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Targeted gene knockout is particularly useful for analyzing gene functions in plant growth,
signaling, and development. By transforming knockout cassettes consisting of
homologous sequences of the target gene into protoplasts, the classical gene
targeting method aims to obtain targeted gene replacement, allowing for the
characterization of gene functions in vivo. The moss Physcomitrella patens is a known
model organism for a high frequency of homologous recombination and thus harbors a
remarkable rate of gene targeting. Other moss features, including easy to culture,
dominant haploidy phase, and sequenced genome, make gene targeting prevalent in
Physcomitrella patens. However, even gene targeting was powerful to generate
knockouts, researchers using this method still experienced technical challenges. For
example, obtaining a good number of targeted knockouts after protoplast
transformation and regeneration disturbed the users. Off-target mutations such as
illegitimate random integration mediated by nonhomologous end joining and targeted
insertion wherein one junction on-target but the other end off-target is commonly present
in the knockouts. Protoplast fusion during transformation and regeneration was also a
problem. This review will discuss the advantages and technical challenges of gene
targeting. Recently, CRISPR-Cas9 is a revolutionary technology and becoming a hot
topic in plant gene editing. In the second part of this review, CRISPR-Cas9 technology will
be focused on and compared to gene targeting regarding the practical use in
Physcomitrella patens. This review presents an updated perspective of the gene
targeting and CRISPR-Cas9 techniques to plant biologists who may consider studying
gene functions in the model organism Physcomitrella patens.
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INTRODUCTION

Gene targeting mediated by homologous recombination, widely applied in mouse embryonic stem
cells, is particularly useful for studying gene functions. This invention won the Nobel Prize in
physiology and medicines in 2007 (Capecchi, 2005a). In plants, the moss Physcomitrella patens is the
only species harboring high gene targeting efficiency; therefore, gene targeting in Physcomitrella has
been extensively used (Schaefer and Zryd, 1997). Since the first successful moss knockouts were
obtained, thousands of publications emerged from adapting gene targeting to the Physcomitrella
research (Girke et al., 1998; Rensing et al., 2020).
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CRISPR-Cas9 won the Nobel Prize in 2020, is a
revolutionary technology, and has become a hot topic in
plant and animal research to study gene functions and
create variants for breeding (Ran et al., 2013; Hsu et al.,
2014; Knott and Doudna, 2018). One advantage of CRISPR-
Cas9 is that it can make marker-free knockouts suitable for
generating transgene-free plants or animals. In plants,
CRISPR-Cas9 has been used in species including model
organism Arabidopsis and commercial plants such as
tobacco, maize, soybean, and wheat (Jiang et al., 2013;
Nekrasov et al., 2013; Shan et al., 2013; Liang et al., 2014).
Recently, researchers would like to take advantage of CRISPR-
Cas9 to study gene functions in Physcomitrella patens.

This review will not cover all the applications of the powerful
technologies but rather focus on the practical use of successfully
targeted knockouts resulting from traditional gene targeting and
CRISPR-Cas9 technology.

OVERVIEW OF GENE TARGETING IN
PHYSCOMITRELLA PATENS

Targeted gene knockout for generating loss-of-function alleles is
essential in genome editing, allowing for the precise
characterization of gene functions in cell growth, organism
development, and physiological processes. Thus, many genome
editing tools have been deployed to obtain knockouts, including
nucleases such as zinc-finger nucleases (ZFNs), transcription
activator-like effector nucleases (TALENs), RNA-guided
CRISPR-Cas family, and gene targeting mediated by
endogenous homology-directed repair (HDR) (Capecchi,
2005b; Miller et al., 2007; Sander et al., 2011; Wood et al.,
2011; Cong et al., 2013; Knott and Doudna, 2018). In
addition, gene targeting utilizes knockout constructs to target
genes through homologous recombination (Schaefer, 2001;
Ermert et al., 2019).

Gene targeting is widely applied in mice, yeast, and other
organisms (Gardner and Jaspersen, 2014; Gerlai, 2016). In the
yeast Saccharomyces cerevisiae, the predominant mechanism
for repairing double-strand break (DSB) is homologous
recombination. Thus, yeast exhibits high efficiency of gene
targeting. The mouse is another model organism traditionally
deployed to study gene knockouts, in which researchers can
use precise genome editing tools (Bouabe and Okkenhaug,
2013). However, nonhomologous end joining (NHEJ) is the
dominant pathway to repair double-strand breaks in most
plants and mammals. In those organisms, foreign DNA
fragments are inserted into the genome illegitimately.
While most plants exhibit a very low efficiency of
homologous recombination (less than 1%), Physcomitrella
patens is the only plant species exhibiting high efficiency
(up to 90%) of homologous recombination, resulting in a
high ratio of targeted integration to illegitimate insertions
into moss genome (Schaefer and Zryd, 1997; Quatrano et al.,
2007). Homologous recombination in Physcomitrella
patens is dependent on RAD51 to repair DSBs
(Markmann-Mulisch et al., 2007; Schaefer et al., 2010).

Additionally, many genes have been functional in
Physcomitrella patens as enhancers or repressors in the
homologous recombination-mediated DSB repair
(Kamisugi et al., 2012; Kamisugi et al., 2016; Wiedemann
et al., 2018; Guyon-Debast et al., 2019).

The moss Physcomitrella patens belonging to the Funariaceae
family of the Phylum Bryophyta is an increasingly popular model
organism for studying plant evolution, development, and growth
(Wood et al., 2000; Cove, 2005; Vidali et al., 2009). The Gransden
strain of Physcomitrella patens was established in the
United Kingdom and is now the most prevalent system used
for genetic engineering in the laboratory (Engel, 1968). This non-
vascular early land plant was sequenced in 2007 (Rensing et al.,
2008), revealing a genome size of 511 Mb with 27
pseudochromosomes. A comparative genomic study
indicated that P. patens shared a high degree of homology
with high plants such as A. thaliana (Reski et al., 1998;
Nishiyama et al., 2003). For example, more than 66% of A.
thaliana proteins have homologs in P. patens. When combined
with other advantages such as a completely sequenced genome,
short life cycle, easy culture and maintenance, simple
morphology, and polarized tip growing rhizoids and
protonema, Physcomitrella patens becomes a powerful
model system for the study of gene functions (Cove, 2005;
Quatrano et al., 2007; Prigge and Bezanilla, 2010; Vidali and
Bezanilla, 2012; Jaeger and Moody, 2021). More importantly,
the predominant phase in the P. patens life cycle, from the
germination of spores to the fertilization of eggs, is haploid,
which allows screening of knockout mutant could complete in
one generation.

GENERATION OF SUCCESSFUL GENE
KNOCKOUTS BY GENE TARGETING

Design of Knockout Constructs
To generate targeted knockouts efficiently, a good design of
knockout cassettes is necessary. Typically, a knockout
construct containing a selection marker flanked by left and
right homologous arms comprising either cDNA or genomic
sequences homologous to the target sites. Hygromycin or
Geneticin resistant genes are common selection markers in
the knockout cassettes (Schaefer and Zryd, 1997). Selection
markers should insert into exons to ensure their expression in
the regenerated plants. PHYSCObase provides a pre-
assembled plasmid pTN80 (Accession: AB267704.2, G.I:
379,990,978) to the community to easily construct a
knockout cassette. Figure 1A illustrates a knockout cassette
prepared from pTN80, which comprises the npt ii gene as a
selection marker driven by a 35S promoter and tailed with a
nos terminator. Homologous arm sequences with equivalent
length could target conserved domains, activation sites, promoters,
or UTRs. 1 kb homologous sequences are sufficient to obtain gene
knockouts, although 600–700 bp long homologous arms are also
adequate to generate successful knockout transformants (Kamisugi
et al., 2005). The length of homologous arms is correlated to the on-
target insertions (Shy et al., 2016).
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Protoplast Transformation and
Regeneration
Two decades ago, when gene targeting emerged, particle
bombardment transformation to vegetative tissue or PEG-
mediated transformation to protoplasts were both used by
researchers (Cho et al., 1999; Bezanilla et al., 2003). Recently,
the transformation of knockout cassettes to protoplasts has
become prevalent in Physcomitrella gene targeting (Schaefer
et al., 1991; Schaefer and Zryd, 1997; Rensing et al., 2020).
PEG-mediated transformation and protoplast regeneration
protocols are available on PHYSCObase and CSH protocol
(Cove et al., 2009a). Moss protoplasts are filamentous
protonema of which cell walls are degraded by Drislease
(Grimsley et al., 1977). Both circular and linearized knockout
constructs can use in the transformation. However, circular DNA
may undergo extrachromosomal replication in transient

knockouts and reduce the number of stable transformants.
Therefore, linearized knockout cassettes are preferably
transformed into protoplasts (Strepp et al., 1998; Ashton et al.,
2000; Mittmann et al., 2004). Transformed protoplasts
resuspended in PRMB medium incubate in the dark overnight
and regenerate for 7 days under normal growth conditions. The
two-round selection of stable transformants is carried out on the
solid culture medium containing antibiotics for 2–3 weeks per
round with a one- or 2-week interval on an antibiotic-free
medium.

Challenges and Technical Difficulties
Even though targeted gene knockouts mediated by homologous
recombination are potent tools, there are challenges and
fundamental issues with gene targeting. First, off-target events
are the major challenge in gene targeting. The donor knockout
cassettes transformed to the protoplasts integrate into the moss

FIGURE 1 | Targeted gene knockout generated by gene targeting and CRISPR-Cas9. (A) A successful gene targeting event results in targeted gene replacement.
The knockout cassette contains homologous arms flanking npt ii genes driven by 35S promoter and tailed with a nos terminator. By transformation of a linearized
knockout cassette to the moss protoplasts, the marker gene nptii is integrated into the genome, resulting in targeted gene replacement. (B) A frameshift mutant
generated by CRISPR-Cas9. The yellow bar indicates gene-edited sequences. The green arrow suggests the target site. Red arrows show the location of primers
(FWD P and REV P) for the amplification of the edited site.
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genome by either targeted gene replacement, targeted gene
insertion, or illegitimate insertion (Kamisugi et al., 2005;
Kamisugi et al., 2006). Among the three integrations, targeted
gene replacement is ideal for integrating two homologous arms to
the target loci by high-frequency homologous recombination in
Physcomitrella patens. However, targeted insertions with one end
on-target while the other end off-target is commonly present.
Meanwhile, insertions of knockout cassettes randomly into the
moss genome mediated by NHEJ might associate with targeted
gene replacement. Additionally, researchers have found that
multiple linearized knockout cassettes might form concatemers
during the protoplast transformation (Kamisugi et al., 2006).

Validation of knockouts containing a single targeted gene
replacement event is therefore essential before the phenotypic
analysis. PCR is the primary method to confirm a single-copy
integration of the exogenous knockout construct into the moss
genome. As shown in Figure 1A, primer pairs P1/P2 and P3/P4
can amplify the insertion junctions of 5′ and 3’ ends, respectively.
P5 and P6 are a pair of primers for the detection of RNA
transcription to confirm the depletion of the targeted region.
Southern blot furtherly confirms the single-copy insertion and
excludes the ectopic insertions on the moss genome. The probes
hybridize to the two homologous arms (Khandelwal et al., 2010).

Secondly, Protoplast fusion is present in the PEG-mediated
transformation (Grimsley et al., 1977). The two broken
protoplasts may fuse to make a diploid cell with one copy of
the knockout allele and another copy of the wild-type allele
during transformation and regeneration. For this case, PCR

primers P1/P4 illustrated in Figure 1A can identify the wild-
type gene copy in the knockouts.

Thirdly, the knockout of essential genes and multiple-gene
families is challenging. Depletion of crucial genes often results in
lethal mutants. Knockout multiple gene families or genes with
redundancy are also tricky with gene targeting. Transformation of
multiple knockouts constructs simultaneously to protoplasts may
result in concatemers in the target loci.

CRISPR-CAS9 MEDIATED GENOME
EDITING

CRISPR-Cas9 system as an efficient genome editing tool, in which
Cas9 cleaves DNA at target sites specified by guide RNA, has been
applied to many plant species, including Physcomitrella patens. (Li
et al., 2012; Shan et al., 2013; Rensing et al., 2020; Shan et al., 2020).
Repair pathways of double-strand breaks (DSBs) in the traditional
gene targeting and the CRISPR-Cas9 system are different. Gene
targeting depends on homologous recombination, whereas Cas9-
induced breaks are mainly repaired by NHEJ or alternative end-
joining (Alt-EJ) (Collonnier et al., 2017). CRISPR/Cas9 can produce
deletions, insertions, and substitutions, which could be frameshift
mutants, early terminations, splicing variants, etc. Figure 1B shows a
targeting site edited by CRISPR-Cas9 system.

To compare CRISPR-Cas9 and traditional gene targeting in
detail, Table 1 lists aspects related to using two technologies in
Physcomitrella patens, covering topics from vector construct,

TABLE 1 | Comparison of the use of gene targeting andCRISPR-Cas9 inPhyscomitrella patens.Discussion topics cover constructs, protoplast transformation and
regeneration, selection of knockouts, molecular analysis, mutant types, efficiency, and multiplexing knockouts.

CRISPR-Cas9 Technology Gene Targeting References

Construct sgRNA and Cas9 plasmids Knockout cassette Collonnier et al. (2017)
Mallett et al. (2019)
Girke et al. (1998)

Protoplast Transformation and
Regeneration

PEG-mediated protoplast transformation PEG-mediated protoplast transformation Schaefer & Zryd (1997)
Cove et al. (2009a)
Radin et al. (2021)

Selection of Knockouts Selection of regenerated plants harboring
transiently expressed Cas9 and sgRNA;

Selection of regenerated plants comprising stable
integration of knockout cassettes;

Cove et al. (2009b)

1-week selection on antibiotics medium Two rounds of selection on antibiotic medium with a
1-week interval

Hiwatashi & Hasebe (2012)

Molecular Analysis PCR, T7 endonuclease assay, PCR, RT-PCR, Southern blot Steinberger et al. (2021)
Gomann et al. (2021)
Mallett et al. (2019)
Khandelwal et al. (2010)

Mutant Types Frameshift mutants (knockouts), Gene knockouts, Guyon-Debast et al. (2021)
Base-edited mutants, Knock-in mutant, Radin et al. (2021);
Marker-free mutants, Marker gene or tag integrated to moss genome, Brejskova et al. (2021)
Loss-of-function or gain-of-function allele Complementation line Schaefer (2001)

Efficiency (targeted mutant/
regenerated protoplasts)

2-3% 0.25% Collonnier et al. (2017)

Multiplexing Knockouts Simple, by the single transformation event Time-consuming, usually by sequential
transformations

Trogu et al. (2020)
Lopez-Obando et al. (2016)
Takechi et al. (2021)
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protoplast transformation and regeneration, selection of mutants,
molecular analysis to mutant types, multiplexing options, and
efficiency. Additionally, scientists have expanded the CRISPR-
Cas9 toolkit to control gene editing tightly.

Construct of sgRNA and Cas9
Compared to the knockout cassette used in gene targeting, Cas9 and
sgRNA are two components required for delivery to host cells in the
CRISPR-Cas9 system (Collonnier et al., 2017; Mallett et al., 2019).
Importantly, guide RNA specificity is critical for efficient editing
through CRISPR-Cas9. To minimize the off-target events, specific
gDNA sequences can be obtained in software called CRISPOR
(Haeussler et al., 2016). Synthesized gDNA (sgDNA) and Cas9
are cloned to plasmids harboring additional selection marker genes
that assist the transient selection of the regenerated protoplasts
(Trogu et al., 2020; Yi and Goshima, 2020).

Promoters for the expression of Cas9 and sgRNAare studied. The
most commonly used promoters include rice actin (Act) promoter
and maize ubiquitin promoter for the expression of Cas9, and
Physcomitrella patens U6 promoter for driving the expression of
sgRNAs (Mallett et al., 2019). SgRNA and Cas9 plasmid should be at
an equal ratio when transformed to protoplasts (Collonnier et al.,
2017). Instead of separate plasmids for Cas9 and sgRNA, a modular
CRISPR-Cas9 vector system has been developed to drive the
expression of Cas9 and multiple sgRNAs simultaneously (Mallett
et al., 2019). A successful application of this vector system was to
generate seven mutant lines targeting the SBH gene (Steinberger
et al., 2021). In the same vector system, up to 4 sgRNAs can be
assembled with three choices of antibiotics resistant genes,
hygromycin, G418, and zeocin, which enable targeting up to 12
genome sites in a single transformation.

Protoplast Transformation and
Regeneration
Delivery of Cas9 and sgRNA to plants could be achieved by
Agrobacterium-mediated stable transformation. The transformation
rate for protoplast transformation using Agrobacterium is typically
10−4, calculated by the number of stable transformants divided by
surviving regenerants after transformation (Cove et al., 2009b).
However, Agrobacterium-mediated transformation involves in the
integration of exogenous DNA into target plants and the resulting
mutants could be considered as genetically modified organisms.
Instead, the protoplast transformation of plasmids that transiently
express in plant cells will generate transgene-free knockout mutants.
Although protoplast transformation and regeneration are a bottleneck
and are currently developing inmany plant species (Hsu et al., 2021; Li
et al., 2021), PEG-mediated protoplast transformation has beenwidely
used in P. patens study for gene targeting, including steps of cell wall
degradation, protoplast resuspension, plasmid transformation, and
protoplast regeneration and selection of knockouts on growth
medium (Schaefer et al., 1991; Schaefer, 2001; Cove et al., 2009a).
The same protocol can be utilized in the CRISPR-Cas9 system, except
for different vectors for transformation (Lopez-Obando et al., 2016;
Collonnier et al., 2017; Radin et al., 2021). 10–30 ug of Cas9 and
sgRNA constructs are introduced to the 4.8 × 105 resuspended
protoplasts. Co-transformation of transiently expressed marker

genes with Cas9 and sgRNA plasmids enables the reduction of
false-positive clones (Gomann et al., 2021). Upon transformation,
protoplasts grow on the cellophane overlaid on the regeneration
medium for 4–7 days (Cove et al., 2009b; Radin et al., 2021).

Selection of Knockouts
Knockout selection in CRISPR-Cas9 system can be completed in a
week. Compared to the 1-month selection of stable knockouts by
gene targeting, selection of transiently expressed Cas9 and sgRNA
only takes 7 days. One round of selection against proper antibiotics is
sufficient to confirm the Cas9 and sgRNA presence in the
regenerated clones. This saves time to generate knockouts and
increases the number of regenerated plants, as shown in a more
significant number of clones emerging from the first-round selection
than that from the 2nd round selection on the medium conferring
antibiotic resistance (Hiwatashi and Hasebe, 2012).

Molecular Analysis of Putative Knockouts
Whether in traditional gene targeting or CRISPR-Cas9 system,
individual clones are sub-cultured on a standard growth medium
for 2–3 weeks after selection. Protonema or young gametophytes
are harvested to extract gDNA for molecular analysis of mutants.
The transient expression of Cas9 and sgRNA in CRIPSR-Cas9
system allows for an increased number of regenerated plants.
However, this requires an expanding screening work to identify
edited plants from non-transgenic and non-edited surviving
plants after transformation and regeneration.

For knockout screening, PCR amplification around the
expected editing sites is a primary method to validate
knockouts generated by gene targeting and CRISPR-Cas9.
Additionally, unlike analysis methods such as RT-PCR and
Southern blotting used in gene targeting, T7 endonuclease
assay is utilized to screen potential knockouts in the CRISPR-
Cas9 technique (Mallett et al., 2019). Screening of a large number
of mutants can be performed by visualizing amplicons on 3%
of agarose gel or the high-resolution PAGE gel (Lopez-
Obando et al., 2016; Trogu et al., 2020). In this way, clones
with base-pair changes can be detected on the gel and
subsequently sequenced. Off-target events in CRISPR-Cas9
are also checked by amplifying potential off-target sites, but
often no mutations on these putative off-target loci are
detected (Collonnier et al., 2017).

Mutant Types
Successful gene targeting events can generate both targeted gene
knockouts and knock-in alleles at expected genomic sites. Those
knockout or knock-in lines comprise selection markers or tags
stably integrated into the genome (Schaefer, 2001). Furthermore,
gene targeting can produce complementation lines to rescue the
mutant phenotype by targeting full-length cDNA to the moss
genome (Brejskova et al., 2021).

Knockouts generated by typical CRISPR-Cas9 resulted from
NHEJ or Alt-NJ, harbor deletions, insertions, and rarely
substitutions, most of which are frameshift mutations (Lopez-
Obando et al., 2016; Mallett et al., 2019). Furthermore, in
combination with donor DNA templates, CRISPR-Cas9 can also
generate knock-in and gain-of-function alleles (Guyon-Debast et al.,
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2021; Radin et al., 2021). We will discuss this in the later section.
Overall, CRISPR-Cas9 edited knockouts are free of the transgene.

Knockout Efficiency
Traditional gene targeting is only limited to certain organisms such as
mice, yeast, etc. Although the homologous recombination rate is
much high in P. patens, obtaining successful knockout lines through
homologous recombination is not as highly efficient as the CRISPR-
Cas9 system. As shown in the literature, the traditional gene targeting
only resulted in 0.25% relative transformation efficiency, whereas
CRISPR-Cas9 reached 2.1–3.2% relative transformation efficiency
from different sgRNAs using PpAPT as a target gene (Collonnier
et al., 2017). That being said, for 15,000 regenerated clones, about
315 ∼ 480 knockouts survived in the CRISPR-Cas9 editing system,
but only 37 knockouts emerged from traditional gene targeting.

Multiplexing Knockouts
Physcomitrella patens have undergone genome duplications, and
thusmany gene families expanded to containmultiple genes (Zimmer
et al., 2013; Li et al., 2015). Therefore, generation knockouts ofmultiple
genes are necessary to study gene family functions. Both traditional
gene targeting and the CRISPR-Cas9 system can generate multi-gene
knockouts. However, multi-gene targeting using traditional gene
targeting is time-consuming, associated with many rounds of
selection (Takechi et al., 2021). In comparison, the generation of
multi-gene knockouts usingCRISPR-Cas9 ismuch easier and simpler.
Co-transformation of Cas9 and multiple sgRNAs could result in
multiplex gene knockouts. For example, a septuple knockout mutant
was generated by a single transformation of Cas9 and sgRNAs (Trogu
et al., 2020). Multiple genes from different gene families can also be
targeted in the CRISPR-Cas9 system. Notably, single or double
mutants may be present as byproducts during the transformation
of multiple sgRNAs and Cas9 to moss protoplasts, creating genetic
variations (Lopez-Obando et al., 2016).

Editing Physcomitrella patens Genome
Precisely and Efficiently
CRISPR-Cas9 is an efficient gene-editing system that results in
deletions, insertions, and substitutions. Because Physcomitrella
patens has a high frequency of homologous recombination,
scientists aim to take advantage of this feature to control
CRISPR-Cas9 editing tightly in the moss. Donor DNA
templates are co-transformed with plasmids harboring Cas9
and sgRNAs to moss protoplasts. Collonnier reported that
60% of CRISPR-Cas9 induced DSBs were repaired via HDR,
compared to 54% gene targeting efficiency shown in the same
paper (Collonneir et al., 2017). Either single-strand (ss) DNA or
double-strand (ds) DNA oligos, linearized plasmids, or circular
plasmids can function as donor DNA templates (Collonneir et al.,

2017; Mallett et al., 2019; Yi and Goshima, 2020; Radin et al.,
2021). Consequently, DSB repair is tightly controlled by HDR,
and genome editing in P. patens becomes more precise, resulting
in 28–100% of colonies showing expected gene editing including
substitutions, deletions, and knock-in tagging at target sites (Yi
and Goshima, 2020). The donor DNA template-assisted or called
oligodeoxynucleotide (ODN)-assisted CRISPR-Cas9 method
generates knockouts, knock-in lines, and substitutions, which
could be loss-of-function alleles, gain-of-function alleles, or
hypoalleles that are beneficial for the study of essential genes.

Furtherly, a more precise mutation system called CRISPR-
mediated base editors (BEs) has been developed in human murine
cell lines, rice, and as well as in Physcomitrella patens (Komor et al.,
2016; Li et al., 2017; Lu and Zhu, 2017; Guyon-Debast et al., 2021). In
P. patens, CRISPR-Cas9 deaminase systems CBE was designed to
obtain cytosine editing andABE systemwas aimed for adenine editing
in an predictable editing window, which was about -20 to -14 bp from
PAM sites (Guyon-Debast et al., 2021). By co-transformation of
sgRNAs specific to the reporter PpAPT gene driven by snRNA U6
promoter and nCas9 (D10A) fused with either Petromyzon
marinus cytosine deaminase driven by pcUbi4-2 promoter or a
heterodimer of wild-type and mutated E. coli tRNA adenosine
deaminase driven by OsAct1 promoter, 89% mutants from a 2-FA
selection corresponded to precise base editing through CBE system
and 100% mutants survived on a 2-FA selection corresponded to
A-to-G base editing in ABE system. For other targeting genes, CBE
could result in up to 55% efficiency. The same study also showed
that multiplex (up to 4 sgRNA targets) base editing was possible in
Physcomitrella patens with CBE and ABE strategies.

CONCLUSIONS

The moss Physcomitrella patens is a unique model organism
harboring a high frequency of homologous recombination. Gene
targeting has been widely used in Physcomitrella patens for the
generation of targeted gene replacement. Recently, CRISPR-Cas9
technology is a hot topic in the genome-editing field. With its
high efficiency and the resulting marker-free knockouts, CRISPR-
Cas9 becomes increasingly appealing to scientists who work on
Physcomitrella patens.
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