapularis (Acari: Ixodidae) in
the prairie provinces of Canada. J. Med. Entomol. 54, 862–868.

Glass, G.E., Schwartz, B.S., Morgan III, J.M., Johnson, D.T., Noy, P.M., Israel, E., 1995.
Environmental risk factors for Lyme disease identified with geographic information
systems. Am. J. Publ. Health 85, 944–948.

Grantham, H.S., Moilanen, A., Wilson, K.A., Pressey, R.L., Rebelo, T.G., Possingham, H.P.,
2008. Diminishing return on investment for biodiversity data in conservation
planning. Conserv. Lett. 1, 190–198.

Hamer, S.A., Goldberg, T.L., Kitron, U.D., Brawn, J.D., Anderson, T.K., Loss, S.R., et al.,
2012. Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago,
Illinois, USA, 2005–2010. Emerg. Infect. Dis. 18, 1589–1595.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of
the radiometric and biophysical performance of the MODIS vegetation indices. Rem.
Sens. Environ. 83, 195–213.

Huete, A., Didan, K., van Leeuwen, W., Miura, T., Glenn, E., 2010. MODIS vegetation
indices. In: Land Remote Sensing and Global Environmental Change. Springer, New
York, pp. 579–602.

Jackson, L., Levine, J., Hilborn, E., 2006a. A comparison of analysis units for associating
Lyme disease with forest-edge habitat. Community Ecol. 7, 189–197.

Jackson, L.E., Hilborn, E.D., Thomas, J.C., 2006b. Towards landscape design guidelines
for reducing Lyme disease risk. Int. J. Epidemiol. 35, 315–322.

Jamison, A., Tuttle, E., Jensen, R., Bierly, G., Gonser, R., 2015. Spatial ecology,
landscapes, and the geography of vector-borne disease: A multi-disciplinary review.
Appl. Geogr. 63, 418–426.

Jobe, D.A., Nelson, J.A., Adam, M.D., Martin Jr., S.A., 2007. Lyme disease in urban areas,
Chicago. Emerg. Infect. Dis. 13, 1799–1800.

Justice, C., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., et al.,
2002. An overview of MODIS Land data processing and product status. Rem. Sens.
Environ. 83, 3–15.

Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., et al.,
1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote
sensing for global change research. IEEE Trans. Geosci. Rem. Sens. 36, 1228–1249.

Killilea, M.E., Swei, A., Lane, R.S., Briggs, C.J., Ostfeld, R.S., 2008. Spatial dynamics of
Lyme disease: A review. EcoHealth 5, 167–195.

Kilpatrick, A.M., Dobson, A.D.M., Levi, T., Salkeld, D.J., Swei, A., Ginsberg, H.S., et al.,
2017. Lyme disease ecology in a changing world: Consensus, uncertainty and critical
gaps for improving control. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160117.

Kitron, U., Kazmierczak, J.J., 1997. Spatial analysis of the distribution of Lyme disease in
Wisconsin. Am. J. Epidemiol. 145, 558–566.

Kotchi, S.O., Bouchard, C., Brazeau, S., Ogden, N.H., 2021. Earth observation-informed
risk maps of the Lyme disease vector Ixodes scapularis in Central and Eastern Canada.
Rem. Sens. 13, 524.

Krishnaswamy, J., Bawa, K.S., Ganeshaiah, K.N., Kiran, M.C., 2009. Quantifying and
mapping biodiversity and ecosystem services: Utility of a multi-season NDVI based
Mahalanobis distance surrogate. Rem. Sens. Environ. 113, 857–867.

Kugeler, K.J., Farley, Grace M., Forrester, J.D., Mead, P.S., 2015. Geographic distribution
and expansion of human Lyme disease, United States. Emerg. Infect. Dis. 21,
1455–1457.

LoGiudice, K., Ostfeld, R.S., Schmidt, K.A., Keesing, F., 2003. The ecology of infectious
disease: Effects of host diversity and community composition on Lyme disease risk.
Proc. Natl. Acad. Sci. USA 100, 567–571.
8

Lüdecke, D., 2018. ggeffects: Tidy data frames of marginal effects from regression models.
J. Open Source Softw. 3, 772.

Lukacik, G., White, J., Noonan-Toly, C., DiDonato, C., Backenson, P.B., 2018. Lyme
disease surveillance using sampling estimation: Evaluation of an alternative
methodology in New York State. Zoonoses Public Health 65, 260–265.

Mather, T.N., 1993. The dynamics of spirochete transmission between ticks and
vertebrates. In: Ecology and Environmental Management of Lyme Disease. Rutgers
University Press, New Brunswick, NJ.

Maupin, G.O., Fish, D., Zultowsky, J., Campos, E.G., Piesman, J., 1991. Landscape ecology
of Lyme disease in a residential area of Westchester County, New York. Am. J.
Epidemiol. 133, 1105–1113.

McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models. Chapman and Hall,
London, UK.

Mead, P.S., 2015. Epidemiology of Lyme disease. Inf. Dis. Clinics. 29, 187–210.
Murphree Bacon, R., Kugeler, K.J., Mead, P.S., 2008. Surveillance for Lyme Disease -

United States, 1992–2006.
Myneni, R., Williams, D., 1994. On the relationship between FAPAR and NDVI. Rem.

Sens. Environ. 49, 200–211.
Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., 1995. The interpretation of spectral

vegetation indexes. IEEE Trans. Geosci. Rem. Sens. 33, 481–486.
Orioski, K.A., Campbell, G.L., Genese, C.A., Beckley, J.W., Schriefer, M.E., Spitalny, K.C.,

et al., 1998. Emergence of Lyme disease in Hunterdon County, New Jersey, 1993: A
case-control study of risk factors and evaluation of reporting patterns. Am. J.
Epidemiol. 147, 391–397.

Ostfeld, R.S., Keesing, F., 2000. Biodiversity series: The function of biodiversity in the
ecology of vector-borne zoonotic diseases. Can. J. Zool. 78, 2061–2078.

Rutz, H.J., Wee, S.B., Feldman, K.A., 2018. Characterizing Lyme disease surveillance in an
endemic state. Zoonoses Public Health 65, 247–253.

Schiffman, E.K., McLaughlin, C., Ray, J.A.E., Kemperman, M.M., Hinckley, A.F.,
Friedlander, H.G., et al., 2018. Underreporting of Lyme and other tick-borne diseases
in residents of a high-incidence county, Minnesota, 2009. Zoonoses Public Health 65,
230–237.

Schwartz, A.M., Hinckley, A.F., Mead, P.S., Hook, S.A., Kugeler, K.J., 2017. Surveillance
for Lyme disease - United States, 2008–2015. MMWR Surveill. Summ. 66, 1–12.

Seukep, S.E., Kolivras, K.N., Hong, Y., Li, J., Prisley, S.P., Campbell, J.B., et al., 2015. An
examination of the demographic and environmental variables correlated with Lyme
disease emergence in Virginia. EcoHealth 12, 634–644.

Shu, S., Wu, H., Jennifer, Y.G., Zeid, R., Harris, I.S., Jovanovi�c, B., et al., 2020. Synthetic
lethal and resistance interactions with BET bromodomain inhibitors in triple-negative
breast cancer. Mol. Cell 78, 1096–1113.

Smith, G., Wileyto, E.P., Hopkins, R.B., Cherry, B.R., Maher, J.P., 2001. Risk factors for
Lyme disease in chester county, Pennsylvania. Publ. Health Rep. 116 (Suppl. 1),
146–156.

Tourre, Y., Jarlan, L., Lacaux, J.P., Rotela, C.H., Lafaye, M., 2008. Spatio-temporal
variability of NDVI-precipitation over southernmost South America: Possible linkages
between climate signals and epidemics. Environ. Res. Lett. 3, 044008.

Tran, P.M., Waller, L., 2013. Effects of landscape fragmentation and climate on Lyme
disease incidence in the northeastern United States. EcoHealth 10, 394–404.

Trishchenko, A.P., Cihlar, J., Li, Z., 2002. Effects of spectral response function on surface
reflectance and NDVI measured with moderate resolution satellite sensors. Rem.
Sens. Environ. 81, 1–18.

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring
vegetation. Rem. Sens. Environ. 8, 127–150.

Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., et al.,
2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT
vegetation NDVI data. Int. J. Rem. Sens. 26, 4485–4498.

USA Census Bureau, 2020. Methodology for the United States population estimates:
Vintage 2019. USA Census Bureau. https://www.census.gov/newsroom/press-kits/
2020/population-estimates-detailed.html.

VanAcker, M.C., Little, E.A.H., Molaei, G., Bajwa, W.I., Diuk-Wasser, M.A., 2019.
Enhancement of risk for Lyme disease by landscape connectivity, New York, New
York, USA. Emerg. Infect. Dis. 25, 1136.

Weier, J., Herring, D., 2000. Measuring Vegetation (NDVI & EVI). NASA. https://earth
observatory.nasa.gov/features/MeasuringVegetation.

White, J., Noonan-Toly, C., Lukacik, G., Thomas, N., Hinckley, A., Hook, S., et al., 2018.
Lyme disease surveillance in New York State: An assessment of case underreporting.
Zoonoses Public Health 65, 238–246.

Wood, C.L., Lafferty, K.D., 2013. Biodiversity and disease: A synthesis of ecological
perspectives on Lyme disease transmission. Trends Ecol. Evol. 28, 239–247.

http://refhub.elsevier.com/S2667-114X(23)00020-1/sref9
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref9
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref9
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref9
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref9
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref10
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref10
https://lpdaac.usgs.gov/products/vip15v004/
https://lpdaac.usgs.gov/products/vip30v004/
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref13
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref13
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref13
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref13
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref14
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref14
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref14
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref14
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref15
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref15
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref15
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref16
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref16
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref16
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref16
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref17
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref17
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref17
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref17
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref18
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref18
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref18
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref18
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref19
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref19
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref19
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref19
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref19
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref20
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref20
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref20
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref20
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref21
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref21
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref21
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref21
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref22
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref22
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref22
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref23
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref23
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref23
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref24
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref24
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref24
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref24
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref25
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref25
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref25
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref26
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref26
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref26
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref26
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref27
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref27
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref27
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref27
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref28
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref28
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref28
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref29
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref29
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref29
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref30
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref30
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref30
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref31
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref31
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref31
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref32
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref32
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref32
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref32
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref33
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref33
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref33
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref33
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref34
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref34
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref34
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref34
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref35
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref35
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref36
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref36
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref36
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref36
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref37
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref37
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref37
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref38
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref38
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref38
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref38
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref39
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref39
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref40
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref40
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref41
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref41
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref41
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref42
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref42
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref42
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref43
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref43
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref43
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref44
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref44
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref44
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref44
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref44
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref45
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref45
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref45
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref46
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref46
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref46
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref47
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref47
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref47
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref47
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref47
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref48
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref48
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref48
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref48
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref49
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref49
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref49
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref49
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref50
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref50
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref50
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref50
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref50
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref51
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref51
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref51
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref51
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref52
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref52
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref52
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref53
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref53
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref53
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref54
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref54
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref54
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref54
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref55
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref55
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref55
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref56
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref56
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref56
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref56
https://www.census.gov/newsroom/press-kits/2020/population-estimates-detailed.html
https://www.census.gov/newsroom/press-kits/2020/population-estimates-detailed.html
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref58
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref58
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref58
https://earthobservatory.nasa.gov/features/MeasuringVegetation
https://earthobservatory.nasa.gov/features/MeasuringVegetation
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref60
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref60
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref60
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref60
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref61
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref61
http://refhub.elsevier.com/S2667-114X(23)00020-1/sref61

	The association between the incidence of Lyme disease in the USA and indicators of greenness and land cover
	1. Introduction
	2. Materials and methods
	2.1. Incidence of Lyme disease
	2.2. Normalized Difference Vegetation Index (NDVI)
	2.3. County-specific characteristics
	2.4. Statistical analysis
	2.5. Sensitivity analyses

	3. Results
	3.1. Main analyses
	3.2. Sensitivity analyses

	4. Discussion
	4.1. Findings
	4.2. Methodological aspects
	4.3. Study contribution

	5. Conclusions
	Funding
	Ethical approval
	CRediT authorship contribution statement
	Declaration of competing interests
	Data availability
	Appendix A. Supplementary data
	References


