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Oppositional defiant disorder and conduct disorder, collectively referred to as disruptive

behavior disorders (DBDs), are prevalent psychiatric disorders in children. Early diagnosis

of DBDs is crucial because they can increase the risks of other mental health and

substance use disorders without appropriate psychosocial interventions and treatment.

However, diagnosing DBDs is challenging as they are often comorbid with other

disorders, such as attention-deficit/hyperactivity disorder, anxiety, and depression. In

this study, a multimodal ensemble three-dimensional convolutional neural network (3D

CNN) deep learning model was used to classify children with DBDs and typically

developing children. The study participants included 419 females and 681 males, aged

108–131 months who were enrolled in the Adolescent Brain Cognitive Development

Study. Children were grouped based on the presence of DBDs (n = 550) and typically

developing (n = 550); assessments were based on the scores from the Child Behavior

Checklist and on the Schedule for Affective Disorders and Schizophrenia for School-age

Children-Present and Lifetime version for DSM-5. The diffusion, structural, and resting-

state functional magnetic resonance imaging (rs-fMRI) data were used as input data to

the 3D CNN. The model achieved 72% accuracy in classifying children with DBDs with

70% sensitivity, 72% specificity, and an F1-score of 70. In addition, the discriminative

power of the classifier was investigated by identifying the cortical and subcortical regions

primarily involved in the prediction of DBDs using a gradient-weighted class activation

mappingmethod. The classification results were compared with those obtained using the

three neuroimaging modalities individually, and a connectome-based graph CNN and a

multi-scale recurrent neural network using only the rs-fMRI data.

Keywords: deep learning, disruptive behavior disorders, multimodal ensemble learning, neuroimaging, 3D CNN

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a powerful noninvasive neuroimaging tool that can reveal
anatomical features and neuronal activities inside a brain. MRI data is widely used to study
cognitive development, pathologies, and psychiatric disorders. Diffusion MRI (dMRI) can reveal
information about the microstructures, fiber connections, and anatomical connectivities within the
brain, and the static anatomical images acquired using structural MRI (sMRI) provide information
about the gross anatomical structures in the brain. Dynamic activities inside the brain are measured
using functional MRI (fMRI), which is used to identify brain activities in the absence of a task
(resting-state fMRI; rs-fMRI) or during a task (task fMRI; tfMRI).
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Disruptive behavior disorders (DBDs) include oppositional
defiant disorder (ODD; a pattern of angry/irritable mood,
argumentative/defiant behavior, or vindictiveness lasting at least
6 months) and conduct disorder (CD; behavior in which the
basic rights of others or major age-appropriate societal norms
or rules are violated; American Psychiatric Association, 2013).
They are prevalent in children and the most common reasons
for referring children to mental health services (Hawes et al.,
2020). ODD is estimated to occur in 2–16% of youth, depending
on the population being studied and the method for diagnosis,
and CD, which is more prevalent among younger males, rates
range from 6 to 9% (SAMHSA, 2011). DBDs are associated
with increased risk for other mental health and substance use
disorders (Nock et al., 2006), and are predictors of poor mental
health conditions (Scarmeas et al., 2007). These disorders can
cause substantial economic losses for society in terms of service
utilization (Rivenbark et al., 2018). Therefore, early diagnosis of
DBDs is crucial to lower the risk for subsequent disorders with
appropriate psychosocial interventions and treatment. However,
DBDs are challenging to diagnose as they are often comorbid
with other disorders, such as attention-deficit/hyperactivity
disorder, anxiety, and depression (Allen et al., 2020).

Machine learning concepts are now receiving increased
attention for analysis and prediction in neuroimaging
applications. Traditional machine learning techniques require
hand-engineered feature selection, which are time-consuming
and prone to bias due to manual feature selection. Deep learning
is a recent development in machine learning that overcomes the
issues associated with hand-engineering and requisite domain
expertise for feature selection. Deep learning is a representation
learning in which raw data are fed into a learning algorithm
that decomposes it into multiple levels of complex nonlinear
representative patterns of the input data (LeCun et al., 2015).
The burgeoning wide applications of deep learning models
can be attributed to the implementation of a convolutional
neural network (CNN) because it cut the second-best error
rate for image classification by nearly half at the ImageNet
Large-Scale Visual Recognition Challenge in 2012 (Krizhevsky
et al., 2012). With the advent of parallel computing and graphics
processing units, deep representation learning was successfully
implemented in numerous areas, such as image processing and
analysis tasks, natural language processing, speech recognition,
and data synthesis and analysis (LeCun et al., 2015). A large
number of medical image analyses now focus on applying deep
learning methods to extract features from raw data for further
analysis and interpretation (Lundervold and Lundervold, 2019).

CNNs inspired by visual neuroscience are one of the widely
used deep learning architectures. A typical CNN includes a
convolutional layer, pooling layer, and fully connected layer. The
convolutional layer consists of filters/kernels of fixed size that
strides with a partial overlap through the input and generates
feature maps that are locally weighted sum of input features.
Each filter in a convolutional layer looks for the same pattern
in different parts of the input, and outputs a unique feature
map. The convolution filter thus looks for highly correlated local
motifs that can occur at any location in the input (LeCun et al.,
2015). The feature maps in the convolution layer are then passed

through nonlinear activation functions, such as the rectified
linear unit (ReLu) (O’Shea and Hoydis, 2017). The output from
one or more convolution layers is then pooled in a pooling layer
that merges similar features. Pooling filters output the average
or maximum value inside the filter grid and impart translational
invariance, for inputs withminor shifts and distortions in rows or
columns, to the activation map. Typically, several convolutional
and pooling layers are stacked in a CNN, and they are followed
by a fully connected layer. The fully connected layer usually
connects to an output layer, which could be a softmax function
for classification tasks or a linear or support vector machine for
regression tasks. CNNs learn in a hierarchical fashion from low-
level features, such as edges (similar to primary visual cortex),
to high-level features, such as shapes (identical to the secondary
visual cortex), in deep layers similar to the hierarchical structure
in a human visual cortex (Hubel and Wiesel, 1962). Brainnet
CNN (Kawahara et al., 2017) is an earlier developed connectome-
based graph CNN which is composed of edge-to-edge, edge-
to-node, and node-to-graph convolutional filters that leverage
the topological locality of brain networks as opposed to local
spatial filtering.

CNNs are often considered “black boxes” that perform
classifications without explanations on what a model learned or
which part of an input was responsible for the classification. One
primary goal of machine learning in neuroimaging is to reveal
neuromarkers that are indicative of brain health, and diseases
and disorders (Khosla et al., 2019). To address these issues,
visualization techniques can be utilized to discover discriminative
features learned by a CNN model. Class activation mapping
(CAM) is a technique to obtain visual explanations of the input
regions that a CNN emphasized in its classification (Zhou et al.,
2016; Selvaraju et al., 2017) by calculating the derivative of the
CNN classification function estimated via back-propagation with
respect to the input data. Gradient CAM (Grad-CAM) and Grad-
CAM++ are two improved versions of CAMs because they can
be applied to a wide variety of networks without global average
pooling and retraining, and they reveal the discriminative regions
in any CNN architecture (Selvaraju et al., 2017; Chattopadhyay
et al., 2018). The three CAM techniques were compared in one
study on classifying multiple sclerosis types, and it was shown
that Grad-CAM outperformed CAM and Grad-CAM++ (Zhang
et al., 2021).

A multi-scale recurrent neural network (MsRNN) is another
deep learning-based framework that can directly work on
the dynamic spatiotemporal fluctuations in the brain activity
measured using rs-fMRI time courses for identifying brain
disorders (Yan et al., 2019). While the CNN models, deep in
space, can be used as an “encoder” for obtaining correlations
between brain regions, recurrent neural network (RNN) models,
deep in time, can be utilized in sequence classification (Yan et al.,
2019). A simple RNN consists of input, hidden and output layers,
and it processes the input sequentially with respect to time.
The distinguishing feature of RNNs is that the output from a
layer is used as input for the layer itself, thereby forming a
feedback loop. This allows the RNN to have a history of the
sequence elements that can be used to predict the upcoming
sequence elements.
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Several studies in machine learning showed that the
performance of the learning algorithm can be improved using
ensemble learning, which is an algorithm-independent machine
learning strategy (Opelt et al., 2004; Khosla et al., 2019).
Moreover, brain abnormalities are heterogeneous and cause
alterations in functional connectivity and structural changes
(McLaughlin et al., 2019). Studies have found abnormal
brain activities in children with DBDs using dMRI (Hummer
et al., 2015), sMRI (Wallace et al., 2014; Hummer et al.,
2015; Waller et al., 2020), tfMRI (Rubia et al., 2009; Hawes
et al., 2020), and rs-fMRI (Lu et al., 2015; Werhahn et al.,
2020). Therefore, there is significant motivation to take
advantage of complementary information on various aspects of
neuropathology. This study addresses a knowledge gap in the
availability of multimodal tools for studying brain abnormalities
using different neuroimaging modalities.

In this study, a 3D CNN ensemble deep learning model
framework with multimodal neuroimaging data was exploited to
identify children with DBDs. The dMRI, sMRI, and rs-fMRI data
from a subsample of children enrolled in the Adolescent Brain
Cognitive Development (ABCD) Study (Casey et al., 2018) were
used as the input data. Furthermore, the brain regions involved
in classifying children with DBDs were identified utilizing Grad-
CAM that illustrated the discrimination power of the classifier
and the ability to identify neuroimaging phenotypes for DBDs.
To assess improvements offered by the ensemble learning, the
results were compared with those obtained using the three
neuroimaging modalities individually; they were also compared
with those obtained using two other readily available deep-
learning frameworks, Brainnet CNN and an MsRNN, model
with rs-fMRI data. We hypothesized that the classification
performance of the ensemble deep learning model will be
significantly better than the single modality models.

2. MATERIALS AND METHODS

2.1. Dataset
Data used in this study came from the ABCD Study that recruited
11,878 children (48% female; 52% male) between 108 and 120
months of age across 21 sites in the United States. A detailed
description of the recruitment, demographics, physical health,
and mental assessment and imaging protocols for the study can
be found elsewhere (Barch et al., 2018; Casey et al., 2018; Garavan
et al., 2018). The baseline ABCD Study data used in this study
were from the annual 2.0.1 data release and can be downloaded
from the National Institute of Mental Health (NIMH) Data
Archive1. The data is available to qualified researchers at no
cost after their NIMH Data Archive Data Use Certification has
been approved. Children with DBDs were identified using the
Child Behavior Checklist (CBCL) and the Schedule for Affective
Disorders and Schizophrenia for School-Age Children-Present
and Lifetime version for DSM-5 (K-SADS-PL) (Hawes et al.,
2020). Specifically, the criterion included children who: (i) scored
at or above the borderline clinical range (i.e., T-scores ≥67)
on either the CBCL DSM-oriented conduct problems subscale

1https://dx.doi.org/10.15154/1504041

or oppositional defiant problems subscale; or (ii) received a
K-SADS-PL conduct disorder or oppositional defiant disorder
diagnosis. Based on this criterion, there were 1,100 children
with minimally preprocessed data with all three neuroimaging
modalities, i.e., dMRI, sMRI, and rs-fMRI.

2.2. Preprocessing of ABCD Study
Minimally Preprocessed Data
DTI data were preprocessed using FSL (FMRIB’s Software
Library2) scripts, which were used to perform nonlinear
registration and projection onto an alignment-invariant tract
representation of fractional anisotropy (FA) and mean diffusivity
(MD). First, diffusion tensor models were fit at each voxel by
using FMRIB’s Diffusion Toolbox (FDT, part of FSL). Second,
brain extraction was performed using the brain extraction tool
(BET) (Smith, 2002). Third, nonlinear registration was done,
thereby aligning all FA and MD images to a FMRIB58_FA
standard-space image, which has a 1 × 1 × 1 mm resolution, as
the target. Finally, all images were resampled back to the 2×2×2
mm FSL default MNI152 standard-space template resolution.
Figure S1 shows an example DTI image.

The sMRI T1-weighted images were preprocessed mainly
using the FSL software. First, extraction of the brain tissue from
the skull was performed by using BET. Second, registration to
standard space images was carried out using FLIRT (Jenkinson
and Smith, 2001; Jenkinson et al., 2002). Third, registration
from high-resolution structural to the FSL default MNI152
standard space was then further refined using FNIRT nonlinear
registration (Andersson et al., 2007a,b). Finally, the FMRIB’s
Automated Segmentation Tool (FAST) (Zhang, 2001) was used to
segment the brain 3D-image into three different tissue types: (i)
gray matter; (ii) white matter; and (iii) cerebrospinal fluid (CSF).
Figure S2 shows an example sMRI image.

The rs-fMRI data preprocessing was carried out using
FEAT (FMRI Expert Analysis Tool) Version 6.00, a part of
FSL. Registration to high-resolution structural and the FSL
default MNI152 standard space images was carried out using
FLIRT. Registration from high-resolution structural to standard-
space was further refined using FNIRT nonlinear registration.
Additionally, the following pre-statistics processing was applied:
(i) motion correction using MCFLIRT (Jenkinson et al., 2002);
(ii) non-brain removal using BET; (iii) spatial smoothing using
a Gaussian kernel of FWHM 8.0 mm; (iv) grand-mean intensity
normalization of the entire 4D dataset by a single multiplicative
factor, which was done by default in all the fMRI software
packages to ensure each image scan had roughly the same mean;
and (v) high-pass temporal filtering (Gaussian-weighted least-
squares straight-line fitting, with sigma = 50.0 s). The Pearson
seed-based correlation values were calculated for four regions
of interest, namely posterior and anterior cingulate cortex (PCC
and ACC), medial prefrontal cortex (mPFC) and ventral caudate,
which are known to be affected in children with DBDs (Alegria
et al., 2016). Figure S3 shows an example rs-fMRI image for the
ACC.

2www.fmrib.ox.ac.uk/fsl
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TABLE 1 | Demographic and clinical characteristics of the study pool.

Characteristic
DBDs TD p-value

Mean SD % Mean SD %

Demographics

Age (months) 118.3 7.7 118.7 7.4 0.38

Sex (male) 61.6 62.2 0.85

Race

African American 16.2 14.0

Caucasian 54.0 53.8
0.44

Hispanic 16.2 19.5

Other 13.6 12.7

Clinical

CBCL CP subscale 63.6 8.13 50 0 <0.001

CBCL ODD subscale 63.9 7.44 50 0 <0.001

KSADS-PL CD diagnosis 29.6 0 <0.001

KSADS-PL ODD diagnosis 73.3 0 <0.001

FIGURE 1 | Schematic of the 3D CNN model. The number of input data channels is not shown because it varies depending on the input modality.

Children were removed from the study pool following
preprocessing due to high motion (framewise displacement >

0.25 mm), misalignment, and registration failures. As a result,
the complete preprocessed data were available for 550 children
and a matching number of children in age and sex without
DBDs (typically developing, TD) were selected from the ABCD
Study data as the control group. Table 1 shows the demographic
and clinical characteristics of the final study pool. Descriptive
statistics show that the groups were equivalent on demographic
variables and significantly different on clinical scores.

2.3. Ensemble Learning
Three multichannel 3D CNNs whose inputs were dMRI, sMRI,
and rs-fMRI, respectively, were trained in this study to classify
children with DBDs and TD children. The goal for the 3D
CNNs was to learn the mapping between input (features related
to the microstructural integrity and gross anatomical structure
of the brain, and resting-state functional patterns) and label
(TD children and children with DBDs), so that the 3D CNNs
can predict DBDs in previously unseen children. As shown in
Figure 1, each 3D CNN model had two convolution blocks each
consisting of a 3D convolutional layer (kernel size 3, stride 1),

a ReLU activation layer, and a max-pooling layer (kernel size
2, stride 2). The number of feature channels were 4 and 8 for
the convolution layers, respectively. The last layer was a fully
connected layer with 64 neurons to combine the feature vectors,
and a dropout layer was used to reduce model overfitting. The
output was a softmax classification layer. The input channels for
the three 3D CNNmodels were as follows: (i) dMRI model—two
channels for FA andMD values; (ii) sMRImodel—three channels
for gray matter, white matter, and CSF; and (iii) rs-fMRI model—
four channels for Pearson correlation of seed regions ACC, PCC,
mPFC, and ventral caudate. The three models were combined
in an ensemble learning strategy that gave equal weight during
maximum voting of the softmax output for classifying children
with DBDs and TD children.

The 3D CNN models were trained with mini-batch sizes
of 32 with early stopping conditioned on validation accuracy.
The binary cross-entropy was used as the loss function and
the neural network weights were optimized using the Adam
optimizer. The learning rate and gradient decay were set to 0.001
and 0.9, respectively. The squared gradient decay, epsilon, and
maximum epochs were set to 0.9, 0.001, and 50, respectively. No
attempt was made to optimize the aforementioned parameters.
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FIGURE 2 | Schematic of Brainnet CNN and MsRNN architecture. (Top) Brainnet CNN; the edge to edge (E2E) layer uses a crosshair convolution filter, and the edge

to node (E2N) layer uses a 1D convolution row filter. (Bottom) MsRNN; three varied convolutions are first performed in the input layer, the output is then

concatenated, and finally maximum pooled before being fed into the gated recurrent units (GRUs).

FIGURE 3 | Typical receiver operating characteristic curves for different models.

To ensure that all 3D CNN models relied on information from
the same voxels, the FSL default MNI152 standard-space mask
was applied to the voxel-level data before feeding into the 3D
CNN model (Khosla et al., 2019). This step removed voxels that
may have emerged outside the standard brain template because
the preprocessing transformationmatrix does not create the exact
brain boundary.

2.4. Brainnet CNN
As shown in Figure 2, input to the Brainnet CNN was
a functional connectivity matrix obtained using timeseries
extracted from 70 resting-state networks, which were identified
using publicly available 70-component independent component
analysis maps (Smith et al., 2009). The blood oxygenation level-
dependent (BOLD) timeseries were extracted from the 70 brain
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TABLE 2 | Classification performance in percentage.

Method Modality
Accuracy Sensitivity Specificity F1-score

Mean (SD) p-value Cohen’s d Mean (SD) Mean (SD) Mean (SD)

3D CNN Ensemble 72 (4.5) Proposed model 70 (17.0) 72 (15.6) 70 (9.0)

dMRI 64 (2.6) <0.001 2.20 60 (16.0) 67 (14.3) 61 (9.7)

3D CNN sMRI 66 (2.2) <0.001 1.85 64 (11.2) 65 (13.2) 64 (6.4)

rs-fMRI 66 (3.0) 0.002 1.57 62 (15.4) 69 (16.4) 64 (7.2)

BrainnetCNN rs-fMRI 62 (2.9) <0.001 2.67 60 (7.3) 64 (4.3) 61 (4.5)

MsRNN rs-fMRI 62 (2.5) <0.001 2.79 56 (7.7) 68 (8.0) 59 (4.4)

areas by averaging the BOLD signal over all voxels belonging to
each brain area. The timeseries were detrended and demeaned,
and the data were bandpass filtered in the range of 0.01–0.15 Hz
to improve identification of the resting-state fluctuations (Menon
and Krishnamurthy, 2019a). The functional connectivity matrix
was obtained using Pearson correlation with normalization to
z-scores using the Fisher transformation.

The Brainnet CNN model was implemented in Python by
modifying publicly available scripts (Kawahara et al., 2017). The
Brainnet CNN model had an edge-to-edge (E2E) layer with four
filters, followed by a edge-to-node (E2N) layer with four filters,
and finally a dense layer with two neurons. A leaky ReLU non-
linearity with alpha equal to 0.33 was applied to the output
of each layer except the last layer, which was a softmax layer.
Dropout regularization with a rate of 0.8 was used for the edge-
to-node layer and cross-entropy loss was used to optimize the
classification model. The models were trained for 1,000 iterations
using stochastic gradient descent with a momentum equal to 0.9.
The learning rate was set to 0.001 and a decay of 0.0005 was used
for the classificationmodel. No attempt wasmade to optimize the
aforementioned parameters.

2.5. Multi-Scale Recurrent Neural Network
Figure 2 shows a schematic of the MsRNN used in this study.
The timeseries extracted from 70 resting-state networks that were
input into the Brainnet CNN were also used as the input to an
MsRNN. The dynamic correlation connectivity values of 2,415
edges were calculated with a window length of 85 TR and step
size of 5 TR (Menon and Krishnamurthy, 2019a). The MsRNN
utilized three different scales of 32 1D convolutional filters (2
TR, 4 TR, and 8 TR, TR = 0.8 s), one concatenation layer, one
max-pooling layer of kernel size 3, a two-layer stacked gated
recurrent unit GRU with 32 filters which were densely connected
in a feed-forward manner, and an averaged layer that integrated
the whole sequence followed by a dense layer of 32 neurons
before the softmax classification layer. Dropout layers were used
before and after the dense neurons with 50 and 20% dropout,
respectively, and L1 and L2 regularization of 0.01 was used to
avoid overfitting the data. The MsRNN was trained in Python
following Yan et al. (2019) with a mini-batch size of 32, and
included early stopping conditioned on validation accuracy and
a learning rate of 0.001. The binary cross-entropy was used as
the loss function, and the neural network weights were optimized

using the Adam optimizer. No attempt was made to optimize the
aforementioned parameters.

3. RESULTS

3.1. Experiments
To test the efficacy of the multimodal data ensemble, a
ten-fold cross-validation (CV) strategy with maximum voting
was investigated. The Grad-CAM method was applied to the
predicted output, and the results for all the children with
DBDs and TD children were averaged to delineate the global
trends of the important regions involved in the classification. To
benchmark the performance of the ensemble learning approach,
the results were compared to those obtained from: (i) the three
3D CNN models used in the ensemble learning considered
individually; (ii) Brainnet CNN; and (iii) MsRNNmodel.

3.2. Classification Performance
Figure 3 shows typical receiver operating characteristic curves
and Table 2 shows the performance of the different methods
for classifying children with DBDs and TD controls. With
10-fold cross-validation, the multimodal ensemble model with
maximum voting resulted in an average prediction accuracy to
72%. The average prediction accuracies for dMRI, sMRI, and
rs-fMRI single modalities were 64, 66, and 66%, respectively,
compared to 62% with the Brainnet CNN and MsRNN. Table 2
also shows the multimodal ensemble model to have higher
sensitivity, specificity, and F1-score compared to the other
models considered.

Statistical results from two-sample t-tests were used to
compare the accuracy of the classification performance of the
different models. The higher accuracy of the proposed ensemble
model compared to all the other models was significant (highest
p-value was 0.002) with a very large to huge effect size calculated
as Cohen’s d (Sawilowsky, 2009). Overall, as hypothesized, the
classification performance was significantly higher using the
ensemble learning model because it utilized complementary
information from the three different modalities. The results
also indicated the superiority of voxel-based 3D CNN models
compared to network-level models, such as Brainnet CNN
and MsRNN.
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FIGURE 4 | Axial views of voxels primarily contributing to children classification in dMRI image. Green, common to DBD and TD groups; red, DBD group; blue, TD

group. The right side of each image corresponds with the right side of the brain.

FIGURE 5 | Axial views of voxels primarily contributing to children classification in sMRI image. Green, common to DBD and TD groups; red, DBD group; blue, TD

group. The right side of each image corresponds with the right side of the brain.

3.3. Visualization
To visualize the brain regions that primarily contributed to
children classification, Grad-CAM obtained for children with
DBDs and TD children were thresholded at 99 percentile to first

identify voxels with high gradient values. The brain regions that
primarily contributed toward classification were then identified
using the JHU ICBM-DTI-81 white-matter atlas for dMRI image
and the AAL atlas for sMRI and rs-fMRI images. Figures 4–6
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FIGURE 6 | Axial views of voxels primarily contributing to children classification in rs-fMRI image. Green, common to DBD and TD groups; red, DBD group; blue, TD

group. The right side of each image corresponds with the right side of the brain.

show axial views of voxels that primarily contributed to the
classification of children with DBDs and TD children in dMRI,
sMRI, and rs-fMRI images, respectively. Table 3 lists the top five
brain regions in the dMRI images and top ten in the sMRI and
rs-fMRI images of children with DBDs and TD children. Some of
the regions were common to both groups and are listed in green.
On the other hand, regions that were unique to children with
DBDs and TD children are listed in red and blue, respectively.
These unique regions are of interest because their contributions
outweigh the gradient contributions of common regions, hence
are highly class discriminative. Further, these unique regions are
evidence of abnormalities in children with DBDs because the
primarily contributing regions are all different from those in the
TD children.

3.4. 3D CNN Training Information
Time for training the 3D CNN model was similar for
the three modalities. It typically took around 150 min per
fold on Dell Precision 7,910 and 7,920 Tower workstations
with Intel Xeon processors, 128 GB RAM and 1 GB GPU.
Figures S4, S5 show a typical training graph and Precision-Recall
curves, respectively.

4. DISCUSSION

This was the first neuroimaging study to consider the
classification of children with DBDs. This is a challenging
problem because DBDs are often comorbid with other disorders,
such as attention-deficit/hyperactivity disorder, anxiety, and
depression. The multimodal ensemble learning approach for

diagnosing DBDs with voxel-based 3D CNN is a novel
approach and the accuracy of the ensemble model increased
by 6–10% compared to other models. The maximum voting
in the ensemble learning method simulates how clinicians
typically make decisions. Given that brain abnormalities
are heterogeneous, it is naturally advantageous to utilize
information from multimodalities. The maximum voting is
the simplest and easiest ensemble method that can be
applied to 3D CNN models. The maximum voting strategy
also ensures that the results are not biased toward any
single modality, but will take into account all available
information. 3D CNN models, unlike traditional machine
learning methods, such as artificial neural networks or support
vector machines are well suited to include the spatial relations
in the 3D neuroimaging data, which are known to affect
brain functioning. Furthermore, traditional machine learning
methods will overfit the data and reduce the validation
classification accuracy with high-dimensional 3D neuroimaging
training data.

Grad-CAM reveals the discriminant regions in the brain that
contributed to the classification of children with DBDs. As shown
in Table 3, most of these regions corroborate with results from
past studies on abnormal development in children with DBDs.
To mention a few, alterations in the white matter integrity of
the left inferior fronto-occipital fasciculus were suggested as a
potential biomarker of conduct disorder (Graziano et al., 2021).
Similarly, superior longitudinal fasciculus areas were shown to
have differences in diffusion measurements that suggested poor
maturation of structural connections (Hummer et al., 2015) in
children with DBDs. Morphological aberrance of frontoparietal
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TABLE 3 | Brain regions primarily contributing to children classification.

dMRI sMRI rs-fMRI

Superior longitudinal fasciculus L Middle frontal gyrus L Medial superior frontal gyrus L

Superior longitudinal fasciculus L - temporal

part

Superior frontal gyrus L Superior frontal gyrus, dorsolateral L

Inferior longitudinal fasciculus L Angular gyrus L Rectus gyrus L (Zhang et al., 2017; Cao et al., 2018)

Superior longitudinal fasciculus R

(Haney-Caron et al., 2014; Hummer et al.,

2015; Lindner et al., 2016; Sarkar et al., 2016;

Puzzo et al., 2018)

Precentral gyrus L Rectus gyrus R

Superior longitudinal fasciculus R - temporal

part

Superior frontal gyrus R Middle frontal gyrus L (Lu et al., 2015; Zhang et al.,

2015; Cao et al., 2018)

Inferior fronto-occipital fasciculus L

(Haney-Caron et al., 2014; Lindner et al., 2016;

Graziano et al., 2021)

Middle frontal gyrus R (Huebner et al., 2008;

Fairchild et al., 2015)

Medial orbital superior frontal gyrus L

Forceps major (Lindner et al., 2016) Postcentral gyrus L (Hyatt et al., 2012) Medial superior frontal gyrus R (Zhang et al., 2017;

Cao et al., 2018)

Middle temporal gyrus L (Huebner et al., 2008;

Fairchild et al., 2011)

Inferior temporal gyrus L (Zhang et al., 2015; Cao

et al., 2018; Werhahn et al., 2020)

Inferior parietal lobule L (Wallace et al., 2014) Temporal pole superior temporal gyrus L (Cao et al.,

2018)

Middle occipital gyrus R (Huebner et al., 2008) Inferior parietal lobule L (Zhang et al., 2015)

Inferior frontal gyrus, triangular part L (Huebner

et al., 2008; Fairchild et al., 2011; Hyatt et al., 2012)

Postcentral gyrus R (Lu et al., 2015; Cao et al.,

2018, 2019; Lu F. et al., 2020; Werhahn et al., 2020)

Inferior frontal gyrus, opercular part L (Huebner

et al., 2008; Fairchild et al., 2011; Hyatt et al., 2012)

Supramarginal gyrus R (Zhang et al., 2015, 2017)

Inferior frontal gyrus, opercular part R (Hyatt et al.,

2012; Fairchild et al., 2013)

Precentral gyrus R (Lu F. et al., 2020; Werhahn

et al., 2020)

Precentral gyrus R (Hyatt et al., 2012; Fairchild

et al., 2013; Jiang et al., 2015)

Middle temporal gyrus R (Lu et al., 2015; Zhang

et al., 2015; Wu et al., 2017)

Hippocampus R (Waller et al., 2020) Middle frontal gyrus R (Zhang et al., 2015; Cao

et al., 2019)

Inferior frontal gyrus, opercular part R (Zhang et al.,

2015; Cao et al., 2018, 2019)

Inferior frontal gyrus, triangular part R (Zhang et al.,

2015; Cao et al., 2018, 2019)

Superior frontal gyrus R (Zhang et al., 2017; Cao

et al., 2018)

Past studies corroborating with results obtained are shown in parentheses. Green, common to DBD and TD groups; red, DBD group; blue, TD group; L, left hemisphere; R, right

hemisphere.

and temporal gyrus areas can lead to disruptive behavior
(Huebner et al., 2008; Hyatt et al., 2012; Fairchild et al., 2015)
and most of these regions were found to be class discriminative
in this study. Functional connectivity alterations have been
reported for children with DBDs, and class discriminative
regions found using grad-CAM were consistent with many
of the reported regions (Lu et al., 2015; Werhahn et al.,
2020). Functional connectivity values for higher-order cognitive
functional regions such as the middle frontal gyrus and superior
frontal gyrus were also found to be class discriminative (Lu et al.,
2015).

The 72% average accuracy obtained using the ensemble
learning approach is good. Because there are no other studies
on classifying children with DBDs to benchmark against,
some representative neuroimaging studies using deep learning
were reviewed to qualify the multimodal ensemble model

performance. El Gazzar et al. (2019) trained a 1D-CNN on a
publicly available autism dataset with nearly 2000 participants to
classify rs-fMRI images with an accuracy of ∼65%. The accuracy
improved to 66% with a 3D CNN (Thomas et al., 2020). Lu H.
et al. (2020) obtained an accuracy of 61% by applying multi-
kernel fuzzy clustering based on an auto-encoder to classify
participants with autism spectrum disorder (ASD) using the
Autism Brain Imaging Data Exchange (ABIDE) database (nearly
1,050 participants). Using an ensemble approach on ABIDE
data, a classification accuracy of 72.3% was obtained by Khosla
et al. (2019). Similar to DBDs, classification of ASD using
machine learningmethods is also considered challenging because
it varies from person-to-person in severity and combination of
symptoms. Other studies with a classification accuracy >70% are
typically in cases where the sample size is <200 (see Vieira et al.,
2017; Zhang et al., 2020 for an overview). The sample size is an

Frontiers in Neuroinformatics | www.frontiersin.org 9 November 2021 | Volume 15 | Article 742807

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Menon and Krishnamurthy Deep Learning to Predict DBDs

important parameter to consider because a negative relationship
between accuracy and sample size has been noted (Pulini et al.,
2019).

5. LIMITATIONS AND FUTURE
DIRECTIONS

The robustness of the training models could not be determined
by using a leave-site-out cross-validation scheme for the ABCD
Study data that was collected from 21 sites with optimized and
harmonized measures and procedures (Casey et al., 2018). A k-
fold cross-validation was used instead because the number of
children from each site in the study pool was imbalanced. The
number of children with DBDs varied among the different sites,
from a low of 3 to a maximum of 113.

This study investigated the superiority of ensemble learning
for classifying brain disorders. The sample size used here was
relatively large compared to published works in the field, but
it was probably not large enough to take full advantage of
CNN models. The models used in this research employed a
small number of filters with a shallow architecture, and this
decreased the deep learning “black box” depth and not fully
fit the training data; and it reduced the computational burden,
which is advantageous. A wide range of choices were available
to increase the depth of the CNN architecture and optimize
the training parameters. Hyperparameter optimization of the
CNN architecture and training parameters were not performed
because the focus here was to investigate the superiority of
multimodal ensemble learning with simple models. Tuning
the hyperparameters using a grid or random search method,
for example, is computationally intense. A number of different
optimization algorithms have been proposed (Yu and Zhu, 2020);
developing an efficient scheme to optimize the hyperparameters
is a topic for future investigation.

For the Brainnet CNN and MsRNN, there are unexplored
options for selecting an atlas. In this study, a commonly used
functional atlas was considered with few filters similar to the
multimodal CNN. Correlation does not account for higher-
order interactions because it is a first-order transformation (El
Gazzar et al., 2019); therefore, different voxel measurements
for rs-fMRI, such as entropy (Menon and Krishnamurthy,
2019b) and other connectivity measures can be investigated.
The dynamic nature of the functional connectivity was not
analyzed due to the increased computational requirements. Also,
no comparison was performed with linear models because a
voxel-wise analysis of linear models would suffer from the issues
of high dimensionality.

Two strategies that may deserve attention are transfer learning
and data augmentation (Vieira et al., 2017; Zhang et al., 2020).
Transfer learning involves applying features learned from one
dataset to tune another similar dataset. Gong et al. (2021)
successfully applied transfer learning strategy exploiting big data
from UK Biobank (Miller et al., 2016) in the Predictive Analysis
Challenge 2019 dataset, achieving first place. Data augmentation
is a strategy used in computer vision applications to enlarge

the sample size by applying transformations to the data. Data
augmentationmethods are only now being addressed for medical
imaging classification tasks, but further studies are needed for
investigating disorders using 3D brain images with voxel-level
data (Zhang et al., 2020).

6. CONCLUSION

The recent availability of public neuroimaging data, such as
the ABCD Study, UK Biobank (Miller et al., 2016), and
Child Mind Institute-Healthy Brain Network (Alexander et al.,
2017), help researchers to develop novel machine learning
techniques for studying brain diseases and disorders. The
ensemble method with multiple modalities is ideally suited to
model heterogeneity that is typical with brain abnormalities.
3D CNN together with visualization using grad-CAM is a
promising way to identify neuroimaging phenotypes for the
diagnosis of DBDs. Future studies are needed to investigate the
use of other neuroimaging modalities to better understand the
pathophysiology of brain disorders.
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