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Analyzing Event-Related Transients:
Confidence Intervals, Permutation
Tests, and Consecutive Thresholds
Philip Jean-Richard-dit-Bressel *, Colin W. G. Clifford and Gavan P. McNally

School of Psychology, University of New South Wales, Sydney, NSW, Australia

Fiber photometry has enabled neuroscientists to easily measure targeted brain
activity patterns in awake, freely behaving animal. A focus of this technique is
to identify functionally-relevant changes in activity around particular environmental
and/or behavioral events, i.e., event-related activity transients (ERT). A simple and
popular approach to identifying ERT is to summarize peri-event signal [e.g., area
under the curve (AUC), peak activity, etc.,] and perform standard analyses on this
summary statistic. We highlight the various issues with this approach and overview
straightforward alternatives: waveform confidence intervals (CIs) and permutation tests.
We introduce the rationale behind these approaches, describe the results of Monte Carlo
simulations evaluating their effectiveness at controlling Type I and Type II error rates,
and offer some recommendations for selecting appropriate analysis strategies for fiber
photometry experiments.
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INTRODUCTION

A broad objective for neuroscience involves identifying brain activity patterns and determining
their function. The development of highly sensitive, novel fluorescent biosensors (e.g., calcium
indicator GCaMP) and measurement techniques (e.g., fiber photometry) for use in the awake,
freely moving animal have given behavioral neuroscientists powerful tools to chronically record
neural dynamics of genetically- and circuit-defined populations in vivo (Gunaydin et al., 2014).
Typically, the focus of this research is to determine whether there are phasic increases or decreases
in activity around particular environmental and/or behavioral events, i.e., event-related activity
transients (ERT). The presence of ERT implicates the targeted dynamic in a function related to that
event, perhaps encoding signals that enable task-relevant perception, learning and/or behavior.
Equally revealing is the types of events and situations that do not evoke ERT (Figure 1).

A widespread issue faced by researchers when using fiber photometry is how to best analyze the
rich datasets they produce. A biosensor readout is a proxy for some underlying biological process
(receptor binding, action potential, etc.,), so units of measurement are generally arbitrary. The
recording time series is typically normalized into a delta F (dF) to represent relative activity change.
Like all analysis strategies, the experimenter is confronted with a variety of choices such as whether
to select these strategies before (a priori) or after (post hoc) data collection, how to avoid Type 1
(false positive) errors whilst achieving appropriate power to avoid Type II errors (false negative).
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FIGURE 1 | Example event-related calcium transients in BLA principal
neurons (mean ± SEM; adapted from Sengupta et al., 2018; Figure 1C).
These neurons exhibit a characteristic excitatory transient following shock
delivery (A), but not during a comparable period where the shock is not
delivered (B). Assuming the true response of these neurons is, in fact,
excitatory for (A) and null for (B), it would be optimal for statistical analyses to
identify a significant excitatory transient at relevant time points in (A), and no
significant transients across the time points in (B).

To determine the presence of ERT, the dF around defined
events can be collated and analyzed. The most common method
involves obtaining a single number statistic quantifying a specific
feature of the peri-event dF, such as the Area Under the
Curve (AUC) or peak dF. This statistic is then used as input
for null hypothesis tests, the results of which form the basis
of interpretation (Gunaydin et al., 2014; Lerner et al., 2015;
Sengupta et al., 2018).

Although simple and popular, the use of summary statistics
such as AUC or peak dF raises concerns. This approach adds
a cumbersome and problematic step to analysis: researchers
choose the specific time window relative to events to summarize
and analyze. If the window is too small, activity of interest
is potentially missed; if the window is too large, the statistic
loses meaningfulness (the temporal relationship between activity
and event is undetermined). Even when a suitable window is

chosen, results only reveal whether overall activity within the
window is significantly different to the null, not where in this
window activity is significant or whether activity beyond this
window is significantly different from null. Therefore, using
a summary of a time window discards potentially pertinent
temporal information. Additionally, to minimize the probability
of ‘‘missing’’ ERT, the analysis window is often chosen post
hoc, after the experimenter has examined mean dF around an
event. This is generally inconvenient, relatively arbitrary, and can
introduce unwanted post hoc biases into the analyses, running the
risk of significantly inflating the Type I error rate.

An alternative is to dispense with this kind of summary
analysis to determine the presence of ERTs, and instead
automatically analyze the entire peri-event period to determine
whether, and when, a significant ERT occurs. This can overcome
the limitations of AUC or peak dF approaches, but also raises its
own concerns. For example, what kind of analysis is appropriate
and how to effectively control the Type I error (false positive)
rate whilst still achieving sufficient statistical power? Here we
consider two straightforward alternatives to the use of summary
statistics when analyzing fiber photometry data: (1) confidence
intervals (CIs) around the peri-event dF waveform (e.g., Choi
et al., 2019); and (2) permutation tests across the peri-event
window (e.g., Pascoli et al., 2018).

Confidence Intervals and Permutation
Tests
A CI is a ranged estimate of a population parameter. In the
case of mean peri-event activity, this would be a CI estimating
the true population peri-event activity. Periods where the CI
does not contain the null (e.g., dF = 0) can be flagged as
significant, i.e., indicative of an ERT. In general applications,
the parametric t interval (tCI) is most commonly used and is
computationally simple to obtain: tCI = mean ± (SEM * tcrit).
However, a key assumption is that the underlying population
distribution is normal, an assumption that may not be met by
the recording data.

A non-parametric method to obtain CI is bootstrapping.
Bootstrapping involves randomly resampling (with replacement)
from the dataset and obtaining a bootstrap estimate from this
sample. This is done repeatedly for all possible combinations
of the dataset or a sufficiently high number of times
(1,000 times or more). CIs can then be derived from the relevant
percentiles of the resultant bootstrap distribution [percentile
bootstrapped confidence interval (bCI); Efron and Tibshirani,
1993]. Importantly, this method makes no relevant assumptions
about the underlying distribution and is more precise and
accurate than tCI when using larger sample sizes. However,
percentile bCIs have a narrowness bias for small sample sizes
by an average factor of

√
(n− 1)/n (Hesterberg, 2015). This

occurs because bootstrapping as an algorithm does not make any
stipulations or adjustments related to n, leaving it open to issues
related to small sample distributions. There are numerous ways
to improve on these small sample properties (see Scholz, 2007;
Hersterberg, 2014). A simple way is to expand the percentile
bCI by a factor that accounts for n, as is done for tCI via SEM
and tcrit.
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Permutation tests, like bootstrapping, are a non-parametric
resampling-based method. They evaluate whether the
distributions of the two groups of data are exchangeable.
This is achieved by randomly regrouping the data to evaluate
how unlikely the observed difference between groups was.
The proportion of permutations that have a larger difference
than the actual difference translates to the permutation
p-value. If datasets are exchangeable, a large proportion of
the permutations would produce a larger difference than that
observed and the p-value would be large (i.e., insignificant). If
the distributions are not exchangeable, it is unlikely for a random
permutation to produce a larger difference, and the p-value may
be critically small, leading to rejection of the null that datasets
are exchangeable.

Permutation tests effectively produce an exact p-value, and
can thus control Type I error at α, which is not true of
percentile bCI. However, permutation tests do have some
caveats. Permutation tests specifically concern distributions, not
parameters. Permutation tests must compare two distributions
(e.g., a peri-event sample vs. a baseline sample). Interpretation
of significance must take into account that an effect may be
driven by either distribution and may be caused by differences
in the distributions beyond the parameter of interest (e.g., may
be driven by differences in underlying population variances, not
the population mean). They cannot be used to derive CI for
a parameter such as mean dF (Hersterberg, 2014) and cannot
test hypotheses regarding single-sample means (e.g., dF = 0).
Finally, the level of significance detectable by permutation tests
is constrained by the number of possible permutations and thus
requires a minimum sample size for a given α (e.g., n = 4 has
a minimum p-value of 0.014). That said, permutation tests
are straightforward, have appealing statistical properties, and
have been used to analyze peri-event neural activity (Maris and
Oostenveld, 2007; Pascoli et al., 2018).

Consecutive Thresholds
A key advantage of both CI and permutation tests is that they
can be used to analyze peri-event activity by constructing a CI
or performing a permutation test for each time point within
the peri-event window. This dispenses with the need to choose
a restricted window from which to obtain a summary statistic,
as the entire peri-event dF can be analyzed for the presence
of ERT. An additional benefit is that multiple ERT features,
excitatory and/or inhibitory, can be identified using a single
analysis without substantial input from the researcher.

However, testing each point of the peri-event window
raises the problem of multiple comparisons. Given that a null
signal is not static—it is composed of random fluctuations
(i.e., noise)—the risk of producing a Type I error somewhere
within the peri-event window will increase as the window size
increases, inflating the family-wise Type I error rate (FWER)
above the nominal rate, α. This could be dealt with by adopting
a more conservative per comparison α to reduce the FWER (e.g.,
Bonferroni correction). However, a well-known issue with this
approach is that it can be prohibitively conservative (Sedgwick,
2014), increasing the Type II error rate (failure to detect real
differences). This can be particularly disadvantageous for fiber

photometry, as sample sizes can be small (particularly when
using subject-based analysis, as might be desirable in fiber
photometry; (Recommendations… 2018) and the number of
tests done across a peri-event window may render correction
prohibitively conservative.

Consecutive thresholds offer a simple, yet powerful,
way to reduce Type I errors when detecting ERT, without
commensurately increasing Type II errors. Consecutive
thresholds demand a minimum period of continuous
significance before accepting a transient as significant. The
rationale here is that random fluctuations will generally
produce Type I errors at the α rate, but are unlikely to do
so for an extended period. This is intuitive when visualizing
the interplay of random fluctuations and variance across the
analysis window. The points of lowest variance will occur at
time points when sample traces cross over (i.e., are equal).
These cross-overs are inevitable and common for signals
fluctuating around baseline, regardless of how signals are
collated and averaged. Due to the low variance at these time
points, they have low standard error and narrow CI that may
not encompass the null. These cross-overs are generally a
product of sample traces moving in opposite directions (e.g.,
one going up, the other going down) and thus represent a
point, not an extended period, of low standard error (see
Figure 2C). For an extended Type I error, the fluctuation
must be aligned (i.e., be in phase), which is exponentially less
likely, particularly as sample size increases. In contrast, ERTs
by definition temporally coincide and are thus much more
likely to yield a continuous period of significance. Adopting a
moderate consecutive threshold, where the analysis demands a
minimum period of continuous significance before accepting
a transient as significant, can therefore greatly reduce Type
I (and FWER) without necessarily affecting detection of
true transients.

To evaluate the effectiveness of CIs, permutation tests
and consecutive thresholds at controlling Type I and
Type II error rates when detecting ERT, we assessed these
methods in Monte Carlo simulations of artificially generated
time-series datasets.

MATERIALS AND METHODS

Artificial datasets were generated and Monte Carlo simulations
of analyses were conducted using custom MATLAB scripts
(available at https://github.com/philjrdb/ERTsimulation).

Lines were generated for a null condition and ERT condition
(n = 10,000 for each population type). Each line vector
began as 100 zeros, representing a 10 speri-event baseline
sampled at 10 Hz, to which Gaussian noise (10 dB) was
added and low-pass filtered (2 Hz) to emulate randomly
fluctuating noisy signal. A transient was operationalized as a
one sparabolic curve (magnitude randomized using positive
tail of z distribution). Each line in the ERT condition had
a transient inserted at the halfway point of the window.
Lines in the null condition had a 50% chance of a transient
being inserted somewhere within the window, to emulate
unrelated transients, or did not have any transient inserted. To
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FIGURE 2 | (A,B) Population of mean subject waveforms. (C,D) Example run [sample n = 5 (colored lines; mean = black line)] from Monte Carlo simulation and
results of various analyses [parametric t interval (tCI), bootstrapped confidence interval (bCI), permutation test (Perm)] at 95% and 99% significance levels. (C)
Example run when sampling from the null population. Colored bars beneath sample traces indicate where significant differences from null were incorrectly detected
(Type I error), per analysis method. Without a consecutive threshold (top dotted line/colored bars per method), all analysis methods detected significant deviations
from null at the 95% level; each produced Type I errors. A consecutive threshold (low-pass frequency window) prevented this error (bottom dotted line/colored bars
per method). (D) Example run when sampling from event-related activity transients (ERT) population. Colored bars beneath sample traces indicate where in the ERT
period (yellow highlighted period) significant differences from null were correctly detected, per analysis method. At the 95% level, tCI and bCI correctly rejected the
null for the full extent of the ERT period, while the permutation test correctly rejected 80%. Consecutive thresholds did not impact this finding. At the 99% level, a
smaller proportion of the ERT was identified. Importantly, the permutation test failed to meet the full low-pass consecutive threshold, and thus failed to identify a
significant transient (Type II error).

emulate subject-based analysis, a subject population for each
condition (n = 1,000; Figures 2A,B) was generated by randomly
sampling and averaging 1–31 lines from their respective activity

populations. These parameters correspond approximately to data
generated by fiber photometry recordings (Sengupta et al., 2018;
Choi et al., 2019).
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The two key questions were: (1) How effective are tCI, bCI,
and permutation tests in detecting the ERT when sampling from
the ERT population, while retaining the null (not detecting a
‘‘transient’’) when sampling from the null population? (2) What
is the effect of applying a consecutive threshold to these
results? We considered the effect of three different thresholds:
no threshold (0), half the size of the low-pass frequency
window (0.5), and the size of the low-pass frequency window
(1). Half of the low-pass frequency window corresponds to
the unidirectional component of noise at this threshold and
therefore represents a cut-off for the most common source
of Type I errors: unaligned high-frequency noise. However,
this threshold is relatively lenient; phase-aligned noise and
noise from slightly lower frequencies may still trigger Type
I errors. An alternative threshold is the full length of the
low-pass filter window. This window would more effectively
remove Type I errors caused by high-frequency noise, like
aligned random fluctuations, but could come at the expense of
statistical power. A 2 Hz low-pass filter window is 0.5 s (1 s/Hz).
Given that our simulation used a 10 Hz sampling rate, the 1

2
consecutive threshold is three consecutive data points (rounded
up) and the full consecutive threshold is five consecutive
data points.

In total, we conducted 1,000 Monte Carlo simulations per
sample size (n = 5–100). We randomly sampled n subjects
from each subject population and analyzed them at 95% and
99% confidence levels, with and without consecutive thresholds
(see Figures 2C,D). A tCI was calculated for each time point
across the event window. For bCI, a bootstrap matrix of
1,000 bootstrapped means was acquired from n randomly
resampled lines (with replacement). CI for each timepoint were
percentiles at that timepoint of the bootstrap matrix (95%:
2.5, 97.5 percentiles; 99%: 0.5, 99.5% percentiles), which were
then expanded by a factor of

√
n/(n− 1) to counter small

sample narrowness bias. For either CI, a significant difference
was flagged whenever the CI did not contain the null of
0 (Bird, 2004; Bland and Altman, 2015). Permutation tests
require a comparison distribution, so ERT and null condition
samples were tested against another random sample from
the null population to represent a baseline comparison (new
baseline comparison per simulation). All possible permutation
or 1,000 random permutations, whichever was fewer, was used.
The p-value for a time point was the proportion of permutations
whose mean difference values were more extreme than that
observed between the actual samples. A time point was flagged
as significant if p < α.

The critical measures were FWER under the null condition
and the correct reject rate for the ERT condition. FWER was
determined as the proportion of null sample simulations that
produced a significant effect (Type I error) within the peri-event
window. Each simulation either had or did not have a Type I
error. The correct reject rate was the proportion of the 1 sERT
identified as significant per simulation; each simulation rejected
0–100% of the ERT.

Lastly, we use tCI, bCI and permutation tests to analyze
the exemplar ERT and null data in Figure 1 (from Sengupta
et al., 2018). The exemplar ERT data is of CS+ offset (coincident

with shock delivery) trials on day 1 of fear conditioning
(n = 23), whereas exemplar null data is of CS− offset (no shock
comparison) trials on day 3 of fear conditioning (n = 24)1. tCI
and bCI were used to determine the presence of ERT within each
peri-event period (null: dF/F = 0). To demonstrate a relevant
extension of these analyses, these peri-event waveforms were
also compared against each other using the two-sample t-test
and bootstrap (bootstrap difference distribution of randomly
resampled means; Hersterberg, 2014). As permutation tests
can only compare two samples, permutation tests were used
to compare CS+ and CS−. A consecutive threshold equalling
the low-pass frequency (3 Hz) window (1/3 s was applied to
control FWER.

RESULTS

The summary of results from the 1,000 simulations per selected
sample sizes are shown in Figure 3. Without a consecutive
threshold, all analysis methods were likely to detect a significant
‘‘transient’’ somewhere within the peri-event window, despite
drawing from the null population (Figure 3A). In other words,
the actual FWER was extremely high without a consecutive
threshold, regardless of n or confidence level. The use of a
consecutive threshold substantially reduced the FWER. A 1

2
threshold substantially reduced FWER, although not to nominal
rate, α. A full low-pass threshold reduced FWER to at or below
nominal rate, α.

Regarding detection of the ERT (Figure 3B), each analysis
method generally detected large proportions of the transient
across simulations (on average >50%), with detection rate
improving as sample size increased. Importantly, the use
of consecutive thresholds had little impact on this. The
bCI appeared to have the highest correct reject rate, while
permutation tests had the lowest. This sensitivity was reflected
in the likelihood for these methods to detect the ERT at all
(i.e., whether a significant difference was detected within the
ERT period or not). The bCI almost always correctly rejected
the null—it only failed to detect the ERT <1% of simulations for
n = 5, 99% confidence level, full consecutive threshold (no failure
to reject for any other parameters). In contrast, permutation
tests were most likely to miss rejecting the null, doing so under
various conditions when n < 15 (for n = 5, 99% confidence level,
full consecutive threshold, almost 10% of simulations failed to
detect the ERT). It is worth noting here that previous applications
of permutation tests to detecting ERTs (Pascoli et al., 2018)
analyzed trials, not subject means. The choice of trials, rather
than subjects, as the basis for the analysis of fiber photometry
data, provides substantially larger n for analyses but raises
independent, non-trivial concerns about correlations among the
data (see Recommendations… 2018).

To illustrate the effectiveness of these methods on real data,
we applied them to the exemplar data depicted in Figure 1
(from Sengupta et al., 2018). Both tCI and bCI readily identified

1Different days were used because waveforms from other days were less exemplary,
making them less suitable for the current purpose of demonstration. For instance,
activity for Day 1 CS− trended negatively (apparent in AUC; Sengupta et al., 2018).
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FIGURE 3 | Performance of parametric t interval [tCI (black)], bootstrapped CI [bCI (red)] and permutation test [Perm (blue)] across 1,000 Monte Carlo simulations at
various sample sizes (n = 5–100). Each simulation was tested at two significance levels [95% (left), 99% (right)]. (A) Family-wise Type I error rate (FWER) was
determined as any false rejection of the null across the time window (i.e., detection of a “significant transient” from signals drawn from the null population). Each
method had extremely high false-positive rates without a consecutive significance threshold (=0), regardless of the significance level. Use of a consecutive threshold
substantially reduced FWER; a threshold set at the low-pass frequency (=1) reduced FWER to at or below nominal rates (α). (B) Correct rejection rate was
determined as proportion of the artificial transient that was identified as non-zero. Bootstrapped CI was the most powerful, while permutation tests were the least
powerful at detecting the extent (and presence) of the transient. Consecutive thresholds did not substantially reduce power to detect this transient.

a significant excitatory ERT (relative to null of dF/F = 0)
following shock delivery (Figure 4). The same analysis of CS−
(no shock delivery) did not identify any event-related changes
in the activity. Direct comparison of CS+ and CS− activity via
two-sample tCI, bCI and permutation tests revealed that these
traces significantly differed from each other for the duration of
the identified shock ERT.

DISCUSSION

Identifying event-related transients (ERT) is a common focus
of neural recording studies. A common approach to detecting
ERT involves obtaining a summary statistic from a post hoc-
specified period relative to an event (e.g., AUC). This introduces
a problematic step within analysis. The current study considered
alternative strategies that instead analyze the entire peri-event
period for ERT: CIs and permutation tests. The effectiveness of

these analyses, in combination with consecutive thresholds, at
controlling Type I and Type II error rates was assessed in Monte
Carlo simulations of artificial datasets that approximate fiber
photometry data.

We found that CI or permutation tests can be effectively
used in combination with consecutive thresholds to analyze
peri-event periods for significant ERT. Both approaches afford
good control over the Type I error rate; rates of inappropriate
ERT detection (null condition) were acceptably low across n
when using a consecutive threshold equalling the low-pass
frequency window. Both also provided reasonable statistical
power. In both cases, correct rejection of the null in the ERT
condition was high, increasing with n, and was largely unaffected
by the consecutive thresholds. Of the methods considered here,
the bCI appears to be the most sensitive. The bCI had the
highest likelihood of rejecting the null, especially at smaller
sample sizes (n < 20), whereas permutation tests were the least
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FIGURE 4 | Waveform analysis of real peri-shock (CS+; red waveform) and
control (CS−; green waveform) data depicted in Figure 1 (from Sengupta
et al., 2018; Figure 1C). An excitatory ERT following shock onset for CS+ (red
bars above graph), but no ERT for the CS− comparison, was identified using
t interval (tCI) and bCI. A significant difference between CS+ and CS−

(two-sample comparison) was also determined using these CI methods
(orange bars above graph) and permutation tests (blue bar above graph).
∗Significant at 95% confidence level (full low-pass consecutive threshold).

sensitive. These differences between bCI and permutation tests
narrowed as n increased, with little difference between bCI and
permutation tests at n > 40. Compared to permutation tests,
tCI had good properties, with similar FWER rates and fewer
Type II errors.

When applied to real data, CI methods readily identified the
extent of excitatory transients in amygdala to footshock, while
showing a comparison shock-free period was not associated with
changes in amygdala activity.We also compared these peri-shock
and peri-control signals using two-sample CI methods and
permutation tests to show the extent those signals diverged.
These results demonstrate that these methods can effectively
assess and convey the significance of peri-event activity change,
and are amenable to making pertinent comparisons between
signals (e.g., those around different events). Permutation tests
are limited to two-sample comparisons, but CI methods could
theoretically be applied within more complex analyses (e.g.,
polynomial contrasts) to assess diversity of questions regarding
neural activity. However, there remain several issues that should
be considered when analyzing photometry data, which we
discuss below.

Considerations for Analysis
Choosing the Analysis Procedure
There are a variety of options for analyzing fiber photometry
data that each have merits and drawbacks (Table 1). Although
the ideal analysis will depend on a researcher’s needs,
we argue here that detection and comparisons of ERT is
achieved more efficiently and effectively using waveform analysis
methods. Waveform analyses automatically detect the extent

of significant transients, whereas summary analyses typically
require inconvenient and problematic post hoc input while
discarding temporal information. However, a summary statistic
may still be preferable when using peri-event activity in analyses
that are overly complicated by the waveform vector. For
instance, it is simpler to assess and convey the correlation
between behavior and AUCs (Choi et al., 2019) than behavior
and waveforms.

A major conclusion of the current study is that consecutive
thresholds effectively reduce the Type I error rate in waveform
analyses without commensurately impacting ERT detection.
This duration requirement is a simple but blunt way to filter
out the most common source of Type I error—brief blips of
significance due to chance alignments in high-frequency noise.
ERT by definition align for extended periods of time and are
thus less affected. However, consecutive thresholds can increase
the Type II error rate, particularly if the threshold is overly
conservative or the ERT very brief. It is therefore important to
choose a threshold that will efficiently reduce FWER without
undermining detection of ERT. The right threshold will depend
on the temporal dynamics of neural activity and biosensor, as
well as the properties of the signal being analyzed. We discuss
these considerations in turn and explain why a consecutive
threshold based on the low-pass filter window is a decent
rule-of-thumb.

Of the most commonly used biosensors, GCaMP6f has the
fastest dynamics and is thus more vulnerable to Type II errors
from consecutive thresholds. Like most biosensors, GCaMP6f
acts like a leaky integrator, such that its output over time is a
decaying compound of inputs (Chen et al., 2013). This means the
duration of a transient, not just the magnitude, is proportional to
activity change. For instance, GCaMP6f dF/F is elevated (20%-
peak) for ∼0.4 s following a single action potential, but this
duration is multiplied by the number of action potentials that
occur within that window; a sub-second burst of population
activity can produce a prolonged multi-second transient (Chen
et al., 2013). This means ERT detection is resilient to consecutive
thresholds in proportion to the effect size of activity change.

Regarding Type I errors, the effectiveness of a consecutive
threshold in reducing FWER depends on the degree of high
and low-frequency noise in the signal. As stated previously,
high-frequency noise is responsible for frequent but brief
instances of Type I errors, which consecutive thresholds
effectively counteract. Type I errors due to chance alignments
in low-frequency noise is less likely, but have a higher chance
of lasting for extended periods, and are thus more resilient
to consecutive thresholds. In fiber photometry, high-frequency
components (>10 Hz) are typically attributed to electrical noise
and are thus low-pass filtered out. The low-pass filter frequency
is usually chosen based on the cut-off between signals of interest
(e.g., temporal dynamics of the biosensor) and noise present
in the signal, and therefore represent a natural cut-off for ERT
vs. noise. Additionally, low-pass filters reduce the power of
high-frequency components of a signal, allowing low-frequency
components to dominate, which increases the autocorrelation of
noise and the likelihood of extended Type I errors. Setting the
consecutive threshold to the low-pass filter period is a way to
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TABLE 1 | Overview of transient analysis methods.

Temporally-defined
transient

Non-parametric Single mean
comparison?

Exact p value* Range estimate Pros Considerations

Summary
analyses
AUC × Possible X X Possible • Simple • Undefined extent/location of transient

• Jittered transient still detected
• Issues with defining analysis window

Features (peak dF,
peak frequency)

× Possible × X Possible • Intuitive
• Analysis of various

features

• Requires a comparison period
• Issues with defining analysis window

Waveform
analyses
t interval X × X X∗ X • Simple • Parametric assumption

Bootstrap interval X X X ×
∗ X • Powerful

• Few assumptions
• Computationally demanding compared to

tCI
• Percentile interval does not inherently

control per comparison Type I error rate
at α

Permutation tests X X × X∗
×

• Conservative • Lowest power of methods considered
• Computationally demanding compared to

tCI
• Requires a comparison distribution
• Distribution difference only—cannot

directly indicate parameter
range/direction

*Per comparison p value—diverges from alpha when using consecutive thresholds. Note. AUC, area under the curve; tCI, t interval.
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peg the threshold to a factor that increases the need for a more
conservative threshold.

It is also worth noting consecutive thresholds reduce FWER
independently of per-comparison α. It, therefore, diverges from
standard conceptions of α and p-values. If future studies
ascertained the precise relationship between FWER, α and
consecutive thresholds, the relevant equation could be used
to calculate exact p-values, or be used to fine-tune the
consecutive threshold for a given α and FWER. Such an
equation would capture the likelihood of consecutive Type I
errors—errors become exponentially less likely as the consecutive
threshold increases (αthreshold) unless there is a high degree
of autocorrelation across that period. Autocorrelation of noise
tends to decrease across time, so increasing the consecutive
threshold also reduces this effect of autocorrelation. Given
a fixed peri-event window, the threshold also decreases the
number of consequential data points (i.e., degrees of freedom).
Increasing the peri-event window (i.e., increasing the number of
comparisons) increases FWER, although in a less substantial way
than consecutive thresholds.

Finally, it is important to state that comparisons between
event signals, as was done on the data in Figure 4, can be
valid but should be done thoughtfully. Fiber photometry depends
on a population-level biosensor readout. This readout depends
on biosensor expression and fiber placement, which inevitably
differ between subjects, making between-subject comparisons
controversial. Furthermore, biosensor expression is dynamic,
generally increasing over days and weeks, while recording causes
bleaching of biosensor fluorophores within-session, making
within-subject comparisons across time similarly contentious.
Appropriate normalization of signal (see below) combats these
influences but cautious interpretation remains warranted.

Interpreting Significance
Waveform analyses provide temporally-defined significance.
Interpretation should factor in the relationship between the
biological process of interest and biosensor readings. For
instance, calcium-indicator (e.g., GCaMP) readout is a common
proxy for neural firing rates. Signals from GCaMP are slightly
lagged relative to spiking activity and have non-trivial decay
times (Chen et al., 2013). The resultant leaky-integrator readout
has two repercussions for interpretation: (1) an identified ERT is
likely due tomore confined, slightly earlier changes in underlying
neural activity; and (2) the temporal extent of an ERT can be
affected by both the magnitude or duration of activity change.
This limits highly specific inferences about neural activity and
the duration of ERT, although more general inferences about the
anticipatory or deliberative activity when an ERT precedes event
onset remain valid.

Both summary and waveform CI methods allow for
single-mean comparisons. That is, the presence or absence of

ERT can be inferred by testing against a specified null (e.g.,
dF/F = 0). This raises the important issue of having a valid
null when using this method. Typical calculations for dF/F
(e.g., subtraction of fitted isosbestic from the calcium-dependent
signal; Lerner et al., 2015) normalizes the signal, giving it a
mean of zero across the period that was used to calculate dF/F.
However, trendsmay still exist in the data (e.g., a general decrease
in a signal across the session) that impact peri-event signals
and analysis. A common means to combat these trends are
to detrend dF/F and/or zero peri-event signals to a pre-event
baseline (Lerner et al., 2015; Pascoli et al., 2018; Sengupta
et al., 2018; Choi et al., 2019). Although putatively effective, it
remains important to consider the potential unintended effects of
normalization and interpret accordingly (e.g., effects are relative
to a particular baseline). Choosing an appropriate null will
depend on the dataset and procedures applied, but it stands to
reason that appropriate normalization and detrending render
null of dF/F = 0 valid.

CONCLUSIONS AND
RECOMMENDATIONS

There are a variety of options for analyzing fiber photometry
data. Each of the methods described here has merits (Table 1).
The waveform analyses we have considered here offer key
advantages over summary analyses and the key recommendation
from our findings is to use a sufficient consecutive threshold to
reduce FWER when using these waveform analyses. The ideal
threshold would consider the temporal dynamics of the specific
biosensor being used (i.e., duration of transients), noise present
in the recording signal, and the size of the peri-event window.
A reasonable, effective rule-of-thumb is to apply a threshold
equalling the low-pass frequency period, which itself should
reflect the temporal cut-off between actual transients (i.e., at
minimum, the temporal dynamics of the biosensor) and noise.
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