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Abstract: Metastasis accounts for the vast majority of morbidity and mortality associated 

with melanoma. Evidence suggests melanoma has a predilection for metastasis to 

particular organs. Experimental analyses have begun to shed light on the mechanisms 

regulating melanoma metastasis and organ specificity, but these analyses are complicated 

by observations of metastatic dormancy and dissemination of melanocytes that are not yet 

fully malignant. Additionally, tumor extrinsic factors in the microenvironment, both at the 

site of the primary tumor and the site of metastasis, play important roles in mediating the 

metastatic process. As metastasis research moves forward, paradigms explaining 

melanoma metastasis as a step-wise process must also reflect the temporal complexity and 

heterogeneity in progression of this disease. Genetic drivers of melanoma as well as 

extrinsic regulators of disease spread, particularly those that mediate metastasis to specific 

organs, must also be incorporated into newer models of melanoma metastasis.  

Keywords: melanoma; metastasis; organ-specific; metastatic dormancy; pre-malignant 

dissemination 

 

1. Introduction 

Melanoma is a major health problem and its rates are increasing both in the United States and 

worldwide. The estimated lifetime risk for development of melanoma is 1 in 74 compared with 1 in 
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1,500 in 1935 [1]. Melanoma has a predilection for metastasis early in disease progression, which can 

occur even from thin primary tumors [2]. Melanoma often has a protracted disease course, in which 

patients have a disease free period following surgical excision of the primary tumor only to discover 

visceral metastases months, years, or even decades later [3]. Melanoma metastasis is an ominous sign 

as it generally predicts poor prognosis. There are currently no FDA (U.S. Food and Drug 

Administration)-approved therapies which significantly improve overall survival for patients with late 

stage disease [4]. Much work has been done to understand mechanisms mediating the complex process 

of melanoma metastasis. Although substantial progress has been made in understanding these 

mechanisms, new data suggest this process is perhaps even more complicated than originally suspected. 

Melanoma is a cancer that arises from melanocytes, which are the normal pigment-producing cells 

in the skin. Melanocytes are derived from the neural crest during development, to which they owe a 

complex and dynamic developmental history [5]. Melanocyte differentiation, survival, and migration 

from neural crest precursors rely heavily upon the canonical Wnt signaling pathway (through  

beta-catenin), the c-kit receptor tyrosine kinase, and downstream transcription factors such as  

MITF [6-8]. These and other pathways are frequently altered and may even be reactivated after 

transformation from melanocyte to melanoma [9-11]. In fact, reactivation of melanocyte-specific 

programs in the context of other oncogenic changes has been proposed to explain the proclivity of this 

tumor type to metastasize [12]. Notably, MITF, a transcription factor regulating melanocytic 

differentiation and pigment production, is known to be amplified in human melanomas, a finding that 

correlates with poor outcome [10]. 

Though the majority of melanocytes are found within the skin, normal melanocytes can also be 

found in other anatomic locations including the uvea of the eye. In normal adult skin, melanocytes are 

found at the junction of the dermis and epidermis, just superficial to the basement membrane (Figure 1). 

Developmentally, melanocytes must cross the basement membrane in order to reach this position [13] 

and may retain a predisposition for this ability. Melanocytes exist primarily as individual cells within 

the epidermis, and rather than forming homotypic interactions with each other, form heterotypic 

interactions with neighboring keratinocytes, the predominant cell type in skin. Melanocytes within the 

epidermis adopt some epithelial features, including the formation of adherens junctions to neighboring 

keratinocytes [14], but are not epithelial cells themselves. Normal melanocytes produce and 

subsequently transfer pigment-producing melanosomes to neighboring keratinocytes, which is thought 

to protect the keratinocytes from the damaging effects of UV (ultraviolet) radiation.  

2. Melanoma Formation and Progression 

Progression from normal melanocytes to melanoma has classically been divided into a series of 

progressive steps [15]. Although there are several histologic subtypes of melanoma, this model best 

describes superficial spreading melanoma, the most common variant, but is useful in understanding 

other subtypes as well. Melanoma is thought to arise in one of two ways: (1) with no visible precursor 

lesion or (2) in association with a benign melanocytic proliferation called a nevus (or mole). Although 

only 20–30% of melanomas are thought to arise in association with a nevus precursor [16-18], this 

model is also useful in understanding the progression of de novo melanoma (Figure 1). 
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Figure 1. Origins of Metastatic Melanoma. Melanoma can arise either: (1) within a  

pre-existing melanocytic nevus (mole), generally associated with BRAFV600E mutation, 

or (2) with no visible precursor. Melanoma is thought to form within the epidermis, spread 

to the dermis, and ultimately to disseminate to distant sites (metastatic melanoma). Up to 

12% of melanomas do not have an identifiable cutaneous precursor lesion. Progression of 

any individual lesion is thought to be driven by the acquisition of additional 

genetic/epigenetic changes. 

 

In the progression model of melanoma, the first step is the formation of a nevus, which is a 

proliferation and aggregation of melanocytes into nests located at the epidermal/dermal junction or 

within the dermis. In some nevi, cytological atypia and an altered growth pattern are present, which 

have been defined as features of a dysplastic nevus [15]. The next step is progression from nevus to 

melanoma in situ. Melanomas that do not develop from a precursor lesion may be first detected in this 

stage. Melanoma in situ is confined to the junction of epidermis and dermis. In the next step of the 

progression model, invasive malignant melanoma cells grow into the dermis where they interact with 

many new cell types and gain physical access to both lymphatics and blood vessels. The final step of 

progression is to metastatic melanoma, where tumor cells have spread from the primary site and 

established foci of disease at distant sites. It has been proposed that the progression through these steps 

is associated with the accumulation of genetic and epigenetic changes, a subset of which are thought to 

drive the process forward and provide melanocytes with increasingly malignant potential [19]. 

Melanoma is often initiated by the formation of a benign, growth-arrested nevus. As such, the 

genetic changes of these nevi have been a focus of research. About 80% of human melanocytic nevi 

contain an activating mutation (V600E) in the BRAF Ser/Thr kinase [20,21]. BRAF is a regulator of 

the MAPK/ERK pathway, which positively regulates cell cycle progression. This oncogenic change, 

which makes BRAF constitutively active, is thought to drive the initial melanocytic proliferation that 

forms the nevus. Although the mechanisms regulating subsequent growth arrest are poorly understood, 

various mechanisms have been proposed to mediate this process and are termed oncogene-induced 

senescence [22]. The prevalence of BRAFV600E mutations in melanocytic nevi suggests that BRAF 
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mutations may be important initiating events, but do not inexorably lead to melanoma, as the estimated 

lifetime risk of progression of a particular nevus to melanoma is roughly 1 in 7,000 [23].  

Although the model described above provides a foundation for understanding melanoma formation 

and progression, the critical events that occur between local tumor expansion and metastatic spread are 

complex and not addressed by the model. Additionally, there is compelling evidence that progression 

does not always occur in such a neat, step-wise fashion. In fact, there is evidence to support the notion 

that melanocytic cells can spread to distant sites in earlier stages of tumor progression. Lastly, 

melanomas show a predilection for metastasis to particular organs. Much work has been done to 

explain these phenomena at a molecular level and these issues will be the focus of this review. 

3. Tumor Heterogeneity and the Metastatic Cascade 

Melanoma initiation is thought to be a clonal event [24], but tumors subsequently evolve and 

acquire heterogeneity owing to selective pressures within the tumor microenvironment and the 

acquisition of genomic instability [25]. Within such heterogeneity, it has classically been thought that 

relatively rare populations of cells gain the ability to spread and only metastasize very late in tumor 

progression [26]. These rare tumor cells are thought to drive the metastatic process, which is also 

thought to be a clonal event [27,28]. At the distant metastatic site, tumor cells have been proposed to 

continue a period of uninterrupted growth, resulting in clinically evident disease. Heterogeneity also 

develops in the metastasis due to selective pressures, and these metastases may in turn seed additional 

metastases to other sites [29]. 

The relationship between tumor heterogeneity and metastasis was an early focus of cancer and 

metastasis research. In the early 1970s, using the B16 mouse model of melanoma, Isiah Fidler showed 

that melanoma cells had both heritable and selectable phenotypic traits that influenced their ability to 

metastasize [30]. This work provided early experimental evidence that certain cells within the same 

primary tumor may have an enhanced ability to metastasize. Experimental proof for this hypothesis 

came four years later [31]. In these studies, different clones derived from the same parent melanoma 

cell line were shown to have differing abilities to form lung metastasis after intravenous injection into 

mice. Some years later, metastatic heterogeneity in individual human melanomas was experimentally 

confirmed using similar experiments in which clones derived from human melanoma cell lines were 

injected into nude mice [32].  

Given that metastasis is a complex process, it is not surprising that individual tumor cells may be 

better than others in carrying out this process. In order for a tumor cell to metastasize and form a 

clinically detectable and potentially lethal metastasis, it must complete a series of steps (Figure 2). 

After primary tumor formation, tumor cells must gain access to systemic circulation in order to spread 

to distant sites. In melanoma, this is thought to occur primarily by entry of tumor cells into a lymphatic 

vessel, transit through a lymph node, and entry into systemic circulation via the thoracic duct [33]. 

Once in circulation, the tumor cells must not only survive but must also adhere to an endothelium 

within a target organ. After adhering, tumor cells must extravasate into the parenchyma of the target 

organs. Here, the tumor cells find themselves in foreign microenvironments in which they must 

survive. If they survive, in order for clinically detectable disease to form, the cells must find a way to 

proliferate. In many cancers, including melanoma, clinically apparent metastases are primarily found 
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only within a subset of organs, suggesting that something inherent to different organs may facilitate 

growth at these sites.  

In recent years, many studies have focused on the processes regulating the ability of tumor cells to 

enter circulation, a process that is thought to be related to their ability to invade normal surrounding 

tissue [34]. However, as can be seen, this is only one step of a long, complex process. There is 

evidence to suggest that other steps of the process, such as those regulating the ability of metastatic 

tumor cells to adhere, extravasate, survive, and grow in the target organ, may be equally or more 

important. For example, the presence of circulating tumor cells is common and does not necessarily 

predict metastasis accurately [35,36]. Factors regulating these processes in target organs may represent 

the rate-limiting step in many metastases. 

Figure 2. Steps in Melanoma Metastasis. After formation of a primary tumor, melanoma 

cells are thought to enter into lymphatic vessels, traverse to the lymph node, and 

subsequently enter into systemic circulation via the thoracic duct. After reaching systemic 

circulation, cells must adhere to the microvasculature of a target organ, extravasate, and 

subsequently proliferate in order to form a clinically relevant metastasis. The mechanisms 

regulating either success or failure at any step are likely important and probably differ 

amongst different melanomas and different target organs.  

 

4. The Seed-and-Soil Hypothesis 

The patterns of metastasis observed in human malignancy have long been of research interest. Early 

studies by Rudolf Virchow, and later James Ewing, proposed that the patterns of metastasis observed 

in human malignancy might be explained by the anatomy of human circulation [37,38]. In other words, 

tumor cells that embolized from the primary tumor and gained access to systemic circulation would 

arrest and grow indiscriminately in any tissue in which they happened to find themselves. However, in 
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1889, Stephen Paget presented an alternative theory to explain the patterns of metastasis observed in 

human malignancy [39]. Paget proposed that the anatomy of circulation alone could not account for 

the metastatic patterns that he observed in a series of autopsies on breast cancer patients. Instead, he 

suggested that factors inherent to certain tumor types (the seeds) may allow them to preferentially 

grow in certain organs (the soil). This hypothesis, often referred to as “seed-and-soil,” has largely been 

supported by more than a century of experimental testing. 

Many years after Paget’s seed-and-soil hypothesis was proposed, Ian Hart and Isiah Fidler provided 

experimental confirmation of this hypothesis using the B16 mouse model of melanoma [40]. After 

intravenous injection of melanoma cells, they observed that tumor cells preferentially adhered to 

experimental pulmonary grafts, but not to control renal grafts. Interestingly, this set of experiments 

used radioactive tracing of tumor cells to show that rates of initial arrest were similar in both organs, 

but growth of metastases was different. These results provided early evidence that the ability of tumor cells 

to interact with, survive in, and proliferate at distant sites are important aspects of metastasis formation. 

Compelling evidence for the seed-and-soil hypothesis in humans came from a study in ovarian 

cancer patients. Ovarian cancer is known to primarily spread within the abdominal cavity and in fact 

>90% of all ovarian cancer metastases are thought to be confined to the peritoneum [41]. One 

hypothesis to explain these findings is that ovarian cancer cells do not enter systemic circulation, and 

thus have no opportunity to grow at distant sites. An alternative hypothesis suggests that ovarian 

cancer cells do actually enter systemic circulation, but prefer to grow in the “soil” of the peritoneal 

cavity. In 1984, Tarin and colleagues provided a direct test of this hypothesis in human ovarian cancer 

patients. This study followed a group of ovarian cancer patients with ascites in which peritovenous 

shunts were placed to drain ascitic fluid. Not only did these shunts provide therapeutic relief of ascites, 

they also provided tumor cells with direct access to the systemic circulation. Remarkably, the presence 

of these peritovenous shunts did not increase metastasis outside of the peritoneal cavity. This incidental, 

but resourceful, analysis provides strong in vivo support for the seed-and-soil hypothesis in humans. 

In fact, compelling evidence for the seed-and-soil hypothesis is quite common in the literature. Two 

such examples are prostate cancer and ocular melanoma. Prostate cancer is known to metastasize 

primarily to bone and only infrequently to other sites [41,42]. Ocular melanoma, which is perhaps  

one of the most intriguing examples in all of cancer, primarily metastasizes from the eye to the  

liver, with 87% of metastatic uveal melanoma patients exhibiting liver metastasis [43]. In fact,  

fluorescently-tagged uveal melanoma cells injected intravenously into nude mice persist only in the 

liver [44]. Uveal melanoma also exemplifies a process known as metastatic dormancy (see Section 6 

below: Dormancy in Metastatic Melanoma) in which growth-arrested, disseminated tumor cells can 

persist for years to decades, only to resume growth later as clinically detectable metastases [26]. 

In many types of cancer, there is compelling evidence for the seed-and-soil hypothesis, however in 

some cases the anatomy of vascular tumor drainage plays a central role. For example, in colorectal 

carcinoma, 80% of patients with metastases show metastasis to the liver, a pattern proposed to be 

governed by the course of the mesenteric circulation to and through the liver [41]. There are also hints 

that anatomy may influence melanoma metastasis. For example, primary melanoma located on the 

trunk, head, and neck are more likely to recur than those located in the extremities [45], though there 

are certainly other potential explanations for this observation.  
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5. Clinical Considerations in Melanoma Metastasis 

Improvements in awareness have increased detection of melanoma, such that many melanomas are 

diagnosed early in disease progression [1]. Though surgical excision is generally thought to be curative 

in these patients, a subset will develop recurrent disease. While melanomas rarely recur locally at the 

site of excision, they often recur as metastases at distant sites [46]. Even in Stage IA melanoma 

patients, who have a 20-year survival rate of at least 90%, recurrences of disease still occur, often a 

decade or more after the removal of the primary tumor [47]. 

Melanoma metastasis cause the vast majority of morbidity and mortality associated with this 

disease. The presence of metastasis to visceral sites predicts poor outcome in melanoma [3]. The  

one-year survival rates in melanoma patients with clinically apparent metastasis to one, two, or  

three different visceral sites is: 36%, 13%, and 1%, respectively [48]. The most important tumor 

intrinsic variable that can predict metastatic recurrence in early melanomas is the thickness of the  

tumor [49,50]. Prognosis is inversely proportional to tumor thickness. Strikingly, differences of only  

1–2 mm in the thickness can alter prognosis substantially [3].  

Sentinel lymph node dissection is generally offered to patients with melanomas exceeding 1 mm in 

depth. The sentinel node is the first lymph node encountered by fluid draining from the cutaneous site 

of the primary tumor and is thought to represent the first non-contiguous site tumor cells will spread  

to [51]. Although removal of the sentinel node, or even the entire nodal basin does not improve long-

term survival [52,53], the presence or absence of tumor cells in the sentinel node has very important 

prognostic implications [3]. In fact, histological evidence of tumor cells in the lymph node is probably 

the best indication that sub-clinical spread of melanoma cells has already occurred.  

In addition to primary tumor thickness and sentinel lymph node status, other factors have been 

correlated with the probability of metastatic recurrence and some of these factors have been incorporated 

into the most recent melanoma staging system [47]. For example, the odds of metastasis from thin 

lesions are three-fold higher in men [54]. The age of the patient and anatomic location can also 

influence recurrence rates [50,54]. Factors such as the presence of ulceration, microscopic satellite 

lesions, and increased mitoses per high power field all predict poor outcome [54]. The presence or 

absence of tumor infiltrating lymphocytes can also be correlated with outcome [54] though the 

relationship between inflammation and melanoma is quite complex and will not be reviewed in  

detail here.  

Melanomas are capable of metastasizing to both regional and distant sites. The most common sites 

of regional metastasis are nearby skin, sub-cutaneous tissue, and lymph nodes [48]. Metastases to skin 

are referred to as either satellite lesions (if they are relatively close to the primary tumor) or in transit 

metastases (if they are relatively more distant), though do not differentially influence melanoma 

staging [47]. Metastasis to the skin may be the first external clue that lymphatic or hematogenous 

spread has occurred [55].  

The most common clinically apparent sites of distant metastases in melanoma patients are: skin, 

lung, brain, liver, bone, and intestine [48]. Metastasis to lung is common and often the first clinically 

apparent site of visceral metastasis. Other sites of metastasis such as bone and intestines occur later in 

disease progression and are rarely the first site of detection [48]. Metastases to other sites such as liver 

and brain are inversely correlated to each other [48]. In an autopsy series of melanoma patients, it 
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appears that metastatic tumor burden, especially in terminal patients, is actually much higher than is 

clinically appreciated. A generally higher preponderance of metastases to sites frequently encountered 

clinically is observed at autopsy. For example, intestinal metastasis is detected in only 1–7% of 

patients in clinical series, but 26–58% of patients at autopsy [48]. In analysis of autopsy series it is also 

evident that subclinical melanoma metastases can manifest in almost any part of the body [48,56]. 

These types of metastases are not infrequently found in: the heart, pancreas, adrenal glands, spleen, 

stomach, esophagus, thyroid gland, kidneys, genitals, blood vessels, and more [48,56]. In fact, it seems 

there are few places that melanoma is not capable of metastasizing to, especially in late stage disease. 

Understanding why melanoma becomes clinically apparent in certain organs and not others is of much 

interest in organ-specific metastasis research. Lack of detection in some sites may be due to technical 

issues related to imaging, but certainly also represents differences in biological interactions between 

tumor cells and different organs. 

6. Dormancy in Metastatic Melanoma 

The time period between removal of the primary tumor and subsequent recurrence of disease is 

referred to as metastatic dormancy. In melanomas, a period of dormancy may end with the emergence 

of recurrent disease at a metastatic site and only rarely at the site of the primary tumor. Melanomas, as 

well as some other cancers, such as prostate and some types of breast cancer, often have very 

protracted courses in which metastatic disease does not manifest until years or even decades after 

removal of the primary tumor. Clinically localized melanoma can recur after disease-free intervals of 

10 years or more [57-59]. In fact, a subset of melanomas will have ultra-long dormancy with 

recurrence greater than 20 years later [60]. Other tumor types, such as lung and pancreatic 

adenocarcinomas tend to follow a much swifter clinical course in which discovery of the primary 

tumor and subsequent metastasis is often a temporally contiguous event [61]. While these differences 

in metastasis patterns may in part reflect differences in detection amongst different cancer types, it has 

also been proposed that such observations suggest that certain tumor types might gain full metastatic 

competency earlier in tumor progression [61].  

The phenomenon of metastatic dormancy is an intriguing one, and in fact not a new observation. 

This concept has roots in experiments performed over 50 years ago by Fisher and Fisher [62]. In this 

study, intraperitoneal injection of small numbers of Walker carcinoma cells did not form visible 

hepatic tumors when examined five months after tumor cell injection. If however, starting three 

months after the tumor cell injection, mice were examined every seven days by repeated laparotomy, 

tumors were visible in 100% of mice by five months [62]. Something about laparotomy influenced 

growth of macroscopic tumors, suggesting that even though tumors were not visible in control animals, 

that tumor cells were present, but in a non-proliferative state. Support for the existence of metastatic 

dormancy in human cancers stems from studies of the growth kinetics of primary and metastatic 

tumors. The calculated versus observed kinetic growth patterns in breast cancer recurrences following 

mastectomy [63] do not match if one assumes metastatic tumor cells arise late in disease progression, 

spread, and then continue uninterrupted growth at the metastatic site. Such observations suggest 

dormancy of disseminated tumor cells may be a real and clinically relevant process in humans.  
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With this in mind, there has been substantial effort in recent years to understand the mechanisms 

mediating dormancy of disseminated tumor cells. Tumor cell intrinsic and extrinsic mechanisms have 

been proposed to explain this process. Metastatic tumor cells, after extravasation, at a metastatic site, 

find themselves in foreign microenvironments. Tumor cells are known to be very sensitive to changes 

in microenvironmental conditions, which can lead to alterations of fundamental properties of these 

cells [64,65]. Experimental evidence in melanoma suggests that induction of apoptosis by Fas/Fas-

ligand at metastatic sites is an important negative regulator of metastasis [66]. If individual tumor cells 

do survive, it is likely that the microenvironment is equipped to either eliminate or prevent growth of 

these disseminated cells in other ways. Individual disseminated tumor cells purified from the bone 

marrow of breast cancer patients are generally negative for markers of proliferation [67-69]. 

One hypothesis explaining dormancy suggests a G0/G1 cell cycle arrest may occur in individual 

disseminated tumor cells via induction of cyclin-dependent kinase inhibitors [26]. Such cell cycle 

arrest may be due to interactions (or lack of interactions) with specific components of the 

microenvironment at the metastatic site [70,71]. It has also been proposed that the immune system may 

have a role in impeding expansion of dormant tumor cells at metastatic sites [72,73]. Melanoma in 

particular has long been considered an immunogenic tumor [74], suggesting that immune-mediated 

destruction of micrometastases may be important. Data from transgenic models of melanoma suggest 

that cytotoxic CD8+ T cells have antigen specific responses to disseminated tumor cells and may 

inhibit their proliferation. Depletion of this population of T cells can accelerate progression of 

metastatic melanoma in mouse models [75-77].  

Evidence from human organ transplant literature also implicates the immune system in suppressing 

the expansion of disseminated tumor cells. The risk of developing primary cutaneous melanomas in 

immunosuppressed organ transplant recipients is relatively low (3–4× increased risk) compared to 

other skin cancers such as squamous cell carcinoma (>80× increased risk) [78,79]. However, 

melanoma is one of the most frequently reported transplant-related malignancies in which metastatic 

disease develops within the transplanted organ [80]. After transplantation of organs from apparently 

disease free individuals with a history of melanoma, recipients can develop metastatic melanoma 

within the transplanted organ. This process is thought to represent reactivation of dormant 

disseminated tumor cells from the donor. As transplant recipients are immunosuppressed, these 

scenarios are thought to provide further support for the role of the immune system in suppressing 

microscopic disseminated disease [80]. Interpretation of the causes of metastatic growth in these rare 

cases is not entirely conclusive as subclinical graft versus host disease in the target tissue may also 

play a role in increased metastatic growth. In another example, lungs transplanted from a patient with a 

history of melanoma 32 years prior, gave rise to metastatic melanoma in a recipient within two years 

of transplantation [81]. Such considerations suggest long-term maintenance of dormancy is possible 

and enhancement of this process may be therapeutic in patients with melanoma.  

Restriction of vascular supply has also been proposed to help maintain metastatic dormancy. In 

small clusters of disseminated tumor cells, an inability to recruit sufficient vascular supply may restrict 

growth [26,82]. In mouse models in which angiogenesis is suppressed, lung metastases remain in a 

non-progressive state, with proliferation balanced by cell death and no net growth of metastatic tumor 

cell masses [83,84]. Additional evidence from human melanoma biopsies supports this hypothesis, as 

micrometastases have only half the density of microvessels as do clinically apparent metastases [85]. 
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Kienast and colleagues provide evidence that suppression of angiogenesis may also restrict progression 

of metastasis in experimental models of melanoma brain metastasis [86]. In separate experiments, 

Cameron et al. have shown that establishment of single disseminated tumor cells occurs equally well 

in all areas of the lung, but that subsequent growth only occurs in areas either directly adjacent to the 

vasculature or at the surface of the lungs [87]. Interestingly, dormancy was confirmed in individual 

cells that did not expand, but persisted and showed neither signs of proliferation nor apoptosis. Such 

considerations further implicate the importance of interactions between the metastatic cells and the 

host microenvironment at metastatic sites. 

Mechanisms mediating reactivation of disseminated tumor cell growth are very poorly understood. 

Cell intrinsic factors such as switches in response to TGF-β signaling have been proposed [26]. The 

HES1 transcription factor, a component of Notch signaling, has been described as an important 

mediator of the reversibility of quiescence [88] and could theoretically be involved in escape from 

metastatic dormancy. Certainly, reversal of factors mediating induction of dormancy may mediate 

escape. For example, changes that allow cells to: overcome cell cycle block, evade immune-mediated 

growth control, or recruit new blood vessels to support their growth may experience reactivation of 

growth. Ultimately, mechanisms regulating release from dormancy are likely diverse and highly complex.  

7. Pre-malignant Dissemination of Melanocytes 

The concept of premalignant dissemination posits that cells can spread early in tumor progression 

and challenges the paradigm that metastasis occurs via late dissemination of rare clones. These 

“premalignant” cells, without full malignant potential, can be found at sites such as lymph nodes, 

where they are thought to remain clinically inactive. Pre-malignant dissemination has been invoked to 

explain metastatic dormancy [89], such that early spread from the primary tumor and late growth at 

distant sites may help to explain the clinical patterns of metastasis observed in some melanomas. For 

example, in uveal melanoma, based on calculations of tumor doubling time, it has been proposed that 

metastases are initiated up to 5 years before identification and treatment of primary lesions [90]. This 

concept is further supported by the presence of circulating tumor cells in uveal melanoma patients 

before signs of clinically advanced disease [91,92]. As such, it has been proposed that cells 

disseminating early may give rise to late-appearing metastases [89].  

Substantial data in support of pre-malignant dissemination exists in cutaneous melanoma as well. 

Four to twelve percent of all patients with metastatic melanoma have no known cutaneous primary 

lesion [93-95]. This intriguing observation suggests that benign melanocytes may exist at disseminated 

sites in the body and may be capable of undergoing malignant progression. Further, such progression 

may be completely unrelated to progression of primary melanomas in these scenarios. In fact, benign 

melanocytic nevi are often found in lymph nodes. This phenomenon, originally described in the 1930s 

and observed consistently since then [96-100], is a poorly understood process but certainly consistent 

with the concept of premalignant dissemination. These “nodal nevi” are seen histologically in  

0.33%–7.3% of lymph nodes from non-melanoma patients [101-104]. More sensitive assays, such as 

quantitative RT-PCR (real-time polymerase chain reaction), suggest that nodal nevi may be even more 

common than this. Tyrosinase (a pigment production enzyme produced in melanocytes) can be 

detected in up to 11% of lymph nodes from non-melanoma patients [105,106]. Taube and colleagues 
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recently have identified the BRAFV600E mutation in a substantial subset of nodal nevi [107]. As this 

same activating mutation is found in the majority of normal cutaneous nevi [20,21] and roughly half of 

melanomas, it is possible that nodal nevi may arise from the “metastasis” of normal cutaneous nevi. In 

fact, there is evidence that not only can nevus cells spread to lymph nodes, but they can also enter 

systemic circulation, where benign melanocytic nevus cells have been detected in human  

patients [108]. Untransformed cells are capable of extravasation, survival, and even proliferation at 

distant sites in experimental settings [109]. Benign dissemination has also been observed in other  

non-malignant conditions such as “benign metastasizing leiomyoma”. In this condition, non-malignant 

cells derived from growths of smooth muscle cell origin have been reported to metastasize to distant 

sites, a process thought to represent both lymphatic and hematogenous spread [110]. These 

considerations suggest that not only does premalignant dissemination occur, but also raise the 

possibility that it may be a clinically relevant process that could explain some of the clinical patterns 

observed in melanoma patients.  

8. Organ-Specificity in Metastasis 

Melanoma metastasis involves many steps that are temporally complex. Complicating matters 

further, Paget’s seed-and-soil hypothesis emphasizes the additional spatial complexity of metastasis. 

Much work in metastasis research has concentrated on the organ-specificity of metastasis and has 

aimed to identify specific biological mediators of this process. Factors inherent to both tumor cells, as 

well as the organs to which they metastasize, have a complex interplay that can influence the 

efficiency with which metastasis occurs to different sites.  

Endothelial cells lining the vasculature in different organs differ both structurally as well as at the 

molecular level. For example, blood vessels in some organs are fenestrated, allowing relatively easy 

passage of cells from the circulation through large sinusoids. These sinusoidal capillaries are found in 

the liver, spleen, bone marrow, and lymph nodes. It has been proposed that fenestrated capillaries also 

allow for easier passage and extravasation of tumor cells [111-113]. While this is almost certainly the 

case, it is notable that the presence or absence of fenestrated capillaries in target organs does not 

predict the pattern of metastasis observed in most cancers, including melanoma. At the other end of the 

spectrum, organs such as the lungs and especially, the brain have structurally sound and continuous 

endothelial linings that lack pores. Based on this anatomy one might predict that metastasis to these 

sites might be difficult and thus relatively rare. However, as lung and brain are two of the most 

common sites of melanoma metastasis [48], the patterns of melanoma metastasis cannot be explained 

by these considerations alone. 

Endothelial cells lining blood vessels have also been shown to express different cell surface 

receptors and adhesion molecules [114,115]. Based on these differences, it has been proposed that 

tumor cells expressing cognate receptors or ligands can specifically adhere to the endothelium of target 

organs [116]. It is quite likely, in fact, that the vasculature of individual organs has a “molecular 

address” encoded by different endothelial cell surface receptors [117], raising the possibility that 

interactions with these factors can mediate organ-specific metastasis. In addition to specific adhesion, 

one must consider extravasation, survival, and subsequent proliferation when studying organ-specific 

metastasis and that these processes may be governed in different ways in different organs [118,119]. 
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With respect to relative proliferation at metastatic sites, in autopsy series melanoma metastasis is found 

to occur sub-clinically at many sites, but will only be clinically detectable in a subset of these sites [48]  

Chemokine and chemokine receptor interactions have also been implicated in many aspects of 

tumor cell biology, including metastasis. Chemokines are secreted proteins that can be subdivided into 

families based on conserved motifs [120]. Based on these motifs, chemokines can interact in specific 

ways with a diverse group of chemokine receptors [120]. Chemokine/receptor interactions are most 

well known as mediators of cell migration to specific sites in the body [120]. Chemokines and their 

receptors are frequently expressed by tumor cells including melanoma [121]. It was proposed in 2003 

that the chemokines/chemokine receptors may enable specific interactions between tumor cells and 

target sites which can influence metastasis [122]. Further, chemokine/receptor interactions can mediate 

pro-survival signals, which suggests this process may also help explain survival and/or subsequent 

growth of metastatic tumor cells in particular organs [123].  

8.1. Metastasis to Lymph Nodes 

The first non-contiguous sites to which melanoma cells are thought to spread are lymph nodes [51]. 

The first lymph node encountered by fluid draining from the cutaneous site where the primary 

melanoma resides is referred to as the sentinel lymph node. The presence or absence of tumor cells in 

this lymph node is generally determined in melanoma patients with tumors >1 mm thick in a procedure 

called a sentinel lymph node biopsy. If the sentinel node is negative histologically, it is likely that other 

regional nodes are also free of metastasis [124]. The presence of melanoma cells in the lymph node is 

the single most powerful predictor of recurrence and survival in melanoma patients [125,126], and if it 

is positive, it is possible that tumor cells have already gained access to the systemic circulation. In fact, 

removal of the sentinel node or even the entire draining nodal basin does not appear to significantly 

extend survival in melanoma patients [52,53]. 

The lymphatic endothelium lacks a well-defined basement membrane, has frequent interendothelial 

gaps, is inherently leaky, and is as such, thought to provide relatively easy access to tumor cells 

compared to vascular endothelium [33,127]. Dadras and colleagues have shown that melanomas with 

lymph node metastasis versus those without have a much higher abundance of lymphatic vessels [128]. 

Increased VEGF-C production, which is involved in lymphangiogenesis [129], may provide a tumor 

cell intrinsic mechanism promoting increased lymphatic vessel density and thus lymph node  

metastasis [51]. Other changes to tumor cells, such as changes from more differentiated and non-

motile, to less differentiated and more-motile have been implicated in the metastatic process (see 

below: Epithelial-Mesenchymal Transition), and may have some role in this process. 

Metastasis of tumor cells into lymph vessels likely involves reciprocal interactions between tumor 

cells, immune cells, and the lymph node itself. For example, spread of tumor cells to a lymph node has 

been shown to result in changes to lymph node biology, resulting in local immunosuppression [130-132]. 

In fact, elective lymph node dissection in melanoma patients has been shown to alter the pattern 

(though not the rate) of the first metastatic recurrence [49]. Zhang and colleagues provide intriguing 

recent evidence that chronic alcohol consumption may even alter lymph node biology in ways that can 

facilitate lymph node metastasis in melanoma [133]. 
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Physical factors in the lymph node may also affect subsequent spread of tumor cells. Anatomic 

patterns of lymph flow to a particular lymph node can affect the geographic location of tumor cells 

within the node [134]. It is certainly possible that the position of tumor cells, perhaps with respect to 

efferent channels, could play a role in subsequent spread from the lymph node. The load of tumor cells 

in the lymph node may also be an important factor, as patients with metastatic foci of <0.1 mm have 

clinical outcomes that are significantly more similar to lymph node negative patients, than to those 

with lymph node metastases >0.1 mm [135,136]. 

Chemokine and chemokine receptors have also been proposed to play a role in mediating  

lymph node metastasis. There is data that CCL21, which is secreted by endothelial cells lining 

lymphatic channels, may mediate metastasis though interaction with its receptor, CCR7, on melanoma  

cells [137-139]. Melanoma cells with relatively higher expression of CCR7 are more migratory in vitro 

when exposed to CCL21 [138]. In vivo experiments in nude mice also provide support for the 

importance of this interaction in mediating lymph-node metastasis [139]. Other chemokine/receptor 

interactions have also been proposed to be relevant to lymph node metastasis. Interactions between 

CXCL12 and CCL21, chemokines produced by lymph nodes and the CXCR7 and CXCR4 chemokine 

receptors expressed on melanoma cells, may have similar roles in mediating lymph node  

metastasis [140]. CXCR3 has also been implicated in lymph node metastasis [141]. 

8.2. Metastasis to Lungs 

The lungs and pleura are the most common sites of visceral metastasis in melanoma. One in ten 

melanoma patients will develop lung metastases at some point in the course of their disease [142]. The 

lungs are often the first site of visceral metastasis in melanoma [143]. Autopsy series reveal that 

upwards of 85% of late stage melanoma patients have evidence of lung metastasis [48]. The lungs are 

common sites of metastasis in many cancers, perhaps in part because blood combined with lymphatic 

fluid returning from the periphery is first pumped by the right heart through the pulmonary 

microvasculature. Mouse models of melanoma, including B16, are also most frequently metastatic to 

the lungs, when metastasis is present [144]. Metastasis to the lungs may be influenced by many factors, 

including specific adhesive and other molecular interactions. Experimental studies of melanoma 

metastasis to the lungs have frequently utilized the B16 mouse model of melanoma in which tail vein 

injection of tumor cells results in lung metastasis. This model has been useful to model the late stages 

of lung metastasis (i.e., after vascular intravasation), however experimental manipulations that result  

in reduction or enhancement of lung metastasis are often difficult to interpret in a context of  

organ-specificity and may represent changes in overall metastatic capability. Nonetheless, there is 

substantial experimental evidence to suggest that specific molecular interactions may be important in 

mediating metastasis to the lungs. 

Studies in the B16 mouse model of melanoma in the early 1990s showed that B16-F10 melanoma 

cells (a highly metastatic subline of B16) preferentially adhere to the microvascular endothelium in the 

lung, but not to control endothelia [145]. Less metastatic B16 variants did not adhere to the lung 

endothelium suggesting tumor cell intrinsic mechanisms mediate specific adherence to the lung. Also 

in 1991, Zhu and colleagues, using the B16 model of melanoma, identified Lu-ECAM, an extracellular 

protein expressed in the lung, as a factor mediating specific adhesion of melanoma cells to the  
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lung [146]. In fact, blocking this adhesion molecule resulted in almost complete elimination of lung 

metastasis [146]. Years later, it was shown that Lu-ECAM (or CLCA2) is actually a chloride channel 

expressed predominantly in the lung and is capable of mediating interactions with α6β4-integrin 

expressed on the tumor cells [147]. This interaction is thought to facilitate metastasis to the lungs. 

Integrins are not uncommonly identified as mediators such interactions promoting organ-specific 

metastasis [148,149]. As engagement of integrins and subsequent signaling is also known to mediate 

cell survival and proliferation [150,151], these interactions probably also provide important survival 

signals to metastatic cells [152]. 

Chemokine receptors, including CXCR4, have also been implicated in mediating preferential 

metastasis to the lung [152-156]. CXCR4 expression in primary melanoma is associated with disease 

progression [157]. Bartolome et al. have recently used a xenograft model of human melanomas to 

demonstrate the important role of CXCR4 in early phases of melanoma lung colonization [152]. These 

authors suggest that CXCR4 ligand/CCR12 interaction not only mediates specificity of adhesion, but 

can also lead to activation of MAPK/ERK and PI3K pathways. Activation of such anti-apoptotic 

survival pathways is certainly an influential component in the formation of organ-specific metastasis. 

8.3. Metastasis to Brain 

Brain metastasis in all cancers is a notoriously ominous sign as prognosis is particularly poor when 

this has occurred [158]. Analyses have suggested that 20–54% of melanoma deaths are a result of brain 

metastases [159-161]. At autopsy, 36–54% of metastatic melanoma patients have brain metastasis, 

while relatively fewer, 12–20%, have clinically evident metastases during the course of their  

disease [159-161]. When brain metastases are present, visceral metastases at other sites are also 

usually present [48]. In the brain, the vasculature is lined by a continuous, non-fenestrated endothelium 

with tight junctions. This structurally sound endothelial lining is called the blood-brain-barrier and 

presents a theoretical obstacle for metastasizing tumor cells. The frequency with which brain 

metastasis is observed in melanoma, however, suggests that melanoma cells are often equipped to 

cross this barrier. The lack of a lymphatic system is also unique to the brain. Interestingly, the blood 

brain barrier prevents certain chemotherapy agents from achieving therapeutic doses in the brain and 

thereby provides an obstacle for treatment. As such, the brain has been referred to as a sanctuary site 

for melanoma metastasis [162]. 

The mechanisms regulating metastasis to the brain are relatively poorly understood. Epidemiologic 

data from melanoma patients suggest that several factors seem to correlate with the development of 

brain metastasis. Some of these include: male sex (2× risk), primary tumor location on the trunk (72% 

of brain metastases are thought to originate from primary tumors located above the waist), and primary 

tumors with superficial spreading histopathology [163,164]. Further, in epidemiologic studies, 

metastasis to the brain is inversely correlated with metastasis to the liver suggesting these processes 

may be mediated in different ways [161]. 

It is clear from autopsy series that metastases to anatomically distinct parts of the brain occur with 

different frequency. A study by Madajewicz et al. suggested that only 4% of melanoma brain 

metastases occur to lower brain structures [163]. Other studies support this trend and reiterate that 

most melanoma brain metastases occur to the frontal lobe [48,161]. Metastatic frequency to both 
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hemispheres is equal [48]. Brain metastasis in melanoma shows a preference for the cortex, followed 

less commonly by sites such as: gray matter nuclei, white matter, leptomeninges, and dura mater. 

Mouse models of melanoma brain metastasis also show differential metastasis to different parts of the 

brain. Fidler et al. have shown that after injection of different tumor cell lines into the carotid artery of 

mice, the different lines showed a proclivity for metastasis to different parts of the brain [165]. For 

example, some lines showed a preference for metastasis to the brain parenchyma, while others showed 

a proclivity for metastasis to the meninges or ventricles. Follow-up work suggested that TGF-β2 may 

be important in mediating metastases specifically to the brain parenchyma, but not to the meninges or 

ventricles [166].  

Additional studies in mice have attempted to describe mechanisms modulating metastasis of 

melanoma to the brain. Some authors have suggested that the expression of the transferrin receptor, 

through interaction with its ligand transferrin, is important in mediating metastasis of human 

melanoma cell lines to the brain in mice [167]. Neurotrophins and neurotrophin receptors have also 

been implicated in the process of brain-specific melanoma metastasis [168]. Specifically, extracellular 

receptors p75 (the low affinity NGF receptor) and the TrkC receptor tyrosine kinase have been 

proposed to, via interactions with neurotrophins, NGF and NT-3, mediate brain metastasis in 

melanoma [169]. In addition to perhaps mediating specificity, there is also evidence that neurotrophins 

may even help promote colonization of the brain by regulating the production of ECM-degradative 

enzymes like heparanase [170-172]. Recent studies have also demonstrated the importance of heparanase 

in the formation of brain metastases by melanoma cells [173]. Additional mediators of brain-specific 

metastasis in melanoma have been described including chemokines [174], activation of Stat3  

signaling [175], and even components of the clotting cascade such as plasmin [176]. The diversity of 

mechanisms proposed to mediate brain metastasis underscore the complexity of this process. 

8.4. Metastasis to Other Sites 

Hepatic metastases are detected clinically in 10–20% of cutaneous melanoma patients with 

metastatic disease [48]. Sub-clinical metastases to the liver are much more common, as they are found 

in 54–77% of melanoma patients at the time of autopsy [56,177,178]. Liver metastases occur relatively 

late in disease progression, with an average lifespan of only 2–4 months in patients with clinically 

evident liver metastases [48]. Liver metastases are rarely the first site of disease spread in cutaneous 

melanoma [48]. Work by Song and colleagues has implicated laminin-1 as a mediator of B16 

melanoma cells metastasizing specifically to the liver [179]. In these experiments, cells selected for the 

ability to adhere to laminin-1 were more efficient in forming liver metastases in mice [179].  

Vidal-Vanaclocha and colleagues have implicated interleukins, IL-1β and IL-18 in hepatic  

metastasis [180]. Mice deficient for IL-1β show an 84-95% reduction in experimental liver metastases. 

IL-18 is thought to increase expression of VCAM-1 in the hepatic sinusoidal epithelium. Blocking  

IL-18 with a soluble factor can decrease the adhesion of melanoma cells by inhibiting this  

mechanism [181]. Laminin-1/VCAM-1 can interact with integrins suggesting again that not only 

adhesive specificity, but also downstream survival signals are important in determining organ 

specificity of metastasis.  



Cancers 2011, 3                            

 

 

141

Bone metastases are relatively uncommon compared to other sites, but are still observed clinically in 

11–17% of melanoma patients [48]. In autopsy series they are found in 23–49% patients [56,177,178]. 

Bone metastases generally occur in patients with late-stage disease, but in a small subset of patients 

can represent the first site of metastatic recurrence [182,183]. Interestingly, melanoma metastasis to 

bone generally involves the axial skeleton, most commonly the spine [182,183]. There is recent 

evidence that targeting TGFβRI can inhibit melanoma metastasis to bone in a xenograft model [184].  

Skin and subcutaneous tissue are the most common sites of melanoma metastasis. Cutaneous 

metastases are thought to be an early external clue that hematogenous spread has occurred [160,185,186]. 

Chemokines, specifically interactions between CCR10 and CCL27, have been implicated in melanoma 

metastasis to the skin. CCL27 is a chemokine expressed constitutively in the epidermis by normal 

keratinocytes [187], and is thought to interact specifically with the chemokine receptor CCR10, which 

is expressed on melanoma cells [188-190]. Interactions between CCR10 and CCL27 are thought to 

mediate metastasis to the skin, supported by the observation that neutralizing antibodies to CCL27 can 

block formation of B16 melanoma in mouse ear skin [191].  

Melanomas are also capable of metastasizing to the gastrointestinal (GI) tract, which occur 

relatively late in melanoma progression. Once GI metastases become clinically evident in melanoma 

patients, survival averages only 2-4 months [48]. The small intestine is the most frequent site of GI 

metastasis, though metastases to all parts of the GI tract have been reported [56,177,178]. The 

chemokine/chemokine receptor pair CCL25/CCR9 has been associated with the ability to metastasize 

to the small intestine [192]. It has been shown that 86% of melanoma metastases to the small bowel 

express CCR9, while CCR9 was not significantly expressed in metastases to other organs. CCL25 is 

produced by the small bowel and thought to mediate specific interaction with CCR9 expressing 

melanomas [192]. 

9. Other Considerations in Melanoma Metastasis 

9.1. Epithelial-Mesenchymal Transition 

Epithelial-mesenchymal transition (EMT) is a concept that was originally used to describe 

processes during embryological development in which cells with an epithelial phenotype are converted 

to cells with a more mesenchymal phenotype. This process is important in developmental processes 

such as the origin and fate of the neural crest [193]. This concept was subsequently applied to tumor 

biology to describe the process of tumor progression. In carcinomas, tumors of epithelial origin, EMT 

posits that loss of differentiated epithelial features such as tight intercellular adhesions, apical-basal 

polarity, and restricted motility and acquisition of characteristics of undifferentiated, mesenchymal 

cells such as few intercellular interactions, front-back polarity, and increased cell motility are 

important in the metastatic process [194]. Functionally, EMT in cancer is thought to be regulated by 

down-regulation of adhesion molecules like E-cadherin and upregulation of developmentally important 

transcription factors such as SLUG, SNAIL, TWIST, and ZEB1/2 [194]. 

EMT in cancer is a controversial topic. Most experimental evidence for EMT is based on in vitro 

studies, leading some authors to call into question the relevance of this process in vivo [195,196]. 

While EMT provides a model for escape from the primary tumor, it does not explain other components 
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of the metastatic cascade such as adhesion, extravasation, survival, and growth at a distant site. More 

recently, MET (or mesenchymal-epithelial transition), has been suggested to occur at distant sites after 

an EMT-induced metastasis. Proposed to reconcile the observation that metastases often resemble 

primary tumors histopathologically [194], there is little direct experimental data to support MET to 

date [197]. Studies have also indicated that dissemination from primary tumors can be a relatively 

common events, as shedding of cells from a primary tumor into circulation has been estimated to occur 

with a frequency of more than a million cells per gram of tumor per day [36]. Further, the presence of 

tumor cells in the blood does not predict that metastasis will or has occurred [35]. Such additional 

observations raise the possibility that survival and growth at secondary sites may be more important 

than acquisition of invasive characteristics and/or escape from the primary site. Moving forward it will 

be important to take a more global approach to the study of metastasis, that will likely center around 

new mouse models of melanoma (see Section 10 below: Mouse Models). 

Other processes in addition to EMT have been proposed to regulate metastasis at a global level and 

are reviewed elsewhere [198-200]. In addition to metastasis-promoting factors, metastasis-suppressing 

factors have also been identified in melanoma. Such suppressive factors include the proteins: KISS1, 

GPR56, BRMS1, and NEDD9 [201-204].  

9.2. Organ-Specific Metastasis in the 21st Century 

Recent advances in technology have increased the speed and decreased the cost with which high 

throughput analysis of cancers can be carried out. Several studies have used high throughput 

approaches and bioinformatic analyses to identify genes associated with metastasis of specific cancers 

to specific organs [205-208]. Similar studies in melanoma have started to be published, but to date 

have focused on metastasis in general, rather than to specific organs [209]. Attempts to correlate 

expression signatures with poor outcome in melanoma have been performed [210-213], but have not 

reached consensus. Transcripts identified in these studies have had little overlap making interpretation 

of these data sets difficult [214]. Such discrepancies may have technical aspects, but certainly also 

reflect the complexity, heterogeneity, and context-specificity of changes in individual melanomas.  

In addition to high-throughput expression analysis, next-generation sequencing of cancer genomes 

and/or exomes is likely to be very informative and identify mutations that drive tumor formation and 

even metastasis in melanoma. An entire melanoma genome, including annotation of >30,000 somatic 

mutations, was published earlier this year [215]. In uveal melanoma, exome sequencing has recently 

identified inactivating mutations to BAP1 in 84% of metastasizing tumors [216]. As the majority of 

uveal melanomas metastasize to the liver, it will be exciting to see if BAP1 is involved in regulation of 

metastasis specifically to this site. As additional cutaneous melanoma genomes become available, a 

more comprehensive view of somatic mutations that drive melanoma will be available. Such 

knowledge will allow for study of organ-specific metastasis in relevant genetic contexts. For example, 

it is possible that mechanisms regulating metastasis in certain genetic contexts may not regulate 

metastasis in other genetic contexts.  
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9.3. Genetics of Melanoma and Metastasis 

Despite ongoing efforts to characterize additional genetic mutations mediating melanoma formation 

and progression, quite a bit is already known [217]. BRAF, a mitogenic Ser/Thr kinase in the 

MAPK/ERK pathway, has an activating mutation, V600E, in at least 50% of melanomas [218,219] and 

is thought to be a central oncogenic driver in melanoma. The effect of BRAFV600E mutational status 

on melanoma metastasis is still somewhat unclear, though some data do exist. BRAF-mutant tumors 

have been reported to have a worse prognosis than, for example, NRAS mutants [220], another 

oncogenic mutation that is thought to drive melanoma formation in a smaller subset of tumors. 

Though, the association of BRAF-mutation with poor outcome compared to NRAS-mutants was not 

replicated in other studies [221,222]. Some preliminary evidence suggests that inhibition of targets 

downstream of mutant BRAF in melanoma can inhibit lung metastasis [223]. Evidence from thyroid 

cancer, in which the BRAF V600E mutation is also common, suggests that this mutation can increase 

invasiveness [224,225]. However, a recent study in an orthotopic mouse model of melanoma has 

suggested that RAS/RAF mutational status does not have a role in determining metastasis [226]. The 

discrepancies in these early studies suggest the implications of the BRAFV600E mutational status with 

respect to survival and metastasis in melanoma are likely complex. 

The PI3K/AKT pathway regulates cell survival, growth, and proliferation. This pathway is often 

dysregulated in melanoma through various mechanisms including inactivation of PTEN phosphatase, 

which is mutated in 5-20% of primary melanomas [227-229]. Protein expression of PTEN is lost 

through other mechanisms including epigenetic changes in a larger subset of melanomas [230,231]. 

With respect to metastasis, it has been shown that adding PTEN back to PTEN-deficient cells can 

diminish metastasis [232]. Pten loss has also been shown to enhance melanoma metastasis in  

mice [233,234]. It is currently unclear if signaling through this pathway is capable of mediating 

metastasis to particular organs rather than influencing metastasis more generally. As a comprehensive 

understanding of the driving events in melanoma is developed, more powerful and relevant analyses of 

the mediators of the metastatic cascade will be possible.  

9.4. Additional Considerations 

Cancer stem cells, or tumor-initiating cells, are a subpopulation of cells within a tumor that are 

thought to be relatively more tumorigenic than other tumor cells, relatively resistant to chemotherapy, 

and to mediate disease recurrence after treatment [235,236]. The cancer stem cell model, first 

developed in leukemias, has since been applied to solid tumors including melanoma. Much effort has 

gone into identifying and characterizing this population of cells in melanoma [237-242], but consensus 

has yet to be reached. The role of tumor-initiating cells in melanoma metastasis is relatively 

uncharacterized. Further, similarities and differences in the processes mediating tumor-initiating cell 

biology and metastatic dormancy are also unknown. It has even been proposed that mechanisms 

regulating EMT may relate to tumor-initiating cell biology [243]. It will be important to clarify the 

relationship of these processes to both each other as well as to tumor heterogeneity more generally. 

Better understanding of mechanisms regulating these processes in melanoma will aid in the study of 

their relationship to metastasis, dormancy, and tumor recurrence. 
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MicroRNAs (miRNAs) are short RNA molecules encoded within the genome that are capable of 

negative post-transcriptional regulation of target mRNAs. miRNAs are known to be dysregulated in 

cancers including melanoma [244] and have been shown to be functional mediators of  

metastasis [245,246]. miRNAs are thought to be capable of regulating complex biological processes 

through their ability to functionally repress many transcripts that may have a related function. As such, 

miRNAs may have important roles in influencing metastasis, dormancy, and reactivation. The 

dysregulation of several miRNAs has already been proposed to have functionally important 

consequences in melanoma [247-249]. Large scale characterization of miRNAs in melanoma continues 

and will likely be pivotal in more completely understanding the process of metastasis.  

Although not addressed in detail within this review, the immune system (and more broadly the 

tumor microenvironment) has been shown to play an important role in melanoma formation, 

progression, and metastasis. The capacities in which the immune system can interact with melanomas 

are complex and can be different in different circumstances. Some authors have implicated 

components of the immune system such as macrophages as having a primarily pro-tumor and  

pro-metastasis function [250-253], while other authors have identified components of the immune 

system that can negatively regulate melanoma and melanoma metastasis [254]. Enhancement of 

immune-mediated tumor rejection is a central means by which promising new melanoma therapies 

function [255]. Other components of the tumor microenvironment can play roles in melanoma 

formation and metastasis [256]. The context of a “pre-metastatic niche” and its importance in 

influencing tumor metastasis is another microenvironmental consideration undergoing intensive 

investigation [257-259].  

10. Mouse Models 

In recent years, improvements in mouse models based on melanocyte-specific, conditional Cre-lox 

recombination technology now allow for reproducible formation of spatially restricted melanomas in 

immune-competent mice [233]. In these models melanoma-relevant genetic changes such as Pten loss 

and Braf activation drive transformation of normal mouse melanocytes into melanoma leaving 

surrounding tissue unaltered, thus recapitulating complex host-tumor interactions that occur through 

tumor development. Other, more highly metastatic models have been generated based on additional 

genetic changes and will allow for the evaluation of the individual steps in the metastatic cascade 

[260]. Fluorescent reporters in these endogenous mouse models of melanoma will allow for tracking of 

individual tumor cells and purification of these cells at different steps of the metastatic process. For 

example, the temporal kinetics between metastasis to lymph node, presence of circulating tumor cells, 

and metastases at distant sites can be easily characterized utilizing these technologies. This next 

generation of mouse models will not only be important discovery tools, but will also be a means by 

which to test additional hypotheses. For example, the relevance of EMT in melanoma could be directly 

tested by either inactivating E-cadherin or over-expressing particular transcription factors in these 

models. As more and more strains of mice become readily available, such models will provide a 

platform for testing the roles of other potentially modulating changes with respect to melanoma 

formation and progression. More broadly, careful study of organ specificity, premalignant 
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dissemination, and metastatic dormancy are now possible in these models, which will be central to 

advancing our understanding of basic processes in melanoma metastasis. 

11. Conclusions 

The process of melanoma metastasis is quite complex. Early models of melanoma formation and 

metastasis have been useful in advancing our understanding of melanoma progression. However, as we 

learn more about the heterogeneity of the metastatic process in melanoma it becomes clear that these 

models must be amended to address additional complexities of metastasis. Concepts such as metastatic 

dormancy, premalignant dissemination, and organ-specific metastasis should be incorporated into 

newer models of metastasis. Moving forward, it will be important to better understand each of the 

component steps of metastasis at a mechanistic level and to develop clear descriptions and definitions 

of these processes so that they may be related to other entities in melanoma research, such as tumor 

heterogeneity and tumor-initiating cells. Clinical and in vivo observations should be kept in mind when 

interpreting the applicability of in vitro experimental findings. For example, mediators of cell motility 

in vitro probably do not always equate with increases in metastasis in vivo. Furthermore, entry into 

circulation through increases in cell motility is only one step in a complex process, other factors such 

as those mediating survival of tumor cells in circulation, extravasation at distant sites, survival, 

dormancy, and subsequent proliferation are important and cannot be ignored.  

Individual melanomas are driven by diverse genetic and epigenetic alterations. It may be difficult to 

determine a universal set of the factors mediating melanoma metastasis, as changes that mediate 

metastasis in one melanoma may not mediate this process in another. Also, factors mediating survival 

and proliferation of a metastatic tumor cells in the liver, for example, may be vastly different than 

factors mediating this process in the brain. Moreover, treating metastases to these different organs may 

require different strategies that will also be confounded by different driving mutations in individual 

tumors. Ultimately, tumors develop and metastasize in the experimentally intractable setting of 

individual patients, in which comorbid conditions such as metabolic disorders and chronic 

inflammatory states also influence disease progression in ways that are very complex and only 

beginning to be understood.  

Finding core mediators of different processes in metastasis is a formidable challenge, but will 

provide opportunities for developing new treatment strategies. Targeting these processes with new 

therapeutic agents and implementing them in appropriate clinical settings will present additional 

challenges. Metastasis research has progressed immensely since the time the seed-and-soil hypothesis 

was originally proposed, though there are additional subtleties to the process that we are just beginning 

to understand. As human melanoma is more broadly characterized through extensive sequencing of 

melanoma genomes, a comprehensive view of mutations driving melanoma formation and progression 

will be determined in the next few years. Given the rapid progress of technology in other areas such as 

proteomics, imaging, mouse modeling, and structure-based drug design, description and exploitation of 

newly discovered changes can occur rapidly, providing unprecedented opportunities for both 

understanding and treating melanoma in the years to come. 
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