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Abstract

Promotion of brown adipose tissue (BAT) activity or browning of white adipose tissue 

has shown great potential as anti-obesity strategy in numerous preclinical models. 

The discovery of active BAT in humans and the recent advances in the understanding 

of human BAT biology and function have significantly propelled this field of research. 

Pharmacological stimulation of energy expenditure to counteract obesity has always 

been an intriguing therapeutic concept; with the identification of the specific molecular 

pathways of brown fat function, this idea has now become as realistic as ever. Two 

distinct strategies are currently being pursued; one is the activation of bone fide BAT, 

the other is the induction of BAT-like cells or beige adipocytes within white fat depots, 

a process called browning. Recent evidence suggests that both phenomena can occur in 

humans. Cold-induced promotion of BAT activity is strongly associated with enhanced 

thermogenesis and energy expenditure in humans and has beneficial effects on fat mass 

and glucose metabolism. Despite these encouraging results, a number of issues deserve 

additional attention including the distinct characteristics of human vs rodent BAT, the 

heterogeneity of human BAT depots or the identification of the adipocyte precursors 

that can give rise to thermogenic cells in human adipose tissue. In addition, many 

pharmaceutical compounds are being tested for their ability to promote a thermogenic 

program in human adipocytes. This review summarizes the current knowledge about the 

various cellular and molecular aspects of human BAT as well as the relevance for energy 

metabolism including its therapeutic potential for obesity.

Introduction

There is now a large body of evidence – at least in rodents 
– that the actions of brown adipose tissue (BAT) or the 
browning of white adipose tissue (WAT) can protect against 
obesity and related complications (1, 2, 3). The molecular 
mechanisms that are responsible for the energy-dissipating 
qualities of brown fat have been studied in detail (4, 5). 
Uncoupling protein-1 (UCP-1) has been identified as 
the key factor controlling the thermogenic capacity of 
brown adipocytes (6). UCP-1 disrupts the electrochemical 
gradient across the mitochondrial membrane by 
allowing protons to reenter the mitochondrial matrix. 

Consequently, mitochondrial fatty acid oxidation is 
increased and chemical energy is wasted through heat 
production (thermogenesis) (4, 7). This process has long 
been believed to occur exclusively in brown adipocytes; 
however, in recent years, a large number of studies have 
reported about the emergence of UCP-1-positive cells in 
WAT with very similar properties as BAT cells (3, 8, 9). 
These cells have been termed ‘beige’ or ‘brite’ because 
of their intermediate function between brown and 
white adipocytes. A hallmark of beige adipocytes is their 
potential to take on a thermogenic phenotype in response 
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Abstract

Promotion of brown adipose tissue (BAT) activity or browning of white adipose tissue 

has shown great potential as anti-obesity strategy in numerous preclinical models. 

The discovery of active BAT in humans and the recent advances in the understanding 

of human BAT biology and function have significantly propelled this field of research. 

Pharmacological stimulation of energy expenditure to counteract obesity has always 

been an intriguing therapeutic concept; with the identification of the specific molecular 

pathways of brown fat function, this idea has now become as realistic as ever. Two 

distinct strategies are currently being pursued; one is the activation of bone fide BAT, 

the other is the induction of BAT-like cells or beige adipocytes within white fat depots, 

a process called browning. Recent evidence suggests that both phenomena can occur in 

humans. Cold-induced promotion of BAT activity is strongly associated with enhanced 

thermogenesis and energy expenditure in humans and has beneficial effects on fat mass 

and glucose metabolism. Despite these encouraging results, a number of issues deserve 

additional attention including the distinct characteristics of human vs rodent BAT, the 

heterogeneity of human BAT depots or the identification of the adipocyte precursors 

that can give rise to thermogenic cells in human adipose tissue. In addition, many 

pharmaceutical compounds are being tested for their ability to promote a thermogenic 

program in human adipocytes. This review summarizes the current knowledge about the 

various cellular and molecular aspects of human BAT as well as the relevance for energy 

metabolism including its therapeutic potential for obesity.

Introduction

There is now a large body of evidence – at least in rodents 
– that the actions of brown adipose tissue (BAT) or the 
browning of white adipose tissue (WAT) can protect against 
obesity and related complications (1, 2, 3). The molecular 
mechanisms that are responsible for the energy-dissipating 
qualities of brown fat have been studied in detail (4, 5). 
Uncoupling protein-1 (UCP-1) has been identified as 
the key factor controlling the thermogenic capacity of 
brown adipocytes (6). UCP-1 disrupts the electrochemical 
gradient across the mitochondrial membrane by 
allowing protons to reenter the mitochondrial matrix. 

to various stimuli such as cold, chemical compounds or 
genetic factors. Under basal conditions, beige cells express 
very similar molecular markers as classic white adipocytes 
(with low UCP-1 levels); however, when appropriately 
stimulated, they acquire a thermogenic signature 
with high UCP-1 expression and increased energy 
consumption similar to bone fide brown adipocytes (2, 3, 
10, 11, 12, 13). Despite some mutual features, brown and 
beige adipocytes also have very distinct characteristics. 
For instance, they differ in their anatomical location; 
whereas beige cells emerge within WAT, particularly in 
the subcutaneous depots, classic brown adipocytes reside 
within bone fide BAT typically located in the interscapular 
region in rodents and human infants (3, 13, 14). Another 
difference between brown and beige adipocytes pertains 
to their developmental origin. Classical brown adipocytes 
originate from precursor cells in the embryonic mesoderm 
that express the transcription factor myogenic factor 5 
(MYF5) and can give rise to either brown adipocytes or 
myocytes. The transcriptional co-regulator PR domain 
containing 16 (PRDM16) has been shown to control the 
switch between myogenic vs adipogenic differentiation in 
the MYF5-positive precursors (15, 16). In contrast, beige 
adipocytes are believed to come from a MYF5-negative 
lineage. However, the exact origin of beige adipocytes 
still remains a matter of great debate given that recent 
lineage tracing studies in rodents provide evidence for 
two fundamentally different concepts (3). One is the 
so-called precursor model because it implies that beige 
adipocytes are derived from a distinct progenitor cell 
population by de novo differentiation in response to 
distinct stimuli such as prolonged cold exposure or 
certain genetic modifications. The other concept proposes 
that mature white adipocytes can transdifferentiate into 
beige adipocytes when appropriately challenged and 
has therefore been termed transdifferentiation or more 
accurately interconversion model (8, 17, 18). Given 
the context in which these fate-mapping studies have 
been performed, it is possible that both developmental 
models are correct and that additional factors such as 
the environment (e.g. ambient temperature), the genetic 
background or fat depot specific differences may influence 
the decision how beige cells finally develop. Regardless 
of the precise developmental origin, the induction of 
thermogenically active beige adipocytes in WAT has 
proven to be effective in preventing or reducing obesity 
and diabetes in numerous preclinical models. 

Current research is directed at discovering the various 
molecular cues that induce such a browning program 

in WAT. Besides chronic cold exposure, a number of 
transcription factors and co-regulators have been identified 
to control the browning process. Among those are 
peroxisome proliferator-activated receptor γ coactivator 
1α (PGC-1α), PRDM16, bone morphogenic proteins and 
many more (1). In addition, circulating factors such 
as thyroid hormones, bile acids, natriuretic peptides, 
retinoids, fibroblast growth factor 21 (FGF-21) and various 
cytokines can regulate a thermogenic program in WAT 
(14, 19, 20, 21, 22, 23). Notably, physical exercise has also 
been demonstrated to promote WAT browning in mice 
through a muscle-derived hormone named irisin (24). 
However, it is still a matter of investigation which of these 
pathways are conserved in humans and to what extent 
they contribute to thermogenesis and energy dissipation.

Detection of active human BAT

Despite previous observations in cancer patients 
undergoing positron emission tomography combined 
with X-ray computed tomography (PET/CT) showing 
significant uptake of radioactively labeled glucose 
18F-fluorodeoxyglucose (FDG) in various cervical and 
thoracic fat depots, the metabolic relevance of this tissue 
has long been neglected. In fact, the FDG-positive fat depots 
have been viewed as impediment to diagnostic imaging 
because the signal could obscure tumor visualization 
or introduce false positive results (25, 26). Therefore, 
beta blockers have occasionally been used to repress the 
unwanted FDG uptake (27). However, the interest in these 
FDG-positive fat depots has risen significantly since 2009 
when three prospective PET/CT studies coupled with tissue 
biopsies in human adults showed that these BAT depots 
contained UCP-1-expressing cells and could be activated 
by cold exposure (28, 29, 30). Notably, very early studies 
including one in Finnish outdoor workers had already 
indicated that the occurrence of BAT may be influenced 
by ambient temperatures (31). In line with these early 
observations are newer reports of seasonal variations in 
BAT activity showing negative correlations with average 
outdoor temperatures (32, 33).

In humans, BAT depots are typically located in the 
deep cervical, supraclavicular, parasternal and sometimes 
perirenal regions (28, 29, 30, 34 and Fig. 1). In some rare 
cases of pheochromocytoma, significant FDG uptake has 
also been detected in visceral adipose tissue reflecting a 
browning of this WAT compartment due to the prolonged 
stimulation with endogenous catecholamines (35, 36). 
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However, after surgical removal of the tumor, FDG uptake 
was no longer present in the visceral fat suggesting reversal 
of the browning process (35).

Despite some limitations, FDG-PET/CT evolved as the 
gold standard for imaging human BAT, although a number 
of alternative approaches are currently being investigated. 
Particularly non-radioactive imaging techniques such 
as magnetic resonance imaging (MRI) have recently 
been pursued given that repeated PET/CT studies within 
the same individuals are limited due to the cumulative 
radiation exposure. Chemical-shift-encoded water-fat MRI 
allows to estimate the time-resolved fat fraction, which 
has been helpful to distinguish between WAT and BAT and 
also between active and inactive BAT (37, 38, 39). Other 
research is directed at testing alternative radiotracers 
beyond FDG (40, 41). Given that BAT is primarily utilizing 
fatty acids as fuel substrate, various lipid tracers such as 
11C-acetate and 18F-fluoro-thiaheptadecanoic acid have 
been studied (42). However, FDG-PET/CT continues to 
be the most important platform for the detection and 
quantification of human BAT. In order to standardize the 
protocols for FDG-PET/CT imaging of human BAT and 
to ease comparisons between different studies, an expert 
panel assembled by the National Institute of Health (NIH) 
has established the first guidelines in 2014 (43). The  
‘Brown Adipose Reporting Criteria in Imaging Studies’ 
(BARCIST) provide recommendations for experimental 
parameters and minimum requirements for acquisition, 
analysis and reporting of FDG-PET/CT BAT data in humans.

Beige or brown: does it really matter?

Ever since the discovery of cold-induced BAT in humans, 
researchers have tried to better understand the molecular 
characteristics of this adipose depot. Therefore, biopsy 
studies of FDG-positive neck fat depots have been 
performed to establish the genetic signature of human 
BAT. By comparing the results from human fat biopsies 
with those from mouse fat depots, researchers have tried 
to address the question whether human BAT resembles 
the molecular and functional aspects of bone fide brown 
or beige fat. Currently, there is evidence for both, which 
can in part be explained by the large heterogeneity of the 
human BAT samples studied. Depending upon the exact 
anatomical location, human BAT has been suggested 
to display either a classical brown or a beige signature 
or both (44, 45, 46, 47). Another important limitation 
besides the heterogeneous composition of human brown 

Figure 1
Representative 18FDG-PET/CT scans before (A) and after (B) short-term 
cold exposure. FDG-positive BAT depots are visible at the typical cervical, 
clavicular and paravertebral regions.
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fat depots is the fact that the marker genes that have 
been used for genetic characterization of human BAT 
have previously been identified in mouse tissues (10, 
45, 48). These gene sets may not fully reproduce the 
molecular landscape of human BAT, which makes it more 
challenging to unequivocally distinguish between beige 
and brown fat in humans. In this context, it is noteworthy 
that thermoneutral conditions occur at different ambient 
temperatures in mice and humans that is mice require 
slightly higher temperatures for thermoneutrality. 
Even though it is still a matter of debate which is the 
optimal housing temperature for mice to best mimic 
human thermal conditions, this needs to be considered 
when comparing molecular and functional aspects of 
human and murine brown/beige adipocytes (49, 50, 51). 
Regardless of those experimental caveats, human BAT 
is a metabolically highly active tissue with a respiratory 
capacity up to 50-fold greater than WAT and comparable 
to rodent BAT when normalized to the mitochondrial 
content (52).

Another important issue that has recently drawn a lot 
of interest is the capacity of human WAT to acquire BAT-like 
features. Turning the large amounts of white fat, as seen in 
obese subjects, into energy-dissipating beige fat represents 
an intriguing concept with great potential for therapeutic 
applications. Reports from pheochromocytoma patients 
with FDG-positive intra-abdominal WAT depots 
containing adipocytes with high UCP-1 expression suggest 
that browning of visceral WAT can occur in response 
to catecholamine excess (35, 36, 53, 54). A more recent 
study in intensive care patients found that subcutaneous 
fat can also undergo significant browning under extreme 
conditions. Severe burn injuries led to the emergence of 
UCP-1-positive beige cells within the subcutaneous fat 
with a maximum several weeks after the trauma. This 
observation was linked to the severe adrenergic stress and 
the prolonged elevation of norepinephrine levels seen 
after such burn injuries (55). Likewise, a case study in a 
patient with papillary thyroid carcinoma found that TSH-
suppressing treatment with levothyroxine (T4) induced 
BAT activity and browning of subcutaneous adipose tissue 
(56). The relevance of thyroid hormones for adipose 
browning in humans is also supported by findings that 
circulating free T4 concentrations significantly correlated 
with gene expression of classic brown fat markers in the 
subcutaneous WAT of 163 middle-aged obese men and 
women (57). Whether browning of WAT can also be 
induced under controlled pharmacological conditions 
and whether that results in increased energy wasting and 
body weight loss in humans is yet to be shown.

Function of human BAT: relevance for 
energy metabolism

Soon after the detection of cold-induced BAT in human 
adults in 2009, numerous follow-up studies confirmed that 
activated BAT contributed to non-shivering thermogenesis 
and oxidative metabolism in humans. Energy dissipation 
is significantly increased with BAT activation and was 
reported to account for up to 15% of resting energy 
expenditure in men (58). Chronic cold exposure (2 h daily 
for six weeks) resulted not only in enhanced BAT activity 
and cold-induced thermogenesis but also in a significant 
loss of body fat mass. The reduction in fat mass was 
greater in subjects with higher BAT activity and correlated 
with the degree of cold-induced thermogenesis (59). Both, 
glucose and fatty acid uptake contribute to increased 
BAT oxidative metabolism in humans (42, 60, 61, 62). 
Using hyperinsulinemic–euglycemic clamp studies, BAT 
activation was shown to improve whole-body glucose 
disposal and insulin sensitivity confirming its relevance 
for total energy metabolism (58, 61). However, rapidly 
elevated BAT radiodensity after short-term cold exposure 
led to the hypothesis that acute BAT thermogenesis is 
fueled predominantly by fatty acids hydrolyzed from 
intracellular triglycerides. This hypothesis has been tested 
in a recent study using 11C-acetate and 18F-FDG-PET/CT in 
combination with acute cold exposure and oral nicotinic 
acid, an inhibitor of intracellular triglyceride lipolysis 
(63). Not only did nicotinic acid administration suppress 
cold-induced BAT oxidative metabolism and glucose 
uptake in healthy men, but it also led to an increase in 
skeletal muscle shivering intensity. These results suggest 
that intracellular triglyceride lipolysis is likely essential for 
BAT thermogenesis and provide experimental evidence for 
a reciprocal role of non-shivering thermogenesis in BAT 
and shivering thermogenesis in skeletal muscle. In recent 
years, the importance of BAT as a major site for lipoprotein 
metabolism has been increasingly appreciated thanks 
largely to mouse models that demonstrated that cold-
activated BAT can effectively clear plasma triglycerides 
predominantly through the actions of lipoprotein 
lipase and CD36 (64, 65, 66). Moreover, BAT activation 
mitigates hypercholesterinemia and atherosclerotic 
plaque formation (66, 67), suggesting a potential 
cardioprotective role, possibly independent of increased 
energy expenditure and weight loss. Whether this concept 
holds true for cardiovascular disease in humans is yet to 
be shown. Besides cardiovascular protection, another 
important question from a therapeutic standpoint is, 
whether active BAT can be recruited in obese and/or 
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type 2 diabetic subjects in order to promote weight loss 
and/or improve glucose metabolism. Although an inverse 
relationship between BAT activity and body mass or BMI 
has been repeatedly reported (68, 69), short-term cold 
acclimation (up to 6 h per day over 10 days) was capable to 
recruit active BAT in obese subjects as determined by FDG 
uptake in PET/CT scans (70). Interestingly, the recruitment 
of BAT during cold acclimation was not associated with 
any elevation in energy expenditure, which may be 
a consequence of the modest increase in BAT activity 
observed in this study. However, when comparing BAT-
positive with BAT-negative subjects, there is a plethora 
of evidence for higher cold-induced thermogenesis, 
enhanced energy expenditure and improved whole-body 
glucose homeostasis in those with active BAT irrespective 
of the body mass (58, 59, 68, 69). A hyperinsulinemic–
euglycemic clamp study in overweight men with type 2 
diabetes found that 10-day cold acclimation significantly 
enhanced BAT activity and improved whole-body insulin 
sensitivity by 43%, which was mainly driven by increased 
insulin-stimulated glucose disposal (61). Interestingly, 
enhanced skeletal muscle glucose uptake due to elevated 
GLUT4 translocation seemed to account for majority of the 
glycemic effects seen in this study, raising the possibility 
that activated BAT may release endocrine factors that 
engage other metabolic tissues such as skeletal muscle. 
Recent evidence suggests that BAT is indeed a source of 
hormone production and that these BAT-derived factors 
may play a role in systemic energy metabolism.

BAT as a secretory organ

In addition to its function as a thermogenic organ, BAT 
has recently been identified as a tissue with high secretory 
capacity. Accumulating evidence from preclinical 
studies suggests that molecules released from BAT differ 
significantly from those released from WAT. The so-called 
BAT adipokines or BATokines can act in an autocrine, 
paracrine or endocrine fashion (71). Most of the autocrine 
and paracrine molecules such as nerve growth factor, 
fibroblastic growth factor 2 and vascular endothelial 
growth factor-A promote BAT growth, vascularization, 
innervation and blood flow, processes that are important 
for BAT recruitment during thermogenic stimulation (71). 
Strong evidence for BAT as an endocrine organ came 
from BAT transplantation studies in mice and rats. The 
transplantation of BAT into diabetic or diet-induced obese 
mice significantly improved glycemic conditions, WAT 

inflammation and systemic adipokine profiles (72, 73, 74). 
Secretion of insulin-like growth factor 1 has been proposed 
as one endocrine mechanism for the antidiabetic actions 
of transplanted BAT (72). Morphological and molecular 
studies from transplanted BAT revealed larger adipocyte 
size and decreased thermogenic gene expression in 
comparison to endogenous BAT (73). These findings 
suggested that the beneficial effects of BAT transplantation 
may not primarily be driven by the intrinsic thermogenic 
activity but by endocrine factors released from the 
transplant. Additional support for this concept came from 
a study showing that the favorable metabolic effects of 
BAT transplantation were lost when interleukin-6 (IL-6)-
deficient mice were used as donors, suggesting IL-6 as 
another endocrine mediator of transplanted BAT (74). 
IL-6 has previously been identified to be secreted form 
activated brown adipocytes (75). The role of IL-6 as a classic 
pro-inflammatory cytokine has to be reconsidered in light 
of recent data that IL-6 signaling can promote insulin 
sensitivity in skeletal muscle and adipose tissue of mice 
(76, 77). The importance for BAT as secretory organ has 
also been highlighted by a recent report identifying BAT as 
a source for circulating exosomal miRNAs, which function 
as negative regulators of translation. Transplantation of 
BAT into mice lacking the miRNA-processing enzyme 
Dicer restored the levels of numerous circulating miRNAs 
that are associated with an improvement in glucose 
tolerance (78). Interestingly, serum concentrations of the 
exosomal miRNA miR-92 have been reported to correlate 
with BAT glucose uptake in human PET/CT studies, 
suggesting miRNAs as potential new biomarkers for BAT 
activity (79). In this context, a new class of lipids has been 
identified, that is released from tissues and acts locally 
or systemically on energy turnover, glucose metabolism 
and inflammatory pathways (80, 81). One of these 
so-called lipokines is the BAT-derived 12,13-dihydroxy-
9Z-octadecenoic acid (12,13-diHOME), which is increased 
in response to cold exposure and promotes BAT activation 
in a feedforward mechanism (82). In search for new BAT 
biomarkers, targeted metabolomics recently showed that 
the lipid lysophosphatidylcholine-acyl C16:0 is strongly 
associated with BAT activity in humans as determined by 
PET/CT scans (83). These findings highlight the promising 
developments in the identification of novel non-invasive 
markers for the prediction of metabolically active BAT 
in humans.

Another circulating molecule that has lately 
received a lot of attention is fibroblast growth factor 
21 (FGF21), which is mainly secreted by the liver but 
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also by activated brown adipocytes (84). FGF21 acts in 
concert with the cofactor β-Klotho, which is required 
for the interaction with FGF receptors (85). FGF21 
regulates energy metabolism through multiple pathways 
including enhanced browning of WAT and accelerated 
lipoprotein catabolism (23, 65). In addition, FGF21 alters 
food preferences through hypothalamic signals that is 
decreased desire for sweets and consequently reduces 
carbohydrate intake in mice (86, 87). As a result, FGF21 
actions counteract diet-induced obesity, hyperglycemia 
and hyperlipidemia in various animal models. Notably, 
FGF21 is also expressed in human BAT and cold exposure 
increases circulating concentrations of FGF21 in humans, 
possibly as a reflection of enhanced BAT activation (88). 
In isolated human brown adipocytes, FGF21 and the 
muscle-derived hormone irisin have additive effects on 
norepinephrine-stimulated thermogenesis (89). Clinical 
trials are currently underway to test the efficacy and safety 
of FGF21 analogs in human metabolic disease. Initial data 
on long-acting FGF21 analogs in overweight/obese type 
2 diabetic subjects demonstrated a significant decrease 
in body weight together with improved plasma lipid 
profiles and elevation of circulating adiponectin levels. 
However, blood glucose levels were not significantly 
reduced, whereas markers of bone turnover increased in 
a dose-dependent manner, which tempered the previous 
enthusiasm of FGF21-based treatment for metabolic 
disease (90, 91).

Pharmacological activation of human BAT 
and outlook

Given the persuasive evidence from various preclinical 
and clinical studies that the promotion of BAT function 
has beneficial effects on total energy metabolism, 
pharmacologic activation of human BAT holds great 
promise as a therapeutic concept in metabolic disease. 
Among pharmacological substances, β3-agonists are well 
known to induce UCP-1 expression and thermogenesis in 
vivo in rodents and in vitro in isolated brown adipocytes 
(4, 92, 93, 94). Although initial attempts with β3-agonists 
have failed to increase BAT activity in humans (95), 
a recent study showed that mirabegron, a β3-agonist 
approved for the treatment of overactive bladder, activates 
BAT and elevates energy expenditure in humans similar to 
cold exposure (96). However, the potential cardiovascular 
side effects of β3-agonists may limit their broad use in 
humans. Non-pungent capsaicin analogs (capsinoids) 

may represent an alternative therapeutic approach. 
Capsaicin enhances thermogenic gene expression 
and browning of WAT in mice through stimulation of 
transient receptor potential channels (97). Moreover, 
a six-week treatment with oral capsinoids increased 
cold-induced thermogenesis and energy expenditure in 
subjects with previously low or undetectable BAT activity. 
However, the effects were not sufficient to induce a loss 
of body weight or fat mass (59). In contrast, treatment 
with the antidiabetic agent liraglutide, which acts as an 
agonist at the glucagon-like peptide-1 (GLP-1) receptor 
results in significant weight loss in obese subjects (98). 
GLP-1-mediated weight loss is mainly driven by delayed 
gastric emptying and appetite suppression (99). However, 
a recent study found that energy expenditure is also 
increased in liraglutide-treated obese patients with type 
2 diabetes (100). Interestingly, intracerebral liraglutide 
administration in mice stimulated BAT thermogenesis 
and browning of WAT through hypothalamic adenosine 
monophosphate-activated protein kinase action (100). 
Whether GLP-1 agonist mediated weight loss seen in 
humans also involves altered BAT activity is still a matter 
of investigation. The bile acid chenodeoxycholic acid 
(CDCA) on the other hand has already been demonstrated 
to increase BAT activity in mice and humans (101, 102). 
Ingestion of 15 mg/kg CDCA for two subsequent days 
significantly stimulated BAT FDG uptake in young healthy 
women and CDCA treatment in isolated human brown 
adipocytes enhanced mitochondrial respiration (102). 
In addition to the activation of the nuclear farnesoid X 
receptor, bile acids signal through the G protein-coupled 
receptor TGR5, which leads to thermogenic activation 
of brown adipocytes through the actions of intracellular 
thyroid hormones (103). Other intriguing drug targets are 
bone morphogenic proteins (BMPs), in particular BMP7 
and BMP8b, which are important for brown adipocyte 
development, the thermogenic response of BAT and the 
browning of WAT (104, 105, 106). Central actions of 
BMP8b also include increased sympathetic outflow to 
BAT, which resulted in weight loss in mice (105).

Although these early findings are very promising, 
more studies will be needed to assess the potency of 
these factors to recruit brown or beige adipocytes in 
humans. Current research is also directed at identifying 
the cell population in human fat depots that can undergo 
efficient thermogenic transformation in response to 
pharmacological stimuli. Even if new therapeutic 
interventions will achieve successful expansion and 
activation of BAT in humans, it remains to be seen whether 
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persistent weight loss and improved glucose metabolism 
will be the consequence. Given the tight control of energy 
balance under physiologic conditions, it is possible that 
increased appetite and food intake will compensate for 
the energy wasting induced by BAT activation. Hence, 
a combined intervention targeting both, adipose tissue 
thermogenesis and central appetite regulation, may 
represent the most effective therapeutic approach in the 
fight against obesity and related metabolic complications.
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persistent weight loss and improved glucose metabolism 
will be the consequence. Given the tight control of energy 
balance under physiologic conditions, it is possible that 
increased appetite and food intake will compensate for 
the energy wasting induced by BAT activation. Hence, 
a combined intervention targeting both, adipose tissue 
thermogenesis and central appetite regulation, may 
represent the most effective therapeutic approach in the 
fight against obesity and related metabolic complications.
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