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Integrating transcription factor occupancy
with transcriptome-wide association analysis
identifies susceptibility genes in human
cancers

Jingni He1,2, Wanqing Wen 3, Alicia Beeghly3, Zhishan Chen3, Chen Cao1,
Xiao-Ou Shu3, Wei Zheng 3, Quan Long 1,4,5,6,7 & Xingyi Guo 3,8

Transcriptome-wide association studies (TWAS) have successfully discovered
many putative disease susceptibility genes. However, TWAS may suffer from
inaccuracy of gene expression predictions due to inclusion of non-regulatory
variants. By integrating prior knowledge of susceptible transcription factor
occupied elements, we develop sTF-TWAS and demonstrate that it outper-
forms existing TWAS approaches in both simulation and real data analyses.
Under the sTF-TWAS framework, we build geneticmodels to predict alternative
splicing and gene expression in normal breast, prostate and lung tissues from
the Genotype-Tissue Expression project and apply these models to data from
large genome-wide association studies (GWAS) conducted among European-
ancestry populations. At Bonferroni-corrected P <0.05, we identify 354 puta-
tive susceptibility genes for these cancers, including 189 previously unreported
in GWAS loci and 45 in loci unreported by GWAS. These findings provide
additional insight into the genetic susceptibility of human cancers. Addition-
ally, we show the generalizability of the sTF-TWAS on non-cancer diseases.

Transcriptome-wide association studies (TWAS)1,2 have identified
hundreds of putative susceptibility genes for many human diseases
including cancers2–7. Unlike conventional genome-wide association
studies (GWAS) and expression quantitative trait loci (eQTL)
analyses8,9, TWAS evaluate associations of disease risk with the pre-
dicted expression level of a given gene using aggregated information
frommultiple cis-genetic variants. TWAS may detect more genes than
other aggregation-basedGWASmethods and facilitate identificationof
additional associations that have been missed by GWAS10; however, a
potential caveat is that gene expression prediction models may be

jeopardized by inclusion of non-regulatory variants or variants in
nonspecific regulatory elements (i.e., occupied by non-transcribed
transcription factors [TFs] in target cells and tissues),whichmaynot be
relevant to disease-driving states11–14. Thus, the accuracy of prediction
models based on cis-genetic variants couldbe compromised if variants
occur in non-regulatory regions or if they disrupt binding sites of non-
transcribed TFs in target tissues. Furthermore, some putative sus-
ceptibility genes may be non-causal, owing to pleiotropic effects of
genetic variants and/or co-regulated gene expression, which is driven,
at least in part, by linkage disequilibrium (LD) among the variants11–13.
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Previous TWAS approaches, such as PrediXcan1 and FUSION2, show
comparable overall performance in susceptibility gene discovery,
while they have not integrated prior disease-specific regulatory infor-
mation. A recent approach, EpiXcan14, integrates non-tissue-specific
epigenome information, however, it might introduce overfitting
through automatic learning due to lack of mechanistic support.
Therefore, our approaches that integrate prior knowledge of disease-
specific regulatory elements into gene expression prediction are
essential to improve the detection of disease susceptibility genes.

Genetic variations of TF-DNA bindings are increasingly considered
as key factors of cancer susceptibility. Core master TFs transcribe in a
cell type-specific manner and co-occupy cis-regulatory elements con-
trol gene expression programs, which are known to establish and
maintain cell identity15–19. Identifying TFs whose DNA bindings are
altered by risk-associated genetic variations and their controlling genes
will improve our understanding of transcriptional dysregulation in
human diseases, including cancers20–23. Genetic fine-mapping studies,
together with functional experiments, have suggested that cis-
regulatory risk variants may disrupt DNA binding affinities of TFs, par-
ticularly for knownmaster regulators,whichplay a key role inmediating
cancer risk24–31. Studies of hormone-regulated cancers, such as breast
cancer andprostate cancer, have shown that pathogenic dysregulations
of gene expression are mediated through risk variants altering binding
affinities ofmasterTFs, such as FOXA1, ESR1, andAR. Inour recentwork,
we comprehensively evaluated the association of genetic variations of
TF occupancies with breast cancer risk using generalizedmixedmodels
and found that risk-associated (susceptible) TFs, such as master reg-
ulator FOXA1, significantly contributed to breast cancer susceptibility32.
We further demonstrated that TWAS using only putative regulatory
variants occupied by the susceptible TFs, detected additional genes
associated with breast cancer risk32. However, the impact of the prior
knowledge of TF occupancies used for TWAS and the extent of
improvement of the overall performance comparing with existing
TWAS approaches have not been thoroughly evaluated. It remains
unclear whether this analytical strategy could improve identification of
additional associations for other common cancers, such as prostate and
lung cancers, for which comprehensive epigenetic, gene expression,
and large-scale publicly available GWAS data have been available.

In this work, we proposed an approach by integrating prior
knowledge of susceptible TF (sTF) -occupied cis-regulatory elements
(STFCREs) with TWAS (sTF-TWAS) in an effort to improve susceptible
gene discovery. We conducted comprehensive analyses with both
simulation and real data and demonstrated that sTF-TWAS out-
performed the existing TWAS approaches (i.e., S-prediXcan, Fusion,
EpiXcan) in detectionof cancer riskgenes.AlthoughTWASapproaches
have been focusing mostly on gene expression, genetically predict
alternative splicing has been largely unexplored in the associationwith
human cancers. To this end, we conducted sTF-TWAS to analyze both
gene expression and alternative splicing with data generated from
multiple normal tissues from the Genotype-Tissue Expression (GTEx)
and large-scale GWAS data for cancers of breast (N = 247,173), prostate
(N = 140,306), and lung (N = 85,716) to search for susceptibility genes
and loci of these common cancers (Supplementary Data 1).

Results
Overview of the analytic framework developed
To integrate prior knowledge of STFCREs with TWAS, we prioritized
putative regulatory variants located in STFCREs based on our recently
established analytical framework for breast cancer32 (Fig. 1A, B). We
first regressed Chi-squared values of genetic variants reported in the
GWAS summary data (i.e., associations with cancer risk) on the TF
binding status of the variants from TF ChIP-seq binding profiling in
target cancer-related cells (1 for a variant located in a TF binding site, 0
otherwise) using generalized mixed models32. We then prioritized
putative regulatory variants located in STFCREs based on the ranks of

the significance of the regression coefficients for the variants (Fig. 1B;
Supplementary Data 2; Methods). We selected the top 50K, 100K,
200K and 500K variants respectively to conduct four sets of analyses.
In each set of analyses, we built genetically predicted gene expres-
sion in normal tissues with the GTEx reference data (Methods) using
only the selected putative regulatory variants from the above set,
respectively. We provided evidence that each set has better perfor-
mance of gene expression predictions than comparably sized set of
randomly selected variants (Fig. 1C; Methods). Finally, we conducted
TWAS for each set by applying the gene expression prediction models
to GWAS summary statistics for breast, prostate, and lung cancers to
search for cancer susceptibility genes and loci (Methods).

Simulation study
We conducted simulations to evaluate the improvement of gene
expression predictionmodels in statistical power using the selected top
putative regulatory variants compared to regular TWAS (i.e.,
S-PrediXcan33) using all cis-variants or randomly selected variants of the
comparable number (Methods). We first verified that the type-I error of
sTF-TWAS protocol was under control under the null hypothesis (Sup-
plementary Fig. 1).We then tested the following two scenarios: causality
where genotypes cause a phenotype via the intermediary of gene
expression and pleiotropy where genotypes cause a phenotype and
expression independently (Methods). In both scenarios, we observed
that sTF-TWAS is superior to regular TWAS using all cis-variants or
randomly selected variants. The statistical power of sTF-TWAS
increased proportionally to the heritability of both gene expression
and phenotype traits, and decreased with increased numbers of causal
variants (Fig. 1D, E; Supplementary Fig. 2 and Supplementary Fig. 3),
which is consistent with our previous finding10. These results provide
strong evidence that our sTF-TWAS approach by incorporating prior
knowledgeofSTFCREs is statisticallymorepowerful than regularTWAS.

sTF-TWAS outperforms existing TWAS approaches
Wefurther compared theperformanceof sTF-TWASwith existingTWAS
approaches using summary statistics data for breast, prostate and lung
cancers (Methods).We showed that our approach detectedmore genes
than those from existing TWAS approaches (i.e., S-PrediXcan, EpiXcan
and Fusion) under multiple P-value cutoffs; the number of predicted
genes (with a cutoff of R2 >0.01) for each set (i.e., the top 50K, 100K,
200K, 500K variants) was comparable or slightly less than those from
existing approaches (Fig. 2A; Supplementary Fig. 4; Supplementary
Data 3; Supplementary Data 4 and Supplementary Data 5). In analyses
for breast cancer using the four sets of selected regulatory variants, we
identified 62 (for 50K variants), 66 (for 100K variants), 63 (for 200K
variants) and 66 (for 500K variants) putative susceptibility genes using
sTF-TWAS, at a Bonferroni-corrected P<0.05, which were more than
those identified by S-PrediXcan (52 genes), EpiXcan (41 genes) and
Fusion (39 genes) (Fig. 2B; Supplementary Data 3). We conducted
similar comparisons for prostate and lung cancers and demonstrated
consistent trends of more genes identified by our approach compared
to other existing approaches (Fig. 2B; Supplementary Data 4; Supple-
mentary Data 5). Of note, we observed a high proportion of overlap
among the identified genes using the four selected sets of variants,
suggesting the robustness of sTF-TWAS to the selection of regulatory
variants with different prioritization criteria (Fig. 2B). For the down-
stream analyses, we only focused on genes identified from sTF-TWAS
using the set with 50K variants of the highest prioritization.

We next performed functional annotation for the genes identified
by sTF-TWAS and other approaches with known cancer-related genes
(Methods). In the analyses for breast cancer, we found that more
(n = 26 for sTF-TWAS [50K] vs. n = 14 for S-PrediXcan, n = 10 for
EpiXcan, and n = 14, for Fusion) and a higher proportion (61.9% for sTF-
TWAS [50K] vs. 41.2% for S-PrediXcan, 45.5% for EpiXcan, and 53.8% for
Fusion) of breast cancer-related genes were detected by our approach
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than those identifiedby S-PrediXcan, EpiXcan, andFusion, respectively
(Methods, Fig. 2C, D). In the analyses for prostate and lung cancers, we
also found that genes identified by sTF-TWAS had an overall compar-
able or higher proportion being cancer related than other three
approaches (Fig. 2C, D).

We compared genes that were identified by sTF-TWAS and other
TWAS approaches for breast, lung, and prostate cancers. We found

that half of genes (31 genes) identified by sTF-TWAS were missed by
other approaches (Fig. 3A) for breast cancer. Similarly, high pro-
portions of genes identified by sTF-TWAS were missed by other
approaches for prostate and lung cancers (Fig. 3A). These results
suggest that sTF-TWAS could be powerful in uncovering additional
susceptibility genes that might have been missed out by other
approaches.

Fig. 1 | Overview of the Developed Analytical Framework. A An illustration of a
regulatory variant in strong LD with a GWAS-identified risk variant that disrupts
DNA binding affinities of FOXA1, and consequently, alters expression of suscept-
ibility genes. Our previous work established transcription factors (TFs)-occupied
elements using generalized mixed models to estimate associations between Chi-
squared values (i.e., to measure associations between variants and breast cancer
risk) and TF binding status of genetic variants located in TF binding sites32. B Flow
chart showing four sets of prioritized TF-occupied regulatory variants (i.e. 50 K,
100 K, 200 K, 500 K), which were ranked based on established TF-occupied

elements associated with breast cancer risk (i.e., beta coefficients). C Scatter plots
showing comparisons of prediction performance (R2) between prioritized reg-
ulatory variants and randomly selected variants, across four variant sets of interest.
A trend line was presented using a linear regression analysis of prediction perfor-
mance. D and E Bar chart showing the power comparison of protocols under
simulated causative (D) and pleiotropy scenario (E). Power is indicated on the
y-axis. Each panel showed the result under an additive genetic architecture with a
given expression heritability and local trait heritability. The total number of con-
tributing genetic variants is 10 and 20 in left and right panels, respectively.
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Discovery of putative susceptibility genes for breast, lung and
prostate cancers
We further analyzed alternative splicing using sTF-TWAS (sp-sTF-
TWAS) for breast, lung and prostate cancers with the set of 50 K
putative regulatory variants (Methods). We compared our findings
from both sTF-TWAS and sp-sTF-TWAS with those reported from

previous TWAS, eQTL, or fine-mapping studies for breast4,8,31,32,34,35,
prostate3,9,36,37 and lung cancers9,38.

For breast cancer, we identified 62 and 85 putative susceptibility
genes from sTF-TWAS and sp-sTF-TWAS respectively (Fig. 3B; Sup-
plementary Data 6; Supplementary Data 7). Combing the results from
both analyses, we identified a total of 139 putative breast cancer
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Fig. 2 | Comparison of gene-trait associations between sTF-TWAS conducted in
sets of variants with other TWAS approaches (S-PrediXcan, EpiXcan and
Fusion) for breast, prostate and lung cancer. A Bar chart showing the number of
genes identified fromsTF-TWAS conducted for each setof variants andother TWAS
approaches under various P-value cutoffs (i.e., P < 1e-05, 1e-06, 1e-07, and 1e-08).
The P-values are derived from the Z score tests in these TWAS analyses (two-sided).
BHeatmap showing the number of genes identified from sTF-TWAS conducted for
each set of variants and other TWAS approaches at a Bonferroni-corrected P <0.05.

The number of overlapping genes identified from sTF-TWAS between two sets is
presented in each box; the color from white to dark blue denotes increased over-
lapping genes. C Bar chart showing a comparison between the total number of
target cancer related genes among sTF-TWAS identified genes from each set and
other TWAS approaches. D Bar chart showing a comparison of the proportion
(success rate) of target cancer related gene among TWAS-identified genes from
each set of interest and other TWAS approaches, relative to the total number of
genes identified from the set.
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susceptibility genes, including 17 genes at 15 loci previously unre-
ported by GWAS (more than 1Mb away from any previous GWAS-
identified risk variants for breast cancer) and 86 at GWAS loci but
previously unreported (Fig. 4A, B; Table 1; Supplementary Data 8).

For prostate cancer, we identified 62 and 96 putative suscept-
ibility genes from sTF-TWAS and sp-sTF-TWAS respectively (Supple-
mentary Fig. 5; Supplementary Data 6; Supplementary Data 7).
Combing the results from both analyses, we identified 150 putative
prostate cancer susceptibility genes, including 12 genes at 11 loci

unreported by GWAS and 73 at GWAS loci but previously unreported
(Fig. 4A, B; Table 2; Supplementary Data 9).

For lung cancer, we identified 33 and 40 putative susceptibility
genes from sTF-TWAS and sp-sTF-TWAS, respectively (Supplementary
Fig. 6; Supplementary Data 6; Supplementary Data 7). Combing the
results from both analyses, we identified 65 putative lung cancer sus-
ceptibility genes, including 16 genes at 7 loci unreported by GWAS and
30 genes at GWAS loci but previously unreported (Fig. 4A, B; Table 3;
Supplementary Data 10).
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Functional evidence for identified putative cancer suscept-
ibility genes
We examined whether our identified putative cancer susceptibility
genes were overrepresented in predisposition genes39,40, cancer
drivers41,42, or Cancer Gene Census (CGC) genes43 (Methods). We
conducted the enrichment analysis for our identified genes based on a

statistical test under the hypergeometric distribution. We showed that
the identified genes were significantly enriched as known cancer-
related genes with P = 9.4 × 10−11 for breast cancer, P = 8.2 × 10−8 for
prostate cancer and P = 6.2 × 10−4 for lung cancer (Methods). For breast
cancer, we found a suggested breast cancer predisposition gene
(RAD50), five cancer driver genes (IGHMBP2, ATXN3, KANSL1, IL6ST and
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MSH3) and five CGC (PPFIBP1, IL6ST, SS18, TRIP11 and TFG) genes
among the previously unreported genes, and four cancer driver genes
(CASP8, AKAP9, ESR1 and MEF2B) and four CGC gene (CASP8, MUC1,
AKAP9 and ESR1) among the previously reported genes (Fig. 4C). For
prostate cancer, we found four cancer driver gene (IGHMBP2, STK19,
TEAD3 and ARL16) and four CGC genes (TRRAP, CARS, HOXA9 and
POU5F1) among the previously unreported genes, and two cancer
driver genes (CCND1 and ZFP36L2) and three CGC genes (TMPRSS2,
SUFU and CCND1) among the previously reported genes (Fig. 4C). For
lung cancer, we found three cancer driver genes (HLA-A, CASP8 and
LEMD2) and twoCGC genes (HLA-A and CASP8) among the unreported
genes, and one cancer driver gene (HLA-B) and one CGC gene
(FGFR1OP) among the previously reported genes (Fig. 4C).

We also explored the functional roles of the identified putative
susceptibility genes using CRISPR-Cas9 screen silencing data to
investigate gene essentiality on cell proliferation in breast (n = 45),
prostate (n = 8), and lung (n = 130) cancer relevant cell lines (Methods).
Using a cutoff of median CERES Score <−0.5 in the above cells, fol-
lowing the previous literature44,45, our results showed essential roles in
breast cancer cell proliferation for ten previously unreported putative
susceptibility genes (NSF, NRDE2, BET1, UBQLN4, KANSL1, MST1,
MRPL21, MSTO1, FAM91A1 and NASP) and one previously reported
genes (SUGP1) (Fig. 4D); five unreported putative susceptibility genes
(RPP21, CHMP7, TRRAP, CIAPIN1 and DPY19L2) and six previously
reported genes (NOL10, WTAP, BRI3, USP39, SNRPC and CCND1) for
prostate cancer (Fig. 4E); and six unreported putative susceptibility
genes (PFDN6, MRPL36, PPP1R11, LST1, DDX39B and EXOC3) and one
previously reported gene (PSMA4) (Fig. 4F) for lung cancer.

The generalizability of the sTF-TWAS on non-cancer diseases
To evaluate the generalizability of our sTF-TWAS framework, we
conducted additional analysis for brain disorders including schizo-
phrenia (SCZ), Alzheimer’s disease (AD), and autism spectrum dis-
order (ASD). We first used generalized mixed models to estimate an
association between the Chi-squared values reported from theGWAS
and TF binding status of genetic variants (see Eq. (1) in theMethods).
We identified 7 significant TFs for SCZ, 10 TFs for AD and 8 TFs for
ASD, respectively. Similar to our sTF-TWAS analysis in cancers, we
used the top 50 K prioritized putative regulatory variants to predict
gene expression for each disease based on data generated in brain
cortex tissues from 205 individuals from the GTEx (Methods). We
applied the prediction models into GWAS data for each of the three
diseases to identify putative susceptibility genes. For comparison, we
also conducted S-PrediXcan using all cis-variants for each of the
diseases. We found that sTF-TWAS identified more putative sus-
ceptibility genes than S-PrediXcan for each disease (Supplementary
Fig. 7). Using SCZ as an example, we identified 20 putative suscept-
ibility genes from sTF-TWAS (50K) at a Bonferroni-corrected
P < 0.05, while only three genes were identified by S-PrediXcan
(Supplementary Data 11). These results suggest that our sTF-TWAS
approach can be applied to improve susceptibility gene discovery in
non-cancer diseases.

Discussion
In this study,wedeveloped the sTF-TWASapproachwith integrationof
prior information of STFCREs to improve association detections in
human cancers. We demonstrated that our approach improved the
detection of cancer susceptibility genes with increased statistical
power and accuracy over other existing TWAS approaches. Under sTF-
TWAS framework, we identified 354 putative susceptibility genes,
including 189 at GWAS loci but previously unreported and 45 at loci
unreported by GWAS for breast, prostate and lung cancers. These
findings provide additional insight into the genetic susceptibility of the
three common cancers. In addition, prior information of STFCREs
could be integrated into other extensions of TWAS, such as multiple-
tissue approaches (UTMOST46 and S-MultiXcan47), or variance

Fig. 4 | Putative susceptibility genes identified by sTF-TWAS and sp-sTF-TWAS.
AVenndiagrams showed thenumberof putative susceptibility genes commonly or
uniquely identified by sTF-TWAS and sp-sTF-TWAS. B Bar chart showed total
identified putative susceptibility genes combined from sTF-TWAS and sp-sTF-
TWAS for breast, prostate and lung cancer. C Cancer driven genes or Cancer Gene
Census (CGC) were highlighted for putative susceptibility genes identified in our
study (yes denoted by “+“, otherwise denoted by “-“; “*” referring to a predisposi-
tion gene). Left grey box denoted cancer driven genes, and right grey box denoted
CGC genes. D-F Boxplot showing effects of putative susceptibility genes on cell

proliferation using experimental data from DepMap 21Q4 Public (left and right
panel for sTF-TWAS and sp-sTF-TWAS, respectively). Gray dashed box denoted
putative susceptibility genes that showed evidence of essential roles in cell pro-
liferation based on a cutoff of median CERES values < −0.5 for D) Breast cancer
(sample size: 45 cell lines), E) Prostate cancer (sample size: 8 cell lines), and F) Lung
cancer (sample size: 130 cell lines). In the boxplots shown in these figures, the
whiskers denote the range; the boxes denote the interquartile range; the middle
bars in denote the median.

Table 1 | sTF-TWAS and sp-sTF-TWAS in breast cancer iden-
tified total 17 putative susceptibility genes locatedat genomic
regions at least 1Mb away from any GWAS-identified breast
cancer risk variant (gene expression prediction performance
at R2 > 0.01)

Locus Gene P-value a R2 b Closet risk
SNP c

Distance to
the closet
risk
SNP (Mb)

Associations identified from sTF-TWAS (50 K)

14q32.11 NRDE2 1.46 × 10−12 0.02 rs941764 1.04

2q35 PECR 5.48 × 10−8 0.16 rs4442975 0.97

16q22.2 PHLPP2 1.50 × 10−7 0.19 rs13329835 >5

10q26.13 DMBT1 1.76 × 10−6 0.18 rs45631563 0.97

20q13.33 RGS19 2.36 × 10−6 0.07 rs13039563 >5

9q21.12 RP11-
109D9.4

5.78 × 10−6 0.16 rs4742903 >5

Novel associations identified from sp-sTF-TWAS (50K)

5q11.2 SLC38A9 2.02 × 10−18 0.05 rs62355902 0.98

12p11.23 TM7SF3 8.06 × 10−15 0.02 rs7297051 1.01

4p16.3 PIGG 2.16 × 10−7 0.06 rs495367 1.45

16q22.2 ZNF19 5.87 × 10−7 0.09 rs13329835 >5

1q22 SLC25A44 7.26 × 10−7 0.29 rs4971059 1.02

1q22 BGLAP 9.30 × 10−7 0.02 rs4971059 1.07

6p22.2 CARMIL1 1.38 × 10−6 0.06 rs71557345 1.06

3p21.31 MST1 1.46 × 10−6 0.36 rs6796502 2.86

14q24.3 VASH1 1.46 × 10−6 0.02 rs999737 >5

12q24.31 RILPL1 1.47 × 10−6 0.14 rs2464195 2.47

5q14.1 MSH3 1.58 × 10−6 0.04 rs7707921 1.37
aP-value: derived from sTF-TWAS/sp-sTF-TWAS in the set of 50K variants, associations with
P ≤6.61 × 10−6 are considered statistically significant on thebasis of Bonferroni correction of 7559
tests (0.05/ 7,559) for sTF-TWAS, and associations with P ≤ 2.09 × 10−6 are considered statistically
significant on the basis of Bonferroni correction of 23,905 tests (0.05/ 23,905) for sp-sTF-TWAS.
The P-values are derived from the Z score tests in sTF-TWAS/sp-sTF-TWAS (two-sided).
bR2: prediction performance (R2) of gene expression predicted by cis-genetic variants. The pre-
dictive model with the most significant association was presented.
cClosest risk SNP: identifiedbypreviousGWAS or fine-mapping studies31. The risk SNP closest to
the gene was listed.
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component (Kernel) TWAS48,49 or instrumental-variable analysis50,51

approaches.
As described in our recent work32, STFCREs were established

based on all variants in GWAS summary statistics data in evaluating
associations of the regulatory elements with cancer risk. We evaluated
the cis-heritability of genes using three sets of genetic variants (all
common variants, the top prioritized 50K or 500K variants) for each
cancer and observed that a high correlation of cis-heritability of the
gene expressionestimatedbasedon the two sets of prioritized variants
(Supplementary Fig. 8), supporting our approach using the prioritized
putative functional variants can strengthen genetically predicted gene
expression. Furthermore, we conducted null simulation analysis to
alleviate the potential concern of overfitting in gene expression pre-
diction using variants that have been also used to rank prior infor-
mation of STFCREs. In addition, we compared the regression
coefficients of the 22TFs for STFCREs estimated fromall variants in the
BCACdata and only those variantswhichwill not be potentially used to
predict gene expression for TWAS (i.e., excluding cis-genetic variants
flanking genes). We found a high correlation (Pearson’s r > 0.8) of the
regression coefficients of the 22 TFs from the two analyses. The results
suggest that our approach to rank STFCREs using all genetic variants is
robust and could be deemed as biological “facts” instead of specific
signal tailored to a particular dataset. As such, the ranking of the
STFCREs using all genetic variants from the GWAS dataset will not
introducemeaningful bias to risk gene discovery for downstream STF-
TWAS analysis, especially that we only used very limited putative
regulatory variants for our sTF-TWAS analysis (i.e., the top prioritized
50K variants located in STFCREs).

Previous studies, including our own work32, have provided strong
evidence that genetic risk variants contribute to cancer risk via

modulating the binding affinity of susceptible TFs52–54. In this study, we
observed that our identified putative susceptible genes were com-
monly regulated by at least three TFs in breast cancer (Fig. 5A, B). From
the analysis with the 50K variants, the findings from sTF-TWAS
showed that most TFs were observed to regulate at least 80% of the
putative susceptibility genes, except for TCF7L2 (75.8%), SRF (74.2%)
and PML (38.7%) (Fig. 5A). The findings from the sp-sTF-TWAS showed
that most TFs were observed to regulate at least 70% of these putative
susceptibility genes, except for TCF7L2 (68.2%), SRF (67.1%) and PML
(36.5%) (Fig. 5B).

To evaluate whether gene expression prediction models built in
cancer-specific target tissues can improve identification of cancer
susceptibility genes, we compared them with the sTF-TWAS results
from mismatched tissues. In our study, we reported 62, 62 and
33 significant genes for breast, prostate and lung cancers based on
tissue-specific gene models. By comparison, using breast tissue for
mismatched cancer types, only 11 and 18 significant genes can be
identified for lung and prostate cancers, respectively. Similarly, using
lung tissue for mismatched cancer types, only 35 and 28 significant
genes can be identified for prostate and breast cancers, respectively.
Using prostate tissue for mismatched cancer types, only 8 and 43 sig-
nificant genes can be identified for lung and breast cancers, respec-
tively. In all cases, the number of susceptibility genes identified from
cancer-specific tissues were significantly higher than those from mis-
match tissues (P = 1.7 × 10−11 based on one-sided Fisher’s exact test).

To expand the application of traditional TWAS, we investigated
genetically predicted alternative splicing for breast, prostate, and lung

Table 3 | sTF-TWAS and sp-sTF-TWAS in lung cancer identi-
fied 16 putative susceptibility genes located at genomic loci
at least 1Mb away from anyGWAS-identified lung cancer risk
variant (gene expression prediction performance at R2 >0.01)

Locus Gene P-value a R2 b Closet risk
SNP c

Distance to
the closet
risk
SNP (Mb)

Associations identified from sTF-TWAS

5q23.3 HINT1 1.56 × 10−61 0.07 rs150464151 >5

6p22.1 HLA-G 5.39 × 10−13 0.22 rs4324798 1.02

6p22.2 RP1-
221C16.8

9.58 × 10−10 0.02 rs4324798 2.64

6p22.1 ZNRD1 3.93 × 10−9 0.16 rs4324798 1.25

6p22.1 TRIM31 6.51 × 10−9 0.17 rs4324798 1.29

6p22.1 HCP5B 3.68 × 10−7 0.68 rs4324798 1.06

6p22.2 BTN3A3 1.23 × 10−6 0.16 rs4324798 2.35

Associations identified from sp-sTF-TWAS

15q15.2 TMEM62 3.49 × 10−18 0.07 rs66759488 4.10

6p22.1 HLA-A 1.55 × 10−16 0.89 rs4324798 1.13

6p22.1 PPP1R11 9.01 × 10−13 0.02 rs4324798 1.26

6p22.2 BTN2A1 4.91 × 10−10 0.01 rs4324798 2.33

3p21.31 FYCO1 3.67 × 10−9 0.36 rs141178913 >5

6p22.1 TRIM26 5.32 × 10−9 0.13 rs3094604 1.25

6p22.2 BTN3A1 2.87 × 10−8 0.04 rs4324798 2.39

4q21.23 FAM175A 1.15 × 10−6 0.04 rs144058808 >5

2q33.1 CASP8 1.29 × 10−6 0.04 rs182939337 >5
aP-value: derived from sTF-TWAS/sp-sTF-TWAS in the set of 50K variants, associations with
P ≤4.27 × 10−6 are considered statistically significant on the basis of Bonferroni correction of
11,711 tests (0.05/11,711) for sTF-TWAS, and associations with P ≤ 1.59 × 10−6 are considered sta-
tistically significant on thebasisofBonferronicorrectionof31,399 tests (0.05/31,399) for sp-sTF-
TWAS. The P-values are derived from the Z score tests in sTF-TWAS/sp-sTF-TWAS (two-sided).
bR2: prediction performance (R2) of gene expression predicted by cis-genetic variants. The pre-
dictive model with the most significant association was presented.
cClosest risk SNP: identified by previous GWAS57,63. The risk SNP closest to the gene was listed.

Table 2 | sTF-TWAS and sp-sTF-TWAS in prostate cancer
identified 12 putative susceptibility genes located at genomic
regions at least 1Mbaway fromanyGWAS-identifiedprostate
cancer risk variant (gene expression prediction performance
at R2 > 0.01)

Locus Gene P-value a R2 b Closet risk
SNP c

Distance to
the closet
risk
SNP (Mb)

Associations identified from sTF-TWAS

6p21.33 LY6G5B 6.04 × 10−9 0.36 rs9275160 1.01

21q22.3 AGPAT3 6.85 × 10−7 0.06 rs9978557 2.35

21q21.3 AP000223.42 8.11 × 10−7 0.10 rs11701433 >5

2q37.1 EFHD1 2.37 × 10−6 0.21 rs74001374 4.82

17q21.33 LRRC59 2.90 × 10−6 0.08 rs565189650 1.05

18p11.31 LINC00526 3.34 × 10−6 0.17 rs8089411 >5

Associations identified from sp-sTF-TWAS

2q31.1 DCAF17 1.34 × 10−9 0.04 rs77167534 0.97

11q13.4 GDPD5 1.33 × 10−8 0.05 rs1483103293 1.03

17q25.3 ARL16 1.59 × 10−8 0.59 rs148351530 >5

12q14.2 DPY19L2 1.73 × 10−8 0.03 rs7968403 0.95

6p21.33 BAG6 1.89 × 10−8 0.09 rs9275160 1.03

4p14 KLF3-AS1 7.00 × 10−7 0.18 rs17804499 >5
aP-value: derived from sTF-TWAS/sp-sTF-TWAS in the set of 50 K variants, associations with
P ≤4.50 × 10−6 are considered statistically significant on the basis of Bonferroni correction of
11,109 tests (0.05/ 11,109) for sTF-TWAS, and associations with P ≤ 1.66 × 10−6 are considered
statistically significant on the basis of Bonferroni correction of 30,211 tests (0.05/ 30,211) for sp-
sTF-TWAS. The P-values are derived from the Z score tests in sTF-TWAS/sp-sTF-TWAS (two-
sided).
bR2: prediction performance (R2) of gene expression predicted by cis-genetic variants. The pre-
dictive model with the most significant association was presented.
cClosest risk SNP: identified bypreviousGWASorfine-mapping studies62. The risk SNP closest to
the gene was listed.
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cancers. Under the sTF-TWAS framework, we conducted sp-sTF-TWAS
analyses for the three common cancers to search for susceptibility
genes and genetic loci. Our results suggest that genetically regulated
alternative splicing significantly contribute to cancer risk. Similar to

the performance of sTF-TWAS, we also observed that sp-sTF-TWAS
improved the detection of cancer susceptibility genes with increased
statistical power over S-PrediXcan. Specifically, we identified 85, 96
and 40 for breast, prostate, and lung cancer respectively at a
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Bonferroni-corrected P < 0.05. By comparison, the corresponding
number of genes identified by S-PrediXcan is only 46, 30, and 19.
(Supplementary Data 12; Supplementary Data 13; Supplementary
Data 14).

We conducted multiple analyses using sTF-TWAS based on dif-
ferent number of prioritized variants. We observed that all analyses
using prioritized variants improved discovery of susceptibility genes.
The identified genes were highly overlapped among analyses with
different number of variants (i.e., 50K vs 500K variants, Fig. 2B),
although statistical power varied slightly with the number of variants
used. Here, we only reported the findings of the analysis with the top
50K variants. More sophisticated statistical approach to quantify the
overall association significance by combining correlated results using
different sets of prioritized variants will be needed in future studies. It
should be noted that TF ChIP-seq data can be generated in different
cancer-related cell lines (i.e., various cell types/states and conditions).
In our previous study, we observed comparable association sig-
nificances for the same TF in these cell lines, as a majority of TF
occupancies overlap across these cells32. In practice, the use of the TF
in the cell-type with the most significant association can possibly
maximize the disease-related TF occupancies for downstream TWAS
analyses.

In summary, our sTF-TWAS, integrating the prior information of
STFCREs with TWAS, improved the detection of cancer susceptibility
genes. Our study identified a large number of putative susceptibility
genes for breast, prostate and lung cancers and advanced the under-
standing of TF-based transcriptional networks underlying genetic
susceptibility to these common cancers.

Methods
Data resources
The individual-level genotype dataset was downloaded from GTEx
(v8), which was quality-controlled using PLINK55. The summary statis-
tics of GWAS data for breast cancer were downloaded from the Breast
Cancer Association Consortium (BCAC). The BCAC is an international,
multidisciplinary consortium designed to identify genetic suscept-
ibility factors that are related to the risk of breast cancer. TheBCAChas
generated GWAS data for a total of 122,977 cases and 105,974 controls
fromEuropean descendants. For prostate cancer, GWASdata of 79,194
cases and 61,112 controls from European descendants were released
from the Prostate Cancer Association Group to Investigate Cancer
Associated Alterations in the Genome (PRACTICAL)56. The GWAS data
for lung cancer were downloaded from the websites of the Transdis-
ciplinary Research of Cancer in Lung of the International Lung
Cancer Consortium (TRICL-ILCCO) and the Lung Cancer Cohort Con-
sortium (LC3) totaling 29,266 cases and 56,450 controls from Eur-
opean descendants57 (Supplementary Data 1). The GWAS summary
statistics for schizophrenia (SCZ, N = 70,100), Alzheimer’s disease
(AD, N = 22,246), and autism spectrum disorder (ASD, N = 10,263)
were downloaded from the Psychiatric Genomics Consortium
website (PGC).

We characterized ChIP-seq data of TFs generated in prostate, lung
and brain cancer-related cell lines from the Cistrome database. After
evaluating their quality control (QC) based on the guidance from the
Cistrome database, we collected TF ChIP-seq datasets with high qua-
lities for our downstream analyses. Detailed ChIP-seq data for breast
cancer have been described in our previous work for breast cancer32.
The processed TF ChIP-seq data for prostate and lung cancer cell lines
have been comprehensively collected in the Cistrome database. We
have provided the detailed information for the data used for each
disease in Supplementary Data 15.

The GTEx (release 8) have generated germline whole genome
sequencing (WGS) and RNA-sequencing (RNA-seq) data for normal
breast tissue, prostate tissue, lung tissue, and brain cortex tissue. We
included breast tissue from 151 women, prostate tissue from 221 men,

lung tissue from 515 individuals and brain cortex tissue from 205
individuals (both sexes) in our study. The fully processed, filtered and
normalized gene expression data matrices (in BED format) was
downloaded from GTEx portal (https://gtexportal.org/home/
datasets). The whole genome sequencing file, GTEx_Analysis_2017-
06-05_v8_WholeGenomeSeq_866Indiv.vcf was downloaded from
dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000424.v8.p2). The sample attributes were obtained
from the file phs000424.v8.pht002743.v8.p2.c1.GTEx_Sample_At-
tributes.GRU.txt and the subject phenotypes for sex and age infor-
mation were obtained from the file phs000424.v8.pht002742.
v8.p2.c1.GTEx_Subject_Phenotypes.GRU.txt. The covariates used in
eQTL analysis, including genotyping principal components (PCs), were
obtained from GTEx_Analysis_v8_eQTL_covariates.tar.gz, and the
covariates for sQTL analysis were obtained from GTEx_-
Analysis_v8_sQTL_covariates.tar.gz, which were downloaded from the
GTEx portal (https://gtexportal.org/home/datasets).

To analyze cancers related susceptibility genes, we downloaded a
list of gene sets from theMolecular Signatures Database (MGB) on the
Gene Set Enrichment Analysis (GSEA, http://www.gsea-msigdb.org/
gsea/index.jsp). We also downloaded lists of predisposition genes
from39,40, cancer-driven genes from two previous literatures41,42 and
CGC43 from the COSMIC website (https://cancer.sanger.ac.uk/census).

To investigate the effect of an individual gene on essentiality for
proliferation and survival of cancer cells, we downloaded two com-
prehensive datasets including “sample_info.csv” and “CRISPR_gen-
e_effect.csv” from DepMap Public 21Q4 (https://depmap.org/portal/).

Genotype and gene expression data processing
MultipleQC stepswere applied by excluding variants withmissingness
rate >10%, minor allele frequency (MAF) <1%, or large deviations from
Hardy-Weinberg equilibrium at P for HWE test <10−6. For the normal-
ized gene expression data, we performed a probabilistic estimation of
expression residuals (PEER, https://github.com/PMBio/peer/wiki/
Tutorial) analysis to adjust for potential confounding factors58. We
used 30PEER factors for our downstreammodel building based on the
recommendation for breast, prostate and brain tissues, and 60 PEER
factors for lung tissue.

Defining sets of putative regulatory variants
We compiled four sets of TF-occupied variants (i.e., 50K, 100K, 200K
and 500K), prioritized with their ranks of the significance of the
association between the susceptible TF-occupied elements and target
cancer risk (Supplementary Data 1). The associations of cancer risk
with genetic variations of TF-DNA bindings by a single TF or paired TFs
were estimated using generalized mixed models based on our recent
work32. In brief, we generated a datamatrix for all genetic variants from
the GWAS summary statistics and the annotation from all available TF-
DNA binding regions. We used Chi-squared value for each genetic
variant reported in the GWAS summary data tomeasure its association
with cancer risk. We then used generalized mixed models to estimate
the associations between the Chi-squared values (Y) and TF binding
status of genetic variants located in binding sites of each TF given LD
blocks of genetic variants to handle the dependence between genetic
variants (Fig. 1A; Eq. (1)).

Y ij =β0 +β1TFij +Vi + εij ð1Þ

Specifically, Y ij is the Chi-squared value for the j-th variant in the i-
th LD block; β0 is the fixed intercept, and β1 is the fixed slope, which
measure themean difference of the Chi-Squared values (4�χ2) between
TF status; TFij is the j-th TF value (i.e., 1 for a variant located in a TF
binding site, 0 otherwise) in the i-th LD block; Vi is the random inter-
cept for the i-th LD block; and εij is the error term. Based on this
statistical model, we identified cis-regulatory elements occupied by
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TFs whose genetic variations of TF-DNA bindings are associated with
target cancer risk at Bonferroni-corrected P <0.05. We additionally
used generalized mixed models to estimate the associations of the Y
values of variants with the TF-pair occupancy if they showed a sig-
nificant interaction (Eq. (2)). Of note, we used genetics variants non-
occupied by any of the investigated TFs as the referenced control
group for all the analyses in Eqs. (1) and (2).

Y ij = β0 + β1TF1ij +β2TF2ij +β3TF1ij ×TF2ij +Vi + εij ð2Þ

To prioritize putative regulatory variants located in STFCREs, we
conducted a series of systematic evaluations and ranked the beta
coefficients for TF-pair occupancy derived from the β3 in Eq. (2) and
for the single TF from the β1 in the Eq. (1). Based on the ranked
information, we compiled four sets of the top prioritized variants
located in the STFCREs for breast, prostate, and lung cancers.

Gene expression prediction model building
We built gene-expression prediction models for the sets of interest
using genetic variants and normalized gene expression data generated
in different tissue samples from GTEx. For each variant set, we trained
the gene-expression prediction model using an elastic-net regulariza-
tion. We only included the TF-occupied variants within flanking region
of each gene. The gene expression level was regressed on the number
of effect alleles (0, 1, or 2) of genetic variants with adjustment for top
genotyping PCs, age, and other potential confounding factors (PEERs).
Prediction model performance was assessed using the variance
explained (R2) via a 10-fold cross-validation.

Association analyses between predicted gene expression and
cancer risk
To evaluate associations of genetic predicted gene expression with
cancer risk, we applied the weight matrix obtained from the gene
prediction models to the summary statistics implemented in
S-PrediXcan33. The statistical method described in Eq. (3) that was also
described elsewhere4,5, was used for association analyses.

Zg≈
X

l2Modelg

wlg
σ̂l

σ̂g

β̂l

seðβ̂lÞ
ð3Þ

In Eq. (3), the Z-score was used to estimate the association
between predicted gene expression and cancer risk. Here, wlg is the
weight of genetic variant l for predicting the expression of gene g.
β̂land seðβ̂lÞ are the GWAS-reported regression coefficients, and its
standard error for variant l, and σ̂l and σ̂g are the estimated variances
of variant l and the predicted expression of gene g, respectively.

Transcriptome-wide association analysis using FUSION and
EpiXcan
TWAS was performed using FUSION2 and EpiXcan59 with default set-
tings. FUSION utilizes several different linear models (including BLUP,
BSLMM, LASSO, Elastic Net and top SNPs) to calculate weights from
the training datasets. The SNP-expression weights represent the cor-
relations between SNPs and gene expression in the reference panel
while accounting for LD and were computed from different linear
models were downloaded directly from the FUSION website (http://
gusevlab.org/projects/fusion/). Furthermore, FUSION performs a
fivefold cross-validation for each of the desired models to determine
which model is the best. For a given gene, SNP-expression weights in
the cis-locus were computed using the best prediction model. The
TWAS calculated Z-scores were used to assess the association between
gene and cancers and the absolute value of a Z-score reflects the
association strength between implicated genes and cancers.

EpiXcan14 improves the accuracy of transcriptomic imputation
through the incorporation of epigenetic information for the purpose
of prioritizing the effect of SNPs on gene expression. To carry out the
EpiXcan protocol, first, we calculated SNP priors by using the specified
hierarchical Bayesianmodel (qtlBHM)60, which jointly leverages REMC
(Roadmap Epigenomics Mapping Consortium)61 annotation and eQTL
summary statistics; second, we transformed SNP priors to penalty
factors with a mapping function; and finally, we trained gene expres-
sion prediction model by using penalty factors and genotype data by
the weighted elastic net (WENet). The source codes of EpiXcan and
qtlBHM were obtained from https://bitbucket.org/roussoslab/epixcan
and https://github.com/rajanil/qtlBHM respectively.

Simulation analysis
To demonstrate the power gain with use of priori knowledge of
functional relevance, we conducted a simulation study by assuming
the functional weights of genetic variants are accessible through the
sTF-TWAS protocol. The individual-level genotype data provided by
GTEx is used as the reference dataset to simulate the gene expressions
assuming the functional relevant genetic variants are known. The 1000
Genomes Project dataset is used to simulate phenotype and conduct
TWAS analysis.

We conducted the null simulations to evaluate the type-I error of
our sTF-TWAS. We first randomly generated phenotype values (0 or
1) independently from the genotype. We then conducted logistic
regression analysis to generate the GWAS summary statistics using
the phenotype values and the genotype data from the 1000Genomes
Project. We confirmed the distribution of P-values from the simula-
tions for type I error rate by evaluating the quantile-quantile (QQ)
plots of the GWAS summary statistics (Supplementary Fig. 1A). We
next prioritized a set of variants using generalized linear mixed
models to analyze GWAS summary statistics of all genetic variants
and their TF binding status. Specifically, we randomly assigned 50 K
TF-occupied variants to a value “1” and the remaining variants to a
value “0” (i.e., 1 for a variant located in a TF binding site, 0 otherwise).
We then used generalized linear mixed models to estimate an asso-
ciation between the Chi-squared values (Y) and TF binding status of
genetic variants (see Eq. (1) in the Methods). We prioritized a set of
variants based on the association for a given ‘TF’ with cancer risk at
P < 0.05.We repeated the above statistical analysis (i.e., >4000 times)
and used prioritized sets of variants for our downstream TWAS
analysis. For each set, the elastic net regression was used to train the
prioritized genetic variants to predict gene expression. We further
conducted TWAS analysis based on the well-predicted gene expres-
sion models (R2 > 0.01) and GWAS summary statistics. We visualized
the distribution of P-values from TWAS analysis using both QQ plots
(Supplementary Fig. 1B) and their frequency distributions (Supple-
mentary Fig. 1C).

To evaluate the statistical power under the alternative hypothesis,
we conducted simulations under two representative scenarios: (1)
causality where genotype causes phenotypic changes via the media-
tion of gene expression, and (2) pleiotropy where genotype con-
tributes to phenotype and gene expression independently. To simplify
simulations, under both scenarios, we simulated gene expressions and
phenotypes using an additive genetic architecture. Under the additive
architecture, phenotypes and gene expressions are simulated by the
sum of genetic effects:

f Xð Þ=
Xn

i= 1

βixi

Where X is the genotype matrix from either the GTEx or 1000 Gen-
omes Project, X = {x1,x2,…,xn}. The effect size βi is drawn from the
standard normal distribution N (0,1), which will be used in the down-
stream TWAS analysis.
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The formula for simulating gene expression:

zð1Þ = f X ð1Þ
� �

+ ε

zð2Þ = f X ð2Þ
� �

+ ε

Where zð1Þ is the gene expression simulated using genotype from the
GTEx ðX ð1ÞÞ, and zð2Þ is the gene expression simulated using genotype
from the 1000 Genomes Project (X ð2Þ). Here the super-index (1)
indicates that the data is from the expression dataset, GTEx, whereas
the super-index (2) indicates the data is from the GWAS dataset, which
is the 1000 Genomes Project in this simulation.

The formula for simulating phenotype under the causality sce-
nario:

yð2Þ = gc zð2Þ,X ð2Þ
� �

+ ε

Where yð2Þ is the phenotype simulated with gc function, where
gc zð2Þ,X ð2Þ
� �

= zð2Þ+ ε.
The formula for simulating phenotype under the pleiotropy sce-

nario:

yð2Þ = gp X ð2Þ
� �

+ ε

Where y 2ð Þ is the phenotype simulatedwith gpfunction, where gp X ð2Þ
� �

employs the same format to f ðX ð2ÞÞ, except that the variance compo-
nent is rescaled by gene expression heritability instead of trait
heritability.

The above genetic architectures define how genetic components
contribute to each phenotype. Using the genetic components, we
generated phenotypes where the variance component attributed to
genotype, or heritability, equals a preselected value h2. That is, given
the varianceof the phenotype’s genetic component as σ2

g , we solved σ2
e

to satisfy that σ2
g=ðσ2

g + σ2
e

�
=h2. We then sampled from the normal

distribution Nð0,σ2
e Þ to determine the strength with which nongenetic

components such as noise or environmental effects contribute to
phenotype. Finally, the sum of the genetic and nongenetic compo-
nents were used as the simulated phenotype in association mapping
and power calculations.

To simulate the effect of putative regulatory variants, we first
randomly selected 200 variants from the local gene regions (+/−1M of
the gene locations) as potential predictors.We then randomly selected
a certain number of variants (i.e., 10, 20, 40, 60, 80 and 100) with
minor allele frequency (MAF) larger than 1% from these 200 variants as
the actual functional causal variants. The phenotype variance due to
the genetic component varied from 0 to 1, which was later rescaled
based on the gene expression or phenotypic heritability.

To illustrate the improvement of statistical power of sTF-TWAS
which incorporates prior knowledge of the potential regulatory ele-
ments with simulation we compared the statistical power of sTF-TWAS
with two other TWAS analyses: 1) using all cis-genetic variants (+/−1M
of the genebody); 2) usingonly randomly selected variants fromall cis-
genetic variants (+/−1Mof the gene body) with the same number as the
prioritized regulatory variants used in sTF-TWAS.

For allmodels, the gene expressions are simulatedusing genotype
data from GTEx, and phenotypes are simulated using genotype from
the 1000 Genomes Project. This simulated the situations where the
real gene expressions are not available in the target dataset (repre-
sented by the 1000 Genomes Project genotype and simulated phe-
notype); instead, we used another reference dataset (represented by
the GTEx genotype and simulated expressions) to train the weights for
each gene.

For each of the genetic architectures and their associated para-
meters, we simulated 1,000 datasets, in which causal variants were

randomly selected. We then test each protocol’s ability to successfully
identify the genes in each dataset, where success was defined as a
Bonferroni-corrected P-value that is lower than a predetermined cri-
tical value (0.05).

Annotation of our identified genes using cancer-related gene
database
To search the evidence whether the TWAS-identified genes are related
to cancer susceptibility, we extracted cancer-related gene sets from
the MGB database. Putative cancer-related genes were characterized
based on their annotation with the key words ‘breast cancer’, ‘prostate
cancer’ and ‘lung cancer’. We calculated the number and percentage
(success rate) of putative cancer-related genes that overlapped with
those extracted from theMGB database among the identified genes in
this study.

We examined whether the genes identified in our study
were previously reported by TWAS or eQTL studies for breast
cancer4,8,32,34, prostate cancer3,9,36,37 and lung cancer9,38. We also exam-
ined whether their located genomic regions were previously reported
in GWAS for breast cancer31,35, prostate cancer62 and lung cancer57,63.
Lastly, we investigated whether these genes were overrepresented in
the set of predisposition genes, cancer driver genes and CGC genes.

We conducted enrichment analysis using the hypergeometric
test. The probabilitymass function of the hypergeometric distribution
is:

PðxÞ=
m
x

� � n
k�x

� �
N
k

� �

Where m is the total number of genes in all cancer-related gene
databases, which includes all predisposition genes, cancer drivers and
CGC genes; n is the number of genes that are not included in the
cancer-related gene databases (n =N – m, N = 19, 291 protein-coding
genes based on the annotation from the Gencode.v26.GRCh38); k is
the number of significant genes from sTF-TWAS (using the 50K
putative variants) and q is the number of significant genes from sTF-
TWAS being validated in all cancer-related gene databases.

We calculated the distribution function using “phyper”, imple-
mented in R. The P-value is calculated as phyper (q, m, n, k, lower.tail =
FALSE). If the P value is <0.05, it’s considered as a significant
enrichment.

Effect of gene silencing on cell proliferation using data from
CRISPR-Cas9 essentiality screens in cancer-relevant cells
Gene-dependency levels from CRISPR-Cas9 essentiality screens for a
total 17,386 genes using a computational method, CERES, were
downloaded from the DepMap portal, https://depmap.org/portal/
download/44. CRISPR-Cas9 has enabled genome-scale identification of
genes that are important for the proliferation and survival of cancer
cells, which have been widely used for genetic studies32,44,45. A detailed
information on the CRISPR data of the cancer models/cell lines that
were used can be found in the Supplementary Data 16, which includes
the DepMap ID (Static primary key assigned by DepMap to each cell
line), cell line names, source of cell line, sample information and tissue
donor’s information, etc. For each gene, we calculated the total count
and the median of negative CERES values (for cell proliferation) from
45 breast relevant cells, 8 prostate-relevant cells and 130 lung relevant
cells. The cutoff of CERES value <−0.5 was used to indicate the
essentiality2,44.

TF-transcriptional network regulating breast cancer suscept-
ibility genes
We investigated the TF-DNA bindings for the susceptibility genes
identified from sTF-TWAS and sp-sTF-TWAS based on genetic variants
included in the gene expression prediction model using the 50K
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regulatory variants. For each identified gene, a TF-gene pair was
determined if a genetic variant was related with the expressions of this
gene andwasoccupiedby thisTF. Basedon the informationofTF-gene
pairs, a TF-transcriptional network was built using Cytoscape 3.9.1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics of GWAS data for breast cancer were down-
loaded from the BCAC website (http://apps.ccge.medschl.cam.ac.
uk/consortia/bcac/); summary statistics of GWAS data for pros-
tate cancer were downloaded from the PRACTICAL website
(http://practical.icr.ac.uk/ blog/); and summary statistics of GWAS
data for lung cancer were downloaded from the TRICL-ILCCO
website (https://ilcco.iarc.fr/). The summary statistics of GWAS
for brain disorders, including SCZ, AD, and ASD, were down-
loaded from the website of PGC (https://pgc.unc.edu/). ChIP-seq
data in breast cancer cell lines were collected from the ENCODE
(https://www.encodeproject.org/) and the Cistrome database
(http://cistrome.org/). ChIP-seq data in prostate, lung cancers and
brain disorders-related cell lines were downloaded from the Cis-
trome database (http://cistrome.org/). Gene expression and
alternative splicing data generated in breast, prostate, lung and
brain tissues, along individual-level genotype were downloaded
from GTEx (https://gtexportal.org/home/). Gencode annotation
(v26.GRCh38) was downloaded from https://www.gencodegenes.
org/human/release_26.html. The data from the 1000 Genomes
Project data was downloaded through the website, https://www.
genome.gov/27528684/1000-genomes-project. Target cancer-
related genes were collected from Molecular Signatures Data-
base, https://www.gsea-msigdb.org/gsea/msigdb/ and Gene Set
Enrichment Analysis (GSEA), http://www.gsea-msigdb.org/gsea/
index.jsp. CGC were accessed via COSMIC website, https://cancer.
sanger.ac.uk/census. The list of predisposition genes and cancer-
driven genes was collected from previous literatures39–42. For data
of essentiality for proliferation and survival of cancer cells, we
downloaded wo comprehensive datasets including “sam-
ple_info.csv” and “Achilles_gene_effect.csv” from the DepMap
portal (https://depmap.org/portal/). Remaining data sources and
results are provided within the Article or Supplementary Data file.
The sTF-TWAS codes can be found at zenodo repository, https://
zenodo.org/account/settings/github/repository/XingyiGuo/TF-
TWAS (https://doi.org/10.5281/zenodo.7308973).

Code availability
The developed pipeline andmain source R codes used in this work are
available from Github website: https://github.com/theLongLab/TF-
TWAS or https://github.com/XingyiGuo/TF-TWAS/.
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